Quantum-Chemical Study of Gas-Phase 5/6/5 Tricyclic Tetrazine Derivatives

Authors

  • Vadim M. Volokhov Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences, Chernogolovka, Moscow Region, Russian Federation https://orcid.org/0000-0002-5586-9374
  • Vladimir V. Parakhin N.D. Zelinskiy Institute of Organic Chemistry of the Russian Academy of Sciences, Moscow, Russian Federation https://orcid.org/0000-0003-3258-4875
  • Elena S. Amosova Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences, Chernogolovka, Moscow Region, Russian Federation https://orcid.org/0000-0002-1790-9769
  • David B. Lempert Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences, Chernogolovka, Moscow Region, Russian Federation https://orcid.org/0000-0002-0219-1571
  • Tatiana S. Zyubina Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences, Chernogolovka, Moscow Region, Russian Federation https://orcid.org/0000-0003-2556-0074

DOI:

https://doi.org/10.14529/jsfi230306

Keywords:

high-performance computing, quantum-chemical calculations, enthalpy of formation, high-energy materials, tetrazines, nitroimidazoles, azides

Abstract

The most important task for specialists in the field of energy-intensive compounds is the search for new high-energy density materials and the study of their properties. This paper continues the study of series of tetrazines condensed with different types of azoles and presents the results of study of molecule structure of high-energy 5/6/5 tricyclic 1,2,3,4- and 1,2,4,5-tetrazines annelated with nitro-substituted imidazoles. The enthalpies of formation of the given molecules in the gaseous phase have been determined by high-performance quantum-chemical calculations by various calculation methods within the Gaussian 09 program package: G4, G4MP2, ωB97XD/aug-cc-pVTZ, CBS-4M, B3LYP/6-311+G(2d,p), M062X/6-311+G(2d,p). Different calculation methods and approaches have been compared in terms of their accuracy and time consumption. In addition, vibrational IR spectra have been calculated for the given compounds, and the correspondence of characteristic absorption frequencies to key fragments and functional groups of the structures has been determined. Enthalpy of formation of one of the studied substances (4220 kJ/kg) is the highest one among entalpies of formation of energy-intensive bis(nitroazolo)tetrazines calculated up to date.

References

Zlotin, S.G., Churakov, A.M., Egorov, M.P., et al.: Advanced energetic materials: novel strategies and versatile applications. Mendeleev Commun. 31(6), 731–749 (2021). https://doi.org/10.1016/j.mencom.2021.11.001

Gao, H., Zhang, Q., Shreeve, J.M.: Fused heterocycle-based energetic materials (2012–2019). J. Mater. Chem. A 8, 4193–4216 (2020) https://doi.org/10.1039/c9ta12704f

Wu, J.T., Xu, J., Li, W., Li, H.B.: Coplanar Fused Heterocycle-Based Energetic Materials. Propellants Explos. Pyrotech. 45, 536–545 (2020). https://doi.org/10.1002/prep.201900333

Voronin, A.A., Fedyanin, I.V., Churakov, A.M., et al.: 4H-[1,2,3]Triazolo[4,5-c][1,2,5]oxadiazole 5-oxide and its salts: promising multipurpose energetic materials. ACS Appl. Energy Mater. 3, 9401–9407 (2020). https://doi.org/10.1021/acsaem.0c01769

Chavez, D.E., Bottaro, J.C., Petrie, M., Parrish, D.A.: Synthesis and thermal behavior of a fused, tricyclic 1,2,3,4-tetrazine ring system. Angew. Chem. Int. Ed. 54, 12973–12975 (2015). https://doi.org/10.1002/ange.201506744

Tang, Y., Kumar, D., Shreeve, J.M.: Balancing excellent performance and high thermal stability in a dinitropyrazole fused 1,2,3,4-tetrazine. J. Am. Chem. Soc. 139, 13684–13687 (2017). https://doi.org/10.1021/jacs.7b08789

Volokhov, V.M., Amosova, E.S., Volokhov, A.V., et al.: Quantum-chemical calculations of physicochemical properties of high enthalpy 1,2,3,4- and 1,2,4,5-tetrazines annelated with polynitroderivatives of pyrrole and pyrazole. Comparison of different calculation methods. Comput. Theor. Chem. 1209, 113608 (2022). https://doi.org/10.1016/j.comptc.2022.113608

Volokhov, V.M., Parakhin, V.V., Amosova, E.S., et al.: Quantum-chemical calculations of the enthalpy of formation of 5/6/5 tricyclic tetrazine derivatives annelated with nitrotriazoles. Russ. J. Phys. Chem. B, in print (2024).

Tang, Y., He, Ch., Yin, P., et al.: Energetic functionalized azido/nitro imidazole fused 1,2,3,4-tetrazine. Eur. J. Org. Chem. 2273–2276 (2022). https://doi.org/10.1002/ejoc.201800347

Xie, C., Pei, L., Cai, J., et al.: Imidazolebased energetic materials: A promising family of Nheterocyclic framework. Chem. Asian J. 17, e202200829 (2022).

