In Search of Non-covalent Inhibitors of SARS-CoV-2 Main Protease: Computer Aided Drug Design Using Docking and Quantum Chemistry

Authors

  • Alexey V. Sulimov 1. Research Computer Center of Lomonosov Moscow State University, Moscow, Russian Federation 2. Moscow Center of Fundamental and Applied Mathematics, Moscow, Russia
  • Danil C. Kutov 1. Research Computer Center of Lomonosov Moscow State University, Moscow, Russian Federation 2. Moscow Center of Fundamental and Applied Mathematics, Moscow, Russia
  • Anna S. Taschilova 1. Research Computer Center of Lomonosov Moscow State University, Moscow, Russian Federation 2. Moscow Center of Fundamental and Applied Mathematics, Moscow, Russia
  • Ivan S. Ilin 1. Research Computer Center of Lomonosov Moscow State University, Moscow, Russian Federation 2. Moscow Center of Fundamental and Applied Mathematics, Moscow, Russia
  • Nadezhda V. Stolpovskaya 1. Department of Organic Chemistry, Faculty of Chemistry, Voronezh State University, Voronezh, Russia
  • Khidmet S. Shikhaliev 1. Department of Organic Chemistry, Faculty of Chemistry, Voronezh State University, Voronezh, Russia
  • Vladimir B. Sulimov 1. Research Computer Center of Lomonosov Moscow State University, Moscow, Russian Federation 2. Moscow Center of Fundamental and Applied Mathematics, Moscow, Russia 3. Dimonta Ltd., Moscow, Russian Federation

DOI:

https://doi.org/10.14529/jsfi200305

Abstract

Two stages virtual screening of a database containing several thousand low molecular weight organic compounds is performed with the goal to find inhibitors of SARS-CoV-2 main protease. Overall near 41000 different 3D molecular structures have been generated from the initial molecules taking into account several conformers of most molecules. At the first stage the classical SOL docking program is used to determine most promising candidates to become inhibitors. SOL employs the MMFF94 force field, the genetic algorithm (GA) of the global energy optimization, takes into account the desolvation effect arising upon protein-ligand binding and the internal stress energy of the ligand. Parameters of GA are selected to perform the meticulous global optimization, and for docking of one ligand several hours on one computing core are needed on the average. The main protease model is constructed on the base of the protein structure from the Protein Data Bank complex 6W63. More than 1000 ligands structures have been selected for further postprocessing. The SOL score values of these ligands are  more negative than the threshold of –6.3 kcal/mol obtained for the native X77 ligand docking. Subsequent calculation of the protein-ligand binding enthalpy by the PM7 quantum-chemical semiempirical method with COSMO solvent model have narrowed down the number of best candidates. Finally, the diverse set of 20 most perspective candidates for the in vitro validation are selected.

References

Abian, O., Ortega-Alarcon, D., Jimenez-Alesanco, A., et al.: Structural stability of SARS–CoV–2 3CLpro and identification of quercetin as an inhibitor by experimental screening. International journal of biological macromolecules 164, 1693–1703 (2020), DOI: 10.1016/j.ijbiomac.2020.07.235

Anand, K., Yang, H., Bartlam, M., et al.: Coronavirus main proteinase: target for antiviral drug therapy BT – Coronaviruses with Special Emphasis on First Insights Concerning SARS, pp. 173–199. Birkhäuser Basel (2005), DOI: 10.1007/3-7643-7339-3_9

Anand, K., Ziebuhr, J., Wadhwani, P., et al.: Coronavirus main proteinase (3CLpro) structure: basis for design of anti–SARS drugs. Science (New York, N.Y.) 300(5626), 1763–1767 (2003), DOI: 10.1126/science.1085658

Beloglazova, I.B., Plekhanova, O.S., Katkova, E.V., et al.: Molecular modeling as a new approach to the development of urokinase inhibitors. Bulletin of Experimental Biology and Medicine 158(5), 700–704 (2015), DOI: 10.1007/s10517-015-2839-3

Berman, H.M., Westbrook, J., Feng, Z., et al.: The Protein Data Bank. Nucleic Acids Research 28(1), 235–242 (2000), DOI: 10.1093/nar/28.1.235

