Application-Specific Parallel Linear Solver for Nonlinear Harmonics Method with Implicit Time Integration
DOI:
https://doi.org/10.14529/jsfi250105Keywords:
turbomachinery, rotor-stator interaction, non-linear harmonics method, unstructured mesh, parallel CFD, supercomputerAbstract
The present paper covers specific parallel implementation details of the nonlinear harmonics (NLH) method within an implicit time integration framework. The NLH method plays an important role in industrial turbomachinery applications as it accounts for unsteady effects in modelling of compressors and turbines on a base of low-cost stationary approaches: the flow is modelled using the Reynolds-Averaged Navier–Stokes approach, the mixing plane method is used for the rotorstator interface, and only one periodic sector of a blade passage per row is considered. The main focus is on the adaptation of the linear solver used in the Newtonian process of the implicit scheme. The goal of this work is to significantly reduce memory consumption and improve performance. This goal is achieved by using a specialized block sparse matrix storage format, adapted linear solver preconditioners with approximate inverse diagonal blocks, and a combination of single- and double-precision real number formats.
References
He, L., Ning, W.: Efficient approach for analysis of unsteady viscous flows in turbomachines. AIAA J. 36(11), 2005–2012 (1998). https://doi.org/10.2514/2.328
Chen, T., Vasanthakumar, P., He, L.: Analysis of unsteady blade row interaction using nonlinear harmonic approach. J. Propuls. Power 17(3), 651–658 (2001). https://doi.org/10.2514/2.5792
He, L., Chen, T., Wells, R.G., et al.: Analysis of Rotor-Rotor and Stator-Stator Interferences in Multi-Stage Turbomachines. J. Turbomach. Trans. ASME 124(4), 564–571 (2002). https://doi.org/10.1115/1.1508382
Vilmin, S., Lorrain, E., Hirsch, C., et al.: Unsteady flow modeling across the rotor/stator interface using the non-linear harmonic method. In: Proceedings of the ASME Turbo Expo 2006: Power for Land, Sea, and Air. Volume 6: Turbomachinery, Parts A and B. pp. 1227–1237. ASME (2006). https://doi.org/10.1115/GT2006-90210
Vilmin, S., Lorrain, E., Tartinville, B., et al.: The Nonlinear Harmonic Method: From single stage to multi-row effects. Int. J. Comput. Fluid Dyn. 27(2), 88–99 (2013). https://doi.org/10.1080/10618562.2012.752074
Burgos, M.A., Contreras, J., Corral, R.: Efficient Edge-Based Rotor/Stator Interaction Method. AIAA J. 49(1), 19–31 (2011). https://doi.org/10.2514/1.44512
Duben, A., Gorobets, A., Soukov, S., et al.: Supercomputer Simulations of Turbomachinery Problems with Higher Accuracy on Unstructured Meshes. In: Voevodin, V., Sobolev, S., Yakobovskiy, M., Shagaliev, R. (eds.) RuSCDays 2022. LNCS, vol. 13708, pp. 356–367. Springer (2022). https://doi.org/10.1007/978-3-031-22941-1
Duben, A.P., Zagitov, R.A., Shuvaev, N.V.: Nonlinear harmonics method for supercomputer simulations of fluid dynamics in turbomachines with higher accuracy on unstructured meshes. Lobachevskii J. Math. 45(7), 3007–3016 (2024). https://doi.org/10.1134/S1995080224603916
Duben, A.P., Zagitov, R.A., Shuvaev, N.V., Marakueva, O.V.: Towards an Adaptation of the Nonlinear Harmonics Method Realized in an Unstructured Flow Solver for Simulation of Turbomachinery Problems on Supercomputers. In: Voevodin, V., Antonov, A., Nikitenko, D. (eds.) Supercomputing. RuSCDays 2024. LNCS, vol. 15406, pp. 253–266. Springer, Cham (2025). https://doi.org/10.1007/978-3-031-78459-0_19