Lai, Y., Liu, Y., Huang, W., et al.: Synthesis and characterization of pyrazole- and imidazolederived energetic compounds featuring ortho azido/nitro groups. FirePhysChem. 2, 140–146 (2022). https://doi.org/10.1016/j.fpc.2021.09.003

Curtiss, L.A., Redfern, P.C., Raghavachari, K.: Gaussian-4 theory. J. Chem. Phys. 126, 084108 (2007). https://doi.org/10.1063/1.2436888

Nirwan, A., Ghule, V.D.: Estimation of heats of formation for nitrogen-rich cations using G3, G4, and G4 (MP2) theoretical methods. Theor. Chem. Acc. 137, 1–9 (2018). https://doi.org/10.1007/s00214-018-2300-6

Suntsova, M.A., Dorofeeva, O.V.: Use of G4 theory for the assessment of inaccuracies in experimental enthalpies of formation of aromatic nitro compounds. J. Chem. Eng. Data. 61, 313–329 (2016). https://doi.org/10.1021/acs.jced.5b00558

Glorian, J., Han, K.T., Braun, S., Baschung, B.: Heat of formation of triazole-based salts: prediction and experimental validation. Propellants Explos. Pyrotech. 46, 124–133 (2021). https://doi.org/10.1002/prep.202000187

Frisch, M.J., Trucks, G.W., Schlegel, H.B., et al.: Gaussian 09, Revision B.01. Gaussian, Inc., Wallingford CT (2010).

Becke, A.D.: Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98(4), 5648–5652 (1993). https://doi.org/10.1063/1.464913

Johnson, B.J., Gill, P.M.W., Pople, J.A.: The performance of a family of density functional methods. J. Chem. Phys. 98(4), 5612–5626 (1993). https://doi.org/10.1063/1.464906

Zhao, Y., Truhlar, D.G.: The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 120, 215–241 (2008). https://doi.org/10.1007/s00214-007-0310-x

Chai, J.-D., Head-Gordon, M.: Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys. Chem. Chem. Phys. 10, 6615–6620 (2008). https://doi.org/10.1039/B810189B

Curtiss, L.A., Redfern, P.C., Raghavachari, K.: Gaussian-4 theory using reduced order perturbation theory. J. Chem. Phys. 127, 124105 (2007). https://doi.org/10.1063/1.2770701

Curtiss, L.A., Redfern, P.C., Raghavachari, K.: Gn theory. Comput. Mol. Sci. 1, 810–825 (2011). https://doi.org/10.1002/wcms.59

Montgomery Jr., J.A., Frisch, M.J., Ochterski, J.W., Petersson, G.A.: A complete basis set model chemistry. VII. Use of the minimum population localization method. J. Chem. Phys. 112, 6532–6542 (2000). https://doi.org/10.1063/1.481224

Petersson, G.A., Malick, D.K., Wilson, W.G., et al.: Calibration and comparison of the Gaussian-2, complete basis set, and density functional methods for computational thermochemistry. J. Chem. Phys. 109, 10570–10579 (1998). https://doi.org/10.1063/1.477794

CCCBDB Vibrational Frequency Scaling Factors. https://cccbdb.nist.gov/vsfx.asp, accessed: 2022-11-10

Klapoetke, T.M., Krumm, B.: Azide-containing high energy materials in organic azides: syntheses and applications, eds. S. Brase, K. Banert. 391-100. Chichester: Wiley (2010).

Tang, Y., Shreeve, J.M.: Nitroxy/AzidoFunctionalized triazoles as potential energetic plasticizers. Chem. Eur. J. 21, 7285–7291 (2015). https://doi.org/10.1002/chem.201500098

Luk’yanov, O.A., Parakhin, V.V., Shlykova, N.I., et al.: Energetic N-azidomethyl derivatives of polynitro hexaazaisowurtzitanes series: the most highly enthalpy analogues of CL-20. New J. Chem. 44, 8357–8365 (2020). https://doi.org/10.1039/D0NJ01453B

Slovetskii, V.I.: Infrared absorption spectra of aliphatic nitro-compounds and their derivatives. Russ. Chem. Rev. 40, 393–405 (1971). https://doi.org/10.1070/RC1971v040n04ABEH001925

Slovetskii, V.I.: IR spectra of nitro compounds. Bull. Acad. Sci. USSR, Div. Chem. Sci. 19, 2086–2091 (1970). https://doi.org/10.1007/BF00861473

Socrates, G.: Infrared and Raman Characteristic Group Frequencies: Tables and Charts, John Wiley & Sons, Chichester, 3th edn, (2004).

Pretsch, E., Buhlmann, Ph., Badertscher, M.: IR Spectroscopy, in Structure Determination of Organic Compounds. Tables of Spectral Data, Springer-Verlag, Berlin, Heidelberg, 5th edn, pp. 307–373 (2020). https://doi.org/10.1007/978-3-662-62439-5_7

Voevodin, V.V., Antonov, A.S., Nikitenko, D.A., et al.: Supercomputer Lomonosov-2: Large scale, deep monitoring and fine analytics for the user community. Supercomput. Front. Innov. 6(2), 4–11 (2019). https://doi.org/10.14529/jsfi190201

Voevodin, V., Zhumatiy, S., Sobolev, S., et al.: Practice of “Lomonosov” Supercomputer. Open Syst. 7, 36–39 (2012) (in Russian).

Nikitenko, D., Voevodin, V., Zhumatiy, S.: Deep analysis of job state statistics on “Lomonosov-2” supercomputer. Supercomput. Front. Innov. 5(2), 4–10 (2019). https://doi.org/10.14529/jsfi180201

Downloads

Published

2024-01-17

How to Cite

Volokhov, V. M., Parakhin, V. V., Amosova, E. S., Lempert, D. B., & Zyubina, T. S. (2024). Quantum-Chemical Study of Gas-Phase 5/6/5 Tricyclic Tetrazine Derivatives. Supercomputing Frontiers and Innovations, 10(3), 61–72. https://doi.org/10.14529/jsfi230306

Most read articles by the same author(s)