3D Numerical Simulation of Micro-Jet Excitation

Authors

DOI:

https://doi.org/10.14529/jsfi250102

Keywords:

micro-jet, excitation, discharge, instability, numerical simulation

Abstract

Excitation of round laminar air micro-jet by volumetric force and by pulse-periodic heat source was simulated using the FlowVision software package in 3D formulation at normal conditions. Heat source and volumetric force imitate an influence of electrical discharge. Air jet was formed by a circular cross-section channel with inner size of 1 mm with the Poiseuille velocity profile at inlet boundary, the maximum profile velocity was 5 m/s. The conditions corresponded to the formulation of the problem considered earlier in the experiment. Dependence of large-scale vortex formation from volumetric force frequency and amplitude was obtained. Amplitude of force corresponding to the effect of the discharge on the air jet was determined and was set to 5 μN. For round laminar jet the exited oscillations of the jet was obtained at frequency range 500–2500 Hz, further increase in the frequency of oscillations left the shape of the jet close to the initial. Lack of influence of pulse-periodic heat source on flow structure was discussed. The results obtained demonstrate that the main contribution from the corona discharge to the jet in the experiment is provided by the volumetric force (ionic wind), and not by the heating of the gas.

References

Reynolds, W.C., Parekh, D.E., Juvet, P.J.D., et al.: Bifurcating And Blooming Jets. Annual Review of Fluid Mechanics 35(1), 295–315 (2003). https://doi.org/10.1146/annurev.fluid.35.101101.161128

Perumal, A.K., Zhou, Y.: Axisymmetric jet manipulation using multiple unsteady minijets. Physics of Fluids 33(6), 065124 (2021). https://doi.org/10.1063/5.0052275

Gau, C., Shen, C.H., Wang, Z.B.: Peculiar phenomenon of micro-free-jet flow. Physics of Fluids 21(9), 092001 (2009). https://doi.org/10.1063/1.3224012

Yamani, S., Keshavarz, B., Raj, Y., et al.: Spectral Universality of Elastoinertial Turbulence. Physical Review Letters 127(7), 074501 (2021). https://doi.org/10.1103/PhysRevLett.127.074501

Yoshida, H., Koda, M., Ooishi, Y., et al.: Super-Mixing Combustion Enhanced by Resonance between Micro-Shear Layer and Acoustic Excitation. Int J Heat Fluid Flow 22(3), 372–379 (2001). https://doi.org/10.1016/S0142-727X(01)00103-5

Krivokorytov, M.S., Golub, V.V., Volodin, V.V.: The effect of acoustic oscillations on diffusion combustion of methane. Technical Physics Letters 38(5), 478–480 (2012). https://doi.org/10.1134/S1063785012050240

Kozlov, G.V., Grek, G.R., Sorokin, A.M., et al.: Influence of initial conditions at the nozzle exit on the structure of round jet. Thermophysics and Aeromechanics 15(1), 55 (2008). https://doi.org/10.1134/S0869864308010046

Kozlov, V.V., Grek, G.R., Litvinenko, Y.A., et al.: Subsonic Round and Plane Jets in the Transversal Acoustic Field. Siberian Journal of Physics 5(2), 28–42 (2010). https://doi.org/10.54362/1818-7919-2010-5-2-28-42

Krivokorytov, M.S., Golub, V.V., Moralev, I.A.: The evolution of instabilities in gas microjets under acoustic action. Technical Physics Letters 39(9), 814–817 (2013). https://doi.org/10.1134/S1063785013090186

Kozlov, V.V., Grek, G.R., Dovgal, A.V., et al.: Stability of Subsonic Jet Flows. Journal of Flow Control, Measurement & Visualization 01(03), 94–101 (2013). https://doi.org/10.4236/jfcmv.2013.13012

Kozlov, V.V., Grek, G.R., Korobeinichev, O.P., et al.: Combustion of hydrogen in round and plane microjets in transverse acoustic field at small Reynolds numbers as compared to propane combustion in the same conditions (Part I). International Journal of Hydrogen Energy 41(44), 20231–20239 (2016). https://doi.org/10.1016/j.ijhydene.2016.07.276

