Application-Specific Parallel Linear Solver for Nonlinear Harmonics Method with Implicit Time Integration

Authors

DOI:

https://doi.org/10.14529/jsfi250105

Keywords:

turbomachinery, rotor-stator interaction, non-linear harmonics method, unstructured mesh, parallel CFD, supercomputer

Abstract

The present paper covers specific parallel implementation details of the nonlinear harmonics (NLH) method within an implicit time integration framework. The NLH method plays an important role in industrial turbomachinery applications as it accounts for unsteady effects in modelling of compressors and turbines on a base of low-cost stationary approaches: the flow is modelled using the Reynolds-Averaged Navier–Stokes approach, the mixing plane method is used for the rotorstator interface, and only one periodic sector of a blade passage per row is considered. The main focus is on the adaptation of the linear solver used in the Newtonian process of the implicit scheme. The goal of this work is to significantly reduce memory consumption and improve performance. This goal is achieved by using a specialized block sparse matrix storage format, adapted linear solver preconditioners with approximate inverse diagonal blocks, and a combination of single- and double-precision real number formats.

References

He, L., Ning, W.: Efficient approach for analysis of unsteady viscous flows in turbomachines. AIAA J. 36(11), 2005–2012 (1998). https://doi.org/10.2514/2.328

Chen, T., Vasanthakumar, P., He, L.: Analysis of unsteady blade row interaction using nonlinear harmonic approach. J. Propuls. Power 17(3), 651–658 (2001). https://doi.org/10.2514/2.5792

He, L., Chen, T., Wells, R.G., et al.: Analysis of Rotor-Rotor and Stator-Stator Interferences in Multi-Stage Turbomachines. J. Turbomach. Trans. ASME 124(4), 564–571 (2002). https://doi.org/10.1115/1.1508382

Vilmin, S., Lorrain, E., Hirsch, C., et al.: Unsteady flow modeling across the rotor/stator interface using the non-linear harmonic method. In: Proceedings of the ASME Turbo Expo 2006: Power for Land, Sea, and Air. Volume 6: Turbomachinery, Parts A and B. pp. 1227–1237. ASME (2006). https://doi.org/10.1115/GT2006-90210

Vilmin, S., Lorrain, E., Tartinville, B., et al.: The Nonlinear Harmonic Method: From single stage to multi-row effects. Int. J. Comput. Fluid Dyn. 27(2), 88–99 (2013). https://doi.org/10.1080/10618562.2012.752074

Burgos, M.A., Contreras, J., Corral, R.: Efficient Edge-Based Rotor/Stator Interaction Method. AIAA J. 49(1), 19–31 (2011). https://doi.org/10.2514/1.44512

Duben, A., Gorobets, A., Soukov, S., et al.: Supercomputer Simulations of Turbomachinery Problems with Higher Accuracy on Unstructured Meshes. In: Voevodin, V., Sobolev, S., Yakobovskiy, M., Shagaliev, R. (eds.) RuSCDays 2022. LNCS, vol. 13708, pp. 356–367. Springer (2022). https://doi.org/10.1007/978-3-031-22941-1

Duben, A.P., Zagitov, R.A., Shuvaev, N.V.: Nonlinear harmonics method for supercomputer simulations of fluid dynamics in turbomachines with higher accuracy on unstructured meshes. Lobachevskii J. Math. 45(7), 3007–3016 (2024). https://doi.org/10.1134/S1995080224603916

Duben, A.P., Zagitov, R.A., Shuvaev, N.V., Marakueva, O.V.: Towards an Adaptation of the Nonlinear Harmonics Method Realized in an Unstructured Flow Solver for Simulation of Turbomachinery Problems on Supercomputers. In: Voevodin, V., Antonov, A., Nikitenko, D. (eds.) Supercomputing. RuSCDays 2024. LNCS, vol. 15406, pp. 253–266. Springer, Cham (2025). https://doi.org/10.1007/978-3-031-78459-0_19

