Wing Noise Simulation of Supersonic Business Jet in Landing Configuration

Authors

DOI:

https://doi.org/10.14529/jsfi240305

Keywords:

computational fluid dynamics, aeroacoustics, airframe noise, turbulent flow, detached eddy simulation, mixed-element mesh, FWH method

Abstract

The paper presents the results of wing noise simulations for the prototype of supersonic business jet in landing mode. The near-field airflow is modeled according to Delayed Detached Eddy Simulation approach. The finite-volume vertex-centered scheme with the low weight of upwind component is used for convective flux approximation. The noise at the far-field points is calculated by the Ffowcs Williams–Hawkings method. The noise spectra at the near-field points are presented, and the impact of local mesh resolution and numerical instability on the near-field acoustics is discussed. For the Ffowcs Williams–Hawkings method due to the features of the wing geometry and the resulting flow configuration, we used non-standard integration surfaces to reduce computational costs of the scale-resolving simulations. Additionally, we employed optimized mesh resolution on the integration surfaces to significantly reduce the dick space required for storing the data for far-field noise calculations. The tests performed for the near-field and far-field points demonstrated applicability of the proposed optimizations.

References

Abalakin, I.V., Bakhvalov, P.A., Bobkov, V.G., et al.: NOISEtte CFD&CAA Supercomputer Code for Research and Applications. Supercomput. Front. Innov. 11(2), 78–101 (aug 2024). https://doi.org/10.14529/jsfi240206

Bakhvalov, P.A., Kozubskaya, T.K., Kornilina, E.D., et al.: Technology of predicting acoustic turbulence in the far-field flow. Math. Model. Comput. Simulations 4(3), 363–373 (may 2012). https://doi.org/10.1134/S2070048212030039

Bakhvalov, P.A., Surnachev, M.D.: Method of averaged element splittings for diffusion terms discretization in vertex-centered framework. J. Comput. Phys. 450, 110819 (feb 2022). https://doi.org/10.1016/J.JCP.2021.110819

Bakhvalov, P., Kozubskaya, T., Rodionov, P.: EBR schemes with curvilinear reconstructions for hybrid meshes. Comput. Fluids 239, 105352 (may 2022). https://doi.org/10.1016/J.COMPFLUID.2022.105352

Delfs, J.: Simulation of aircraft installation noise – a key to low noise aircraft design (2016), https://ceaa.imamod.ru/2016/files/ceaa2016.pdfs/D3S01_Delfs.pdf

Dobrzynski, W., Ewert, R., Pott-Pollenske, M., et al.: Research at DLR towards airframe noise prediction and reduction. Aerosp. Sci. Technol. 12(1), 80–90 (jan 2008). https://doi.org/10.1016/j.ast.2007.10.014

Ferris, R., Sacks, M., Cerizza, D., et al.: Aeroacoustic Computations of a Generic Low Boom Concept in Landing Configuration: Part 1 – Aerodynamic Simulations. AIAA Aviat. Aeronaut. Forum Expo. AIAA Aviat. Forum 2021 (2021). https://doi.org/10.2514/6.2021-2195

Ffowcs Williams, J.E., Hawkings, D.L.: Sound generation by turbulence and surfaces in arbitrary motion. Philos. Trans. R. Soc. London. Ser. A, Math. Phys. Sci. 264(1151), 321–342 (may 1969). https://doi.org/10.1098/rsta.1969.0031

Gorobets, A.V., Duben, A.P., Kozubskaya, T.K., Rodionov, P.V.: Approaches to the Numerical Simulation of the Acoustic Field Generated by a Multi-Element Aircraft Wing in High-Lift Configuration. Math. Model. Comput. Simulations 15(1), 92–108 (feb 2023). https://doi.org/10.1134/S2070048223010088

Guseva, E.K., Garbaruk, A.V., Strelets, M.K.: An automatic hybrid numerical scheme for global RANS-LES approaches. J. Phys. Conf. Ser. 929(1), 012099 (nov 2017). https://doi.org/10.1088/1742-6596/929/1/012099