Oh, J., Heo, P., Yoon, Y.: Acoustic Excitation Effect on NOx Reduction and Flame Stability in a Lifted Non-Premixed Turbulent Hydrogen Jet with Coaxial Air. International Journal of Hydrogen Energy 34(18), 7851–7861 (2009). https://doi.org/10.1016/j.ijhydene.2009.07.050

Reumsch¨ussel, J.M., Li, Y., Nedden, P.M., et al.: Experimental jet control with Bayesian optimization and persistent data topology. Physics of Fluids 36(9), 095164 (2024). https://doi.org/10.1063/5.0217519

Nedden, P.M., Nissen, T., Reumsch¨ussel, J.M., et al.: Surrogate-based modeling for investigating and controlling the response of an axisymmetric jet to harmonic forcing. AIAA SCITECH 2024 Forum. https://doi.org/10.2514/6.2024-0462

Firsov, A., Savelkin, K.V., Yarantsev, D.A., et al.: Plasma-enhanced mixing and flameholding in supersonic flow. Philos. Trans. R. Soc. A 373(2048), 20140337 (2015). https://doi.org/10.1098/rsta.2014.0337

Dolgov, E.V., Kolosov, N.S., Firsov, A.A.: The study of the discharge influence on mixing of gaseous fuel jet with the supersonic air flow. Computer Research and Modeling 11(5), 849–860 (2019). https://doi.org/10.20537/2076-7633-2019-11-5-849-860

Volkov, L.S., Firsov, A.A.: Modeling the influence of repetitively pulsed heating on the formation of perturbations at the boundary of a transverse jet in a supersonic crossflow. Computer Research and Modeling 15(4), 845–860 (2023). https://doi.org/10.20537/2076-7633-2023-15-4-845-860

Yarantsev, D.A., Moralev, I.A.: Forcing microjet instabilities by corona discharge. Vestnik Obedinennogo Instituta Vysokih Temperatur 12, 4–8 (2023). (in Russian) https://doi.org/10.33849/2023401

Shevchenko, A.K., Yakovenko, S.N.: Simulation of Instability Development in a Plane Submerged Jet at Low Reynolds Numbers. Siberian Journal of Physics 13(4), 35–45 (2018). https://doi.org/10.25205/2541-9447-2018-13-4-35-45

Eri, Q., Ding, W., Kong, D., et al.: Numerical Investigation of Jet Control Using Two Pulsed Jets under Different Amplitudes. Energies 15(2), 640 (2022). https://doi.org/10.3390/en15020640

Firsov, A.A.: 2D Simulation of Micro-Jet Excitation by Heat Source. Supercomputing Frontiers and Innovations 10(4), 12–20 (2023). https://doi.org/10.14529/jsfi230402

Aksenov, A.A.: FlowVision: Industrial computational fluid dynamics. Computer Research and Modeling 9(1), 5–20 (2017). https://doi.org/10.20537/2076-7633-2017-9-5-20

Aksenov, A.A., Zhluktov, S.V., Kashirin, V.S., et al.: Three-dimensional Numerical Model of Kerosene Evaporation in Gas Turbine Combustors. Supercomputing Frontiers and Innovations 10(4), 27–45 (2024). https://doi.org/10.14529/jsfi230404

Moralev, I., Bityurin V., Firsov A., et al.: Localized micro-discharges group dielectric barrier discharge vortex generators: Disturbances source for active transition control. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 234(1) (2020). https://doi.org/10.1177/0954410018796988

Moreau, E., Audier, P., Benard, N.: Ionic wind produced by positive and negative corona discharges in air. Journal of Electrostatics 93, 85–96 (2018). https://doi.org/10.1016/j.elstat.2018.03.009

Downloads

Published

2025-05-16

How to Cite

Volkov, L. S., & Firsov, A. A. (2025). 3D Numerical Simulation of Micro-Jet Excitation. Supercomputing Frontiers and Innovations, 12(1), 19–30. https://doi.org/10.14529/jsfi250102