Calligari, P., Bobone, S., Ricci, G., Bocedi, A.: Molecular Investigation of SARS–CoV–2 Proteins and Their Interactions with Antiviral Drugs. Viruses 12(4), 445 (2020), DOI: 10.3390/v12040445

ChemAxon software. http://www.chemaxon.com, accessed: 2020-10-01

Damm-Ganamet, K.L., Smith, R.D., Dunbar Jr., J.B., et al.: CSAR Benchmark Exercise 2011–2012: Evaluation of Results from Docking and Relative Ranking of Blinded Congeneric Series. J. Chem. Inf. and Model. 53, 1853–1870 (2013), DOI: 10.1021/ci400025f

Davies, M., Nowotka, M., Papadatos, G., et al.: ChEMBL web services: streamlining access to drug discovery data and utilities. Nucleic acids research 43(W1), W612–W620 (2015), DOI: 10.1093/nar/gkv352

Drosten, C., Günther, S., Preiser, W., et al.: Identification of a Novel Coronavirus in Patients with Severe Acute Respiratory Syndrome. New England Journal of Medicine 348(20), 1967–1976 (2003), DOI: 10.1056/NEJMoa030747

Eleftheriou, P., Amanatidou, D., Petrou, A., Geronikaki, A.: In Silico Evaluation of the Effectivity of Approved Protease Inhibitors against the Main Protease of the Novel SARS–CoV–2 Virus. Molecules 25(11) (2020), DOI: 10.3390/molecules25112529

Elsevier. Reaxys Database. 2020. https://www.reaxys.com, accessed: 2020-10-01

Friesner, R.A., Banks, J.L., Murphy, R.B., et al.: Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. Journal of Medicinal Chemistry 47(7), 1739–1749 (2004), DOI: 10.1021/jm0306430

Gao, J., Zhang, L., Liu, X., et al.: Repurposing Low-Molecular-Weight Drugs against the Main Protease of Severe Acute Respiratory Syndrome Coronavirus 2. The Journal of Physical Chemistry Letters 11(17), 7267–7272 (2020), DOI: 10.1021/acs.jpclett.0c01894

Gentile, D., Patamia, V., Scala, A., et al.: Putative Inhibitors of SARS–CoV–2 Main Protease from A Library of Marine Natural Products: A Virtual Screening and Molecular Modeling Study. Marine drugs 18(4) (2020), DOI: 10.3390/md18040225

Gentile, F., Agrawal, V., Hsing, M., et al.: Deep Docking: A Deep Learning Platform for Augmentation of Structure Based Drug Discovery. ACS Central Science 6(6), 939–949 (2020), DOI: 10.1021/acscentsci.0c00229

Gimeno, A., Mestres-Truyol, J., Ojeda-Montes, M.J., et al.: Prediction of Novel Inhibitors of the Main Protease (M-pro) of SARS–CoV–2 through Consensus Docking and Drug Reposition. International Journal of Molecular Sciences 21(11), 3793–3821 (2020), DOI: 10.3390/ijms21113793

Grimme, S.: Accurate description of van der Waals complexes by density functional theory including empirical corrections. Journal of Computational Chemistry 25(12), 1463–1473 (2004), DOI: 10.1002/jcc.20078

Gyebi, G.A., Ogunro, O.B., Adegunloye, A.P., et al.: Potential inhibitors of coronavirus 3-chymotrypsin-like protease (3CLpro): an in silico screening of alkaloids and terpenoids from African medicinal plants. Journal of Biomolecular Structure and Dynamics pp. 1–13 (2020), DOI: 10.1080/07391102.2020.1764868

Halgren, T.A.: Merck molecular force field. Journal of Computational Chemistry 17(5-6), 490–641 (1996), DOI: 10.1002/(SICI)1096-987X(199604)17:5/6<490::AID-JCC1>3.0.CO;2-P

Hanwell, M.D., Curtis, D.E., Lonie, D.C., et al.: Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. Journal of Cheminformatics 4(1), 17 (2012), DOI: 10.1186/1758-2946-4-17

Ilin, I.S., Lipets, E.N., Sulimov, A.V., et al.: New factor Xa inhibitors based on 1,2,3,4-tetrahydroquinoline developed by molecular modelling. Journal of Molecular Graphics and Modelling 89, 215–224 (2019), DOI: 10.1016/j.jmgm.2019.03.017