Abalakin, I.V., Bakhvalov, P.A., Bobkov, V.G., et al.: NOISEtte CFD&CAA Supercomputer Code for Research and Applications. Supercomputing Frontiers and Innovations 11(2), 78–101 (2024). https://doi.org/10.14529/jsfi240206
Gorobets, A., Bakhvalov, P.: Heterogeneous CPU+GPU parallelization for high-accuracy scale-resolving simulations of compressible turbulent flows on hybrid supercomputers. Computer Physics Communications 271, 108231 (2022). https://doi.org/10.1016/j.cpc.2021.108231
Bakhvalov, P.A., Abalakin, I.V., Kozubskaya, T.K.: Edge-based reconstruction schemes for unstructured tetrahedral meshes. Int. J. Numer. Methods Fluids 81(6), 331–356 (2016). https://doi.org/10.1002/fld.4187
Bakhvalov, P.A., Kozubskaya, T.K.: EBR-WENO scheme for solving gas dynamics problems with discontinuities on unstructured meshes. Comput. Fluids 157, 312–324 (2017). https://doi.org/10.1016/j.compfluid.2017.09.004
Roe, L.: Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes. J. Comput. Phys. 43, 357–372 (1981).
Bakhvalov, P., Surnachev, M.: Method of averaged element splittings for diffusion terms discretization in vertex-centered framework. J. Comput. Phys. 450, 110819 (2022). https://doi.org/10.1016/j.jcp.2021.110819
van der Vorst, H.: Bi-CGSTAB: A fast and smoothly converging variant of bi-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 13, 631–644 (1992). https://doi.org/10.1137/0913035
Magomedov, A.R., Gorobets, A.V.: Heterogeneous Implementation of Preconditioners Based on GaussSeidel Method for Sparse Block Matrices. Computational Mathematics and Modeling 33, 438–442 (2022). https://doi.org/10.1007/s10598-023-09585-2
Gerolymos, G.A., Michon, G.J., Neubauer, J.: Analysis and Application of Chorochronic Periodicity in Turbomachinery Rotor/Stator Interaction Computations. J. Propuls. Power 18(6), 1139–1152 (2002). https://doi.org/doi:10.2514/2.6065
Strazisar, A.J., Wood, J.R., Hathaway, M.D., Suder, K.L.: Laser Anemometer Measurements in a Transonic Axial-Flow Fan Rotor. NASA TP-2879, 1989.
Voroshnin, D.V., Marakueva, O.V., Muraveiko, A.S.: Modeling Unsteady Phenomena in an Axial Compressor. Math. Models Comput. Simul. 12, 413–421 (2020). https://doi.org/10.1134/S2070048220030187
Menter, F.R., Kuntz, M., Langtry, R.: Ten Years of Industrial Experience with the SST Turbulence Model. In: Proceedings of the 4th International Symposium on Turbulence, Heat and Mass Transfer, Begell House Inc., West Redding, pp. 625–632 (2003). https://doi.org/10.2514/3.12149
Zagitov, R.A., Salnikov, S.D., Shuvaev, N.V.: Automatic Block-Structured Grid Generation in Turbo Machine Blade Passages by TurboR&D.Mesher Software. Math. Models Comput. Simul. 16, 112–122 (2024). https://doi.org/10.1134/S2070048224010125
Gorobets, A.V., Soukov, S.A., Magomedov A.R.: Heterogeneous Parallel Implementation of a Multigrid Method with Full Approximation in the Noisette Code. Math. Models Comput. Simul. 16, 609–619 (2024). https://doi.org/10.1134/S2070048224700261
Voevodin, V., Antonov, A., Nikitenko, D., et al.: Supercomputer Lomonosov-2: Large scale, deep monitoring and fine analytics for the user community. Supercomput. Front. Innov. 6(2), 4–11 (2019). https://doi.org/10.14529/jsfi190201
Downloads
Published
How to Cite
Issue
License
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-Non Commercial 3.0 License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.