Study of Thin Optical Films Properties Using High-performance Atomistic Simulation




thin films structure, simulation of the deposition process, molecular dynamics, silicon dioxide films, titanium dioxide films, high-performance simulation


Full-atomistic modeling of the deposition of TiO2, SiO2 and TiO2–SiO2 films is performed using parallel calculations. The dependence of film density on the deposition angle and deposition energy is studied. Simulation of post-deposition annealing of film structures is also carried out. Mechanical stresses in TiO2–SiO2 films, arising due to differences in the properties of silicon dioxide and titanium dioxide, are calculated. It is found that the film density decreases with decreasing deposition energy and increasing deposition angle. The use of surfacing annealing leads to an increase in film thickness. In two-layer TiO2–SiO2 films, the stresses are compressive. Particular attention is paid to reducing computational costs when simulating large atomistic clusters, consisting of hundreds of thousands of atoms. Reducing the parameter that determines the calculation of the electrostatic part of interatomic energy significantly reduces the simulation time. At the same time, in this case, the accuracy of determining the electrostatic energy in the reciprocal space decreases, which should be taken into account during modeling.


Abraham, M.J., Murtola, T., Schulz, R., et al : GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1, 19–25 (2015).

Amirzada, M.R., Tatzel, A., Viereck, V., Hillmer, H.: Surface roughness analysis of SiO 2 for PECVD, PVD and IBD on different substrates. Applied Nanoscience 6, 215–222 (2016).

Badorreck, H., Steinecke, M., Jensen, L., et al : Correlation of structural and optical properties using virtual materials analysis. Optics Express 27(16), 22209–22225 (2019).

Bakri, A., Sahdan, M.Z., Adriyanto, F., et al : Effect of annealing temperature of titanium dioxide thin films on structural and electrical properties. In: AIP conference proceedings. vol. 1788. AIP Publishing (2017).

Begou, T., Lumeau, J.: Accurate analysis of mechanical stress in dielectric multilayers. Optics Letters 42(16), 3217–3220 (2017).

Berendsen, H.J., Postma, J.v., Van Gunsteren, W.F., et al : Molecular dynamics with coupling to an external bath. The Journal of chemical physics 81(8), 3684–3690 (1984).

Darden, T., York, D., Pedersen, L.: Particle mesh Ewald: An N · log (N) method for Ewald sums in large systems. The Journal of chemical physics 98(12), 10089–10092 (1993).

Ennos, A.E.: Stresses developed in optical film coatings. Applied optics 5(1), 51–61 (1966).

Ewald, P.P.: Die berechnung optischer und elektrostatischer gitterpotentiale. Annalen der physik 369(3), 253–287 (1921).

Greene, J.E.: Tracing the recorded history of thin-film sputter deposition: From the 1800s to 2017. Journal of Vacuum Science & Technology A 35(5) (2017).

Grigoriev, F., Sulimov, A., Kochikov, I., et al : Computational experiments on atomistic modeling of thin-film deposition. Applied Optics 56(4), C87–C90 (2017).

Grigoriev, F., Sulimov, V., Tikhonravov, A.: High-performance full-atomistic simulation of optical thin films. Supercomputing Frontiers and Innovations 5(3), 130–133 (2018).

Grigoriev, F.V., Sulimov, V.B., Tikhonravov, A.V.: Atomistic simulation of stresses in growing silicon dioxide films. Coatings 10(3), 220 (2020).

Grigoriev, F.V., Sulimov, V.B.: Atomistic simulation of physical vapor deposition of optical thin films. Nanomaterials 13(11), 1717 (2023).

Grigoriev, F., Katkova, E., Sulimov, A., Sulimov, V., Tikhonravov, A.: Annealing of deposited SiO 2 thin films: full-atomistic simulation results. Optical Materials Express 6(12), 3960–3966 (2016).