Jin, Z., Du, X., Xu, Y., et al.: Structure of Mpro from SARS–CoV–2 and discovery of its inhibitors. Nature 582(7811), 289–293 (2020), DOI: 10.1038/s41586-020-2223-y

Jurecka, P., Cerny, J., Hobza, P., Salahub, D.R.: Density functional theory augmented with an empirical dispersion term. Interaction energies and geometries of 80 noncovalent complexes compared with ab initio quantum mechanics calculations. Journal of Computational Chemistry 28(2), 555–569 (2007), DOI: 10.1002/jcc.20570

Kartsev, V., Shikhaliev, K.S., Geronikaki, A., et al.: Appendix A. dithioloquinolinethiones as new potential multitargeted antibacterial and antifungal agents: Synthesis, biological evaluation and molecular docking studies. European Journal of Medicinal Chemistry 175, 201–214 (2019), DOI: 10.1016/j.ejmech.2019.04.046

Khan, S.A., Zia, K., Ashraf, S., et al.: Identification of chymotrypsin-like protease inhibitors of SARS–CoV–2 via integrated computational approach. Journal of Biomolecular Structure and Dynamics pp. 1–10 (2020), DOI: 10.1080/07391102.2020.1751298

Klamt, A., Schuurmann, G.: COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. Journal of the Chemical Society, Perkin Transactions 2 (5), 799–805 (1993), DOI: 10.1039/P29930000799

Klamt, A.: Conductor-like Screening Model for Real Solvents: A New Approach to the Quantitative Calculation of Solvation Phenomena. The Journal of Physical Chemistry 99(7), 2224–2235 (1995), DOI: 10.1021/j100007a062

Ksiazek, T.G., Erdman, D., Goldsmith, C.S., et al.: A novel coronavirus associated with severe acute respiratory syndrome. The New England journal of medicine 348(20), 1953–1966 (2003), DOI: 10.1056/NEJMoa030781

Kutov, D.C., Katkova, E.V., Kondakova, O.A., et al.: Influence of the method of hydrogen atoms incorporation into the target protein on the protein-ligand binding energy. Bulletin of the South Ural State University, Ser. Mathematical Modelling, Programming & Computer Software 10(3), 94–107 (2017), DOI: 10.14529/mmp170308

Lin, M.H., Moses, D.C., Hsieh, C.H., et al.: Disulfiram can inhibit MERS and SARS coronavirus papain-like proteases via different modes 150, 155–163 (2018), DOI: 10.1016/j.antiviral.2017.12.015

Liu, X., Wang, X.J.: Potential inhibitors against 2019–nCoV coronavirus M protease from clinically approved medicines. Journal of Genetics and Genomics 47(2), 119–121 (2020), DOI: 10.1016/j.jgg.2020.02.001

McGann, M.: FRED and HYBRID docking performance on standardized datasets. J Comput Aided Mol Des 26(8), 897–906 (2012), DOI: 10.1007/s10822-012-9584-8

Medvedeva, S.M., Potapov, A.Y., Gribkova, I.V., et al.: Synthesis, docking, and anticoagulant activity of new factor–Xa inhibitors in a series of pyrrolo[3,2,1-ij]quinoline-1,2-diones. Pharmaceutical Chemistry Journal 51(11), 975–979 (2018), DOI: 10.1007/s11094-018-1726-4

Mesecar, A.D.: Structure of COVID–19 main protease bound to potent broad-spectrum non-covalent inhibitor X77, DOI: 10.2210/pdb6w63/pdb, accessed: 2020-10-01

Myint, S.H.: Human Coronavirus Infections BT – The Coronaviridae, pp. 389–401. Springer US (1995), DOI: 10.1007/978-1-4899-1531-3_18

Novichikhina, N.P., Shestakov, A.S., Potapov, A.Y., et al.: Synthesis of 4H-pyrrolo[3,2,1-ij]quinoline-1,2-diones containing a piperazine fragment and study of their inhibitory properties against protein kinases. Russ Chem Bull 4, 787–792 (2020), DOI: 10.1007/s11172-020-2834-3