Khorrami, M.R., Shea, P.R., Winski, C.S., et al.: Aeroacoustic Computations of a Generic Low Boom Concept in Landing Configuration: Part 3 – Aerodynamic Validation and Noise Source Identification. AIAA Aviat. Aeronaut. Forum Expo. AIAA Aviat. Forum 2021 (2021). https://doi.org/10.2514/6.2021-2197

Mockett, C., Fuchs, M., Garbaruk, A., et al.: Two Non-zonal Approaches to Accelerate RANS to LES Transition of Free Shear Layers in DES. In: Prog. Hybrid RANSLES Model., vol. 130, pp. 187–201. Springer Verlag (2015). https://doi.org/10.1007/978-3-319-15141-0_15

Nicoud, F., Toda, H.B., Cabrit, O., et al.: Using singular values to build a subgrid-scale model for large eddy simulations. Phys. Fluids 23(8), 085106 (aug 2011). https://doi.org/10.1063/1.3623274

Ribeiro, A.F., Ferris, R., Khorrami, M.R.: Aeroacoustic Computations of a Generic Low Boom Concept in Landing Configuration: Part 2 – Airframe Noise Simulations. AIAA Aviat. Aeronaut. Forum Expo. AIAA Aviat. Forum 2021 (2021). https://doi.org/10.2514/6.2021-2196

Shur, M.L., Spalart, P.R., Strelets, M.K.: Noise Prediction for Increasingly Complex Jets. Part I: Methods and Tests. Int. J. Aeroacoustics 4(3), 213–245 (jul 2005). https://doi.org/10.1260/1475472054771376

Shur, M.L., Spalart, P.R., Strelets, M.K.: Noise Prediction for Increasingly Complex Jets. Part II: Applications. Int. J. Aeroacoustics 4(3), 247–266 (jul 2005). https://doi.org/10.1260/1475472054771385

Shur, M.L., Spalart, P.R., Strelets, M.K., Travin, A.K.: An Enhanced Version of DES with Rapid Transition from RANS to LES in Separated Flows. Flow, Turbul. Combust. 95(4), 709–737 (jun 2015). https://doi.org/10.1007/S10494-015-9618-0

Spalart, P.R., Allmaras, S.R.: A one-equation turbulence model for aerodynamic flows. In: AIAA Pap. 92-0439 (1992). https://doi.org/10.2514/6.1992-439

Stabnikov, A.S., Garbaruk, A.V.: Testing of modified curvature-rotation correction for k-ω SST model. J. Phys. Conf. Ser. 769(1), 012087 (nov 2016). https://doi.org/10.1088/1742-6596/769/1/012087

Sun, Y., Smith, H.: Review and prospect of supersonic business jet design. Prog. Aerosp. Sci. 90, 12–38 (2017). https://doi.org/10.1016/j.paerosci.2016.12.003

Voevodin, V.V., Antonov, A.S., Nikitenko, D.A., et al.: Supercomputer Lomonosov-2: Large Scale, Deep Monitoring and Fine Analytics for the User Community. Supercomput. Front. Innov. 6(2), 4–11 (jun 2019). https://doi.org/10.14529/jsfi190201

van der Vorst, H.A.: Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems. SIAM J. Sci. Stat. Comput. 13(2), 631–644 (1992). https://doi.org/10.1137/0913035

Zaporozhets, O., Tokarev, V.I., Attenborough, K.: Aircraft Noise: Assessment, prediction and control. Spon Press (2011), https://books.google.com/books/about/Aircraft_Noise.html?hl=ru&id=wSMXnVVgOSQC

Downloads

Published

2024-10-25

How to Cite

Duben, A. P., Kozubskaya, T. K., & Rodionov, P. V. (2024). Wing Noise Simulation of Supersonic Business Jet in Landing Configuration. Supercomputing Frontiers and Innovations, 11(3), 74–92. https://doi.org/10.14529/jsfi240305