Abalakin, I.V., Bakhvalov, P.A., Bobkov, V.G., et al.: NOISEtte CFD&CAA Supercomputer Code for Research and Applications. Supercomputing Frontiers and Innovations 11(2), 78–101 (2024). https://doi.org/10.14529/jsfi240206

Gorobets, A., Bakhvalov, P.: Heterogeneous CPU+GPU parallelization for high-accuracy scale-resolving simulations of compressible turbulent flows on hybrid supercomputers. Computer Physics Communications 271, 108231 (2022). https://doi.org/10.1016/j.cpc.2021.108231

Bakhvalov, P.A., Abalakin, I.V., Kozubskaya, T.K.: Edge-based reconstruction schemes for unstructured tetrahedral meshes. Int. J. Numer. Methods Fluids 81(6), 331–356 (2016). https://doi.org/10.1002/fld.4187

Bakhvalov, P.A., Kozubskaya, T.K.: EBR-WENO scheme for solving gas dynamics problems with discontinuities on unstructured meshes. Comput. Fluids 157, 312–324 (2017). https://doi.org/10.1016/j.compfluid.2017.09.004

Roe, L.: Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes. J. Comput. Phys. 43, 357–372 (1981).

Bakhvalov, P., Surnachev, M.: Method of averaged element splittings for diffusion terms discretization in vertex-centered framework. J. Comput. Phys. 450, 110819 (2022). https://doi.org/10.1016/j.jcp.2021.110819

van der Vorst, H.: Bi-CGSTAB: A fast and smoothly converging variant of bi-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 13, 631–644 (1992). https://doi.org/10.1137/0913035

Magomedov, A.R., Gorobets, A.V.: Heterogeneous Implementation of Preconditioners Based on GaussSeidel Method for Sparse Block Matrices. Computational Mathematics and Modeling 33, 438–442 (2022). https://doi.org/10.1007/s10598-023-09585-2

Gerolymos, G.A., Michon, G.J., Neubauer, J.: Analysis and Application of Chorochronic Periodicity in Turbomachinery Rotor/Stator Interaction Computations. J. Propuls. Power 18(6), 1139–1152 (2002). https://doi.org/doi:10.2514/2.6065

Strazisar, A.J., Wood, J.R., Hathaway, M.D., Suder, K.L.: Laser Anemometer Measurements in a Transonic Axial-Flow Fan Rotor. NASA TP-2879, 1989.

Voroshnin, D.V., Marakueva, O.V., Muraveiko, A.S.: Modeling Unsteady Phenomena in an Axial Compressor. Math. Models Comput. Simul. 12, 413–421 (2020). https://doi.org/10.1134/S2070048220030187

Menter, F.R., Kuntz, M., Langtry, R.: Ten Years of Industrial Experience with the SST Turbulence Model. In: Proceedings of the 4th International Symposium on Turbulence, Heat and Mass Transfer, Begell House Inc., West Redding, pp. 625–632 (2003). https://doi.org/10.2514/3.12149

Zagitov, R.A., Salnikov, S.D., Shuvaev, N.V.: Automatic Block-Structured Grid Generation in Turbo Machine Blade Passages by TurboR&D.Mesher Software. Math. Models Comput. Simul. 16, 112–122 (2024). https://doi.org/10.1134/S2070048224010125

Gorobets, A.V., Soukov, S.A., Magomedov A.R.: Heterogeneous Parallel Implementation of a Multigrid Method with Full Approximation in the Noisette Code. Math. Models Comput. Simul. 16, 609–619 (2024). https://doi.org/10.1134/S2070048224700261

Voevodin, V., Antonov, A., Nikitenko, D., et al.: Supercomputer Lomonosov-2: Large scale, deep monitoring and fine analytics for the user community. Supercomput. Front. Innov. 6(2), 4–11 (2019). https://doi.org/10.14529/jsfi190201

Downloads

Published

2025-05-16

How to Cite

Duben, A. P., & Gorobets, A. V. (2025). Application-Specific Parallel Linear Solver for Nonlinear Harmonics Method with Implicit Time Integration. Supercomputing Frontiers and Innovations, 12(1), 60–72. https://doi.org/10.14529/jsfi250105

Most read articles by the same author(s)