Novichikhina, N., Ilin, I., Tashchilova, A., et al.: Synthesis, Docking, and In Vitro Anticoagulant Activity Assay of Hybrid Derivatives of Pyrrolo[3,2,1-ij]Quinolin-2(1H)-one as New Inhibitors of Factor Xa and Factor XIa. Molecules 25(8), 1889 (2020), DOI: 10.3390/molecules25081889

O’Boyle, N.M., Banck, M., James, C.A., et al.: Open Babel: An open chemical toolbox. Journal of Cheminformatics 3(1), 33 (2011), DOI: 10.1186/1758-2946-3-33

Pihan, E., Colliandre, L., Guichou, J.F., Douguet, D.: e-Drug3D: 3D structure collections dedicated to drug repurposing and fragment-based drug design. Bioinformatics 28(11), 1540–1541 (2012), DOI: 10.1093/bioinformatics/bts186

Pillaiyar, T., Manickam, M., Namasivayam, V., et al.: An Overview of Severe Acute Respiratory Syndrome-Coronavirus (SARS–CoV) 3CL Protease Inhibitors: Peptidomimetics and Small Molecule Chemotherapy. Journal of Medicinal Chemistry 59(14), 6595–6628 (2016), DOI: 10.1021/acs.jmedchem.5b01461

Rathnayake, A.D., Zheng, J., Kim, Y., et al.: 3C-like protease inhibitors block coronavirus replication in vitro and improve survival in MERS–CoV-infected mice. Science Translational Medicine 12(557), eabc5332 (2020), DOI: 10.1126/scitranslmed.abc5332

Rezac, J., Fanfrlik, J., Salahub, D., Hobza, P.: Semiempirical Quantum Chemical PM6 Method Augmented by Dispersion and H-Bonding Correction Terms Reliably Describes Various Types of Noncovalent Complexes. J Chem Theory Comput 5(7), 1749–1760 (2009), DOI: 10.1021/ct9000922

Ruiz-Carmona, S., Alvarez-Garcia, D., Foloppe, N., et al.: rDock: A Fast, Versatile and Open Source Program for Docking Ligands to Proteins and Nucleic Acids. PLOS Computational Biology 10(4), 1–7 (2014), DOI: 10.1371/journal.pcbi.1003571

Sinauridze, E.I., Romanov, A.N., Gribkova, I.V., et al.: New Synthetic Thrombin Inhibitors: Molecular Design and Experimental Verification. PLOS ONE 6(5), 1–12 (2011), DOI: 10.1371/journal.pone.0019969

Stewart, J.J.: Optimization of parameters for semiempirical methods V: modification of NDDO approximations and application to 70 elements. J Mol Model 13(12), 1173–1213 (2007), DOI: 10.1007/s00894-007-0233-4

Stewart, J.J.: Optimization of parameters for semiempirical methods VI: more modifications to the NDDO approximations and re-optimization of parameters. Journal of Molecular Modeling 19(1), 1–32 (2013), DOI: 10.1007/s00894-012-1667-x

Stewart, J.J.P.: Stewart Computational Chemistry. MOPAC2016. http://openmopac.net/MOPAC2016.html (2016), accessed: 2020-10-01

Stewart, J.J.P.: Application of localized molecular orbitals to the solution of semiempirical self-consistent field equations. International Journal of Quantum Chemistry 58(2), 133–146 (1996), DOI: 10.1002/(SICI)1097-461X(1996)58:2<133::AID-QUA2>3.0.CO;2-Z

Stolpovskaya, N.V., Kruzhilin, A.A., Zorina, A.V., et al.: Synthesis of Substituted Aminopyrimidines as Novel Promising Tyrosine Kinase Inhibitors. Russian journal of organic chemistry 55(9), 1322–1328 (2019), DOI: 10.1134/S1070428019090094

Sulimov, A.V., Kutov, D.C., Katkova, E.V., Sulimov, V.B.: Combined docking with classical force field and quantum chemical semiempirical method PM7. Advances in Bioinformatics 2017 (2017), DOI: 10.1155/2017/7167691