Grigoriev, F., Sulimov, A., Kochikov, I., et al : Supercomputer modeling of the ion beam sputtering process: full-atomistic level. In: Optical Systems Design 2015: Advances in Optical Thin Films V. vol. 9627, pp. 34–42. SPIE (2015).

Grigoriev, F., Sulimov, V., Tikhonravov, A.: Structure of highly porous silicon dioxide thin film: Results of atomistic simulation. Coatings 9(9), 568 (2019).

Grigoriev, F., Sulimov, V., Tikhonravov, A.: Application of a large-scale molecular dynamics approach to modelling the deposition of TiO2 thin films. Computational Materials Science 188, 110202 (2021).

Guo, C., Kong, M.: Fabrication of ultralow stress TiO2/SiO2 optical coatings by plasma ion-assisted deposition. Coatings 10(8), 720 (2020).

Humphrey, W., Dalke, A., Schulten, K.: Vmd: visual molecular dynamics. Journal of molecular graphics 14(1), 33–38 (1996).

Jiang, Y., Ji, Y., Liu, H., et al : Insights into effects of thermal annealing on optical properties of SiO2 films. In: 6th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Advanced Optical Manufacturing Technologies. vol. 8416, pp. 106–110. SPIE (2012).

Li, S., Liu, C., Zhu, T., et al : Effects of the thermal treatments on the optical properties of SiO2 anti-reflective coatings on sapphire windows. Infrared Physics & Technology 137, 105151 (2024).

Martinu, L., Poitras, D.: Plasma deposition of optical films and coatings: A review. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 18(6), 2619–2645 (2000).

Piegari, A.: FF (Ed.) Optical Thin Films and Coatings (2018)

Schulz, U.: Review of modern techniques to generate antireflective properties on thermoplastic polymers. Applied optics 45(7), 1608–1618 (2006).

Smy, T., Vick, D., Brett, M., et al : Three-dimensional simulation of film microstructure produced by glancing angle deposition. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 18(5), 2507–2512 (2000).

Tait, R., Smy, T., Brett, M.: Modelling and characterization of columnar growth in evaporated films. Thin Solid Films 226(2), 196–201 (1993).

Thompson, A.P., Plimpton, S.J., Mattson, W.: General formulation of pressure and stress tensor for arbitrary many-body interaction potentials under periodic boundary conditions. The Journal of chemical physics 131(15) (2009).

Tolenis, T., Grineviciute, L., Smalakys, L., et al.: Next generation highly resistant mirrors featuring all-silica layers. Scientific reports 7(1), 10898 (2017).

Vedam, K., Limsuwan, P.: Piezo-and elasto-optic properties of liquids under high pressure. II. Refractive index vs density. The Journal of Chemical Physics 69(11), 4772–4778 (1978).

Voevodin, V.V., Antonov, A.S., Nikitenko, D.A., et al : Supercomputer Lomonosov-2: Large scale, deep monitoring and fine analytics for the user community. Supercomputing Frontiers and Innovations 6(2), 4–11 (2019).

Xu, C., Qiang, Y., Zhu, Y., et al : Effects of deposition parameters on laser-induced damage threshold of Ta2O5 films. Optics & Laser Technology 42(3), 497–502 (2010).

Ying, D., Zhong, T.: Effects of thickness and annealing on the residual stress of TiO 2 film. Optics Continuum 3(3), 287–295 (2024).

Zoeller, A., Beisswenger, S., Goetzelmann, R., Matl, K.: Plasma-ion-assisted-deposition: a novel technique for the production of optical coatings. In: Optical Interference Coatings. vol. 2253, pp. 394–402. SPIE (1994).




How to Cite

Grigoriev, F. V., Sulimov, V. B., & Tikhonravov, A. V. (2024). Study of Thin Optical Films Properties Using High-performance Atomistic Simulation. Supercomputing Frontiers and Innovations, 11(1), 97–108.

Most read articles by the same author(s)