Sulimov, A.V., Kutov, D.C., Katkova, E.V., et al.: New generation of docking programs: Supercomputer validation of force fields and quantum-chemical methods for docking. Journal of Molecular Graphics and Modelling 78, 139–147 (2017), DOI: 10.1016/j.jmgm.2017.10.007

Sulimov, A.V., Kutov, D.C., Oferkin, I.V., et al.: Application of the docking program SOL for CSAR benchmark. Journal of Chemical Information and Modeling 53(8), 1946–1956 (2013), DOI: 10.1021/ci400094h

Sulimov, V.B., Gribkova, I.V., Kochugaeva, M.P., et al.: Application of molecular modeling to development of new factor Xa inhibitors. BioMed Research International 2015 (2015), DOI: 10.1155/2015/120802

Sulimov, V.B., Katkova, E.V., Oferkin, I.V., et al.: Application of molecular modeling to urokinase inhibitors development. BioMed Research International 2014, 625176 (2014), DOI: 10.1155/2014/625176

Sulimov, V.B., Ilin, I.S., Kutov, D.C., Sulimov, A.V.: Development of docking programs for Lomonosov supercomputer. Journal of the Turkish Chemical Society Section A: Chemistry 7(1), 259–276 (2020), DOI: 10.18596/jotcsa.634130

Sulimov, V.B., Kutov, D.C., Sulimov, A.V.: Advances in docking. Current Medicinal Chemistry 26(42), 7555–7580 (2019), DOI: 10.2174/0929867325666180904115000

The Department of Organic Chemistry of Voronezh State University. http://www.chem.vsu.ru/?req=/department/5/application/page.html, accessed: 2020-10-01

Ton, A.T., Gentile, F., Hsing, M., et al.: Rapid Identification of Potential Inhibitors of SARS–CoV–2 Main Protease by Deep Docking of 1.3 Billion Compounds. Molecular Informatics 39, 2000028 (2020), DOI: 10.1002/minf.202000028

Trott, O., Olson, A.J.: AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry 31(2), 455–461 (2010), DOI: 10.1002/jcc.21334

Tsuji, M.: Potential anti-SARS-CoV-2 drug candidates identified through virtual screening of the ChEMBL database for compounds that target the main coronavirus protease. FEBS Open Bio 10(6), 995–1004 (2020), DOI: 10.1002/2211-5463.12875

Voevodin, V.V., Antonov, A.S., Nikitenko, D.A., et al.: Supercomputer Lomonosov-2: Large scale, deep monitoring and fine analytics for the user community. Supercomputing Frontiers and Innovations 6(2), 4–11 (2019), DOI: 10.14529/jsfi190201

Vostrikova, T.V., Kalaev, V.N., Medvedeva, S.M., et al.: Synthesized organic compounds as growth stimulators for woody plants. Periodico tche quimica 17(35), 327–337 (2020)

Vostrikova, T.V., Kalaev, V.N., Potapov, A.Y., et al.: Use of new compounds of the quinoline series as effective stimulants of growth processes. Periodico tche quimica 17(35), 781–790 (2020)

Yang, H., Yang, M., Ding, Y., et al.: The crystal structures of severe acute respiratory syndrome virus main protease and its complex with an inhibitor. Proceedings of the National Academy of Sciences of the United States of America 100(23), 13190–13195 (2003), DOI: 10.1073/pnas.1835675100

Yang, J., Zhang, Y.: I-TASSER server: new development for protein structure and function predictions. Nucleic acids research 43(W1), W174–W181 (2015), DOI: 10.1093/nar/gkv342

Zaki, A., Boheemen, S., Bestebroer, T., et al.: Isolation of a Novel Coronavirus from a Man with Pneumonia in Saudi Arabia. The New England journal of medicine 367 (2012), DOI: 10.1056/NEJMoa1211721

Downloads

Published

2020-11-07

How to Cite

Sulimov, A. V., Kutov, D. C., Taschilova, A. S., Ilin, I. S., Stolpovskaya, N. V., Shikhaliev, K. S., & Sulimov, V. B. (2020). In Search of Non-covalent Inhibitors of SARS-CoV-2 Main Protease: Computer Aided Drug Design Using Docking and Quantum Chemistry. Supercomputing Frontiers and Innovations, 7(3). https://doi.org/10.14529/jsfi200305

Most read articles by the same author(s)