Computer Design of Structure of Molecules of High-Energy Tetrazines. Calculation of Thermochemical Properties

Authors

  • Vadim M. Volokhov Institute of Problems of Chemical Physics
  • Elena S. Amosova Institute of Problems of Chemical Physics
  • Alexander V. Volokhov Institute of Problems of Chemical Physics
  • Tatiana S. Zyubina Institute of Problems of Chemical Physics
  • David B. Lempert Institute of Problems of Chemical Physics
  • Leonid S. Yanovskiy Institute of Problems of Chemical Physics The P. I. Baranov Central Institute of Aviation Motor Development Moscow aviation institute (National research university)
  • Ilya D. Fateev Research Computing Center Lomonosov Moscow State University

DOI:

https://doi.org/10.14529/jsfi200406

Abstract

The article presents high-performance calculations, using quantum chemical ab initio methods, of thermochemical characteristics of high-energy compounds: C2N6O4, C2N6O5, C2N6O6, C2H2N6O4, C3HN7O6, C3HN7O4F2, C4N10O12, C3HN6O4F, C4N10O8F4, C4N8O8F2. The IR absorption spectra, structural parameters and atomic displacements for the most intense vibrations, as well as the enthalpies of formation are provided in the article. The calculations were performed at the B3LYP/6-311+G(2d,p) level and using the combined methods CBS-4M and G4 within the Gaussian 09 application package (Linda paralellization). It is shown that the enthalpy of formation depends on the molecule structure.

References

Hosseini, S.G., Moeini, K., Abdelbaky, M.S.M., et al.: Synthesis, Characterization, Crystal Structure, and Thermal Behavior of New Triazolium Salt Along with Docking Studies. J. Struct. Chem. 61, 366–376 (2020), DOI: 10.1134/S002247662003004X

Abdulov, K.S., Mulloev, N.U., Tabarov, S.K., et al.: Quantum Chemical Determination of the Molecular Structure of 1,2,4-Triazole and the Calculation of its Infrared Spectrum. J. Struct. Chem. 61, 510–514 (2020), DOI: 10.1134/S0022476620040022

Lv, G., Zhang, D.L., Wang, D., et al.: Synthesis, Crystal Structure, Anti-Bone Cancer Activity and Molecular Docking Investigations of the Heterocyclic Compound 1-((2S,3S)-2-(Benzyloxy)Pentan-3-yl) -4-(4-(4-(4-Hydroxyphenyl)Piperazin-1-yl) Phenyl)-1H-1,2,4-Triazol-5(4H)-One. J. Struct. Chem. 60, 1173–1179 (2019), DOI: 10.1134/S0022476619070205

Volokhov, V.M., Zyubina, T.S., Volokhov, A.V., et al.: Predictive Modeling of Molecules of High-Energy Heterocyclic Compounds. Russian Journal of Inorganic Chemistry 66 (2021) 69–80, DOI: 10.1134/S0036023621010113

Volokhov, V.M., Zyubina, T.S., Volokhov, A.V., et al.: Quantum Chemical Simulation of Hydrocarbon Compounds with High Enthalpy of Formation. Russian Journal of Physical Chemistry B: Focus on Physic 40 (2021) 3–15 (in Russian), DOI: 10.31857/S0207401X21010131

Frisch, M.J., Trucks, G.W., Schlegel, H.B., et al.: Gaussian 09, Revision B.01. Gaussian, Inc., Wallingford CT, 2010

Becke, A.D.: Densityfunctional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648 (1993), DOI: 10.1063/1.464913

Johnson, B.J., Gill, P.M.W., Pople, J.A.: The performance of a family of density functional methods. J. Chem. Phys. 98, 5612 (1993), DOI: 10.1063/1.464906

Ochterski, J.W., Petersson, G.A., Montgomery Jr., J.A.: A complete basis set model chemistry. V. Extensions to six or more heavy atoms. J. Chem. Phys. 104, 2598–2619 (1996), DOI: 10.1063/1.470985

Montgomery Jr., J.A., Frisch, M.J., Ochterski, J.W., et al.: A complete basis set model chemistry. VII. Use of the minimum population localization method. J. Chem. Phys. 112, 6532–6542 (2000), DOI: 10.1063/1.481224

Curtiss, L.A., Redfern, P.C., Raghavachari, K.: Gaussian-4 theory. J. Chem. Phys. 126, 084108 (2007), DOI: 10.1063/1.2436888

Curtiss, L.A., Redfern, P.C., Raghavachari, K.: Gn theory. WIREs Comput Mol Sci. 1, 810–825 (2011), DOI: 10.1002/wcms.59

Nyden, M.R., Petersson, G.A.: Complete basis set correlation energies. I. The asymptotic convergence of pair natural orbital expansions. J. Chem. Phys. 75, 1843–1862 (1981), DOI: 10.1063/1.442208

Petersson, G.A., Bennett, A., Tensfeldt, T.G., et al.: A complete basis set model chemistry. I. The total energies of closed-shell atoms and hydrides of the first-row atoms. J. Chem. Phys. 89, 2193–2218 (1988), DOI: 10.1063/1.455064

Petersson, G.A., Al-Laham, M.A.: A complete basis set model chemistry. II. Open-shell systems and the total energies of the first-row atoms. J. Chem. Phys. 94, 6081–6090 (1991), DOI: 10.1063/1.460447

Petersson, G.A., Tensfeldt, T.G., Montgomery Jr., J.A.: A complete basis set model chemistry. III. The complete basis set-quadratic configuration interaction family of methods. J. Chem. Phys. 94, 6091–6101 (1991), DOI: 10.1063/1.460448

Montgomery Jr., J.A., Frisch, M.J., Ochterski, J.W., et al.: A complete basis set model chemistry. VI. Use of density functional geometries and frequencies. J. Chem. Phys. 110, 2822–2827 (1999), DOI: 10.1063/1.477924

Dunning Jr., T.H.: Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 90, 1007–1023 (1989), DOI: 10.1063/1.456153

Kendall, R.A., Dunning Jr., T.H., Harrison, R.J.: Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J. Chem. Phys. 96, 6796–6806 (1992), DOI: 10.1063/1.462569

Woon, D.E., Dunning Jr., T.H.: Gaussian-basis sets for use in correlated molecular calculations. 3. The atoms aluminum through argon. J. Chem. Phys. 98, 1358–1371 (1993), DOI: 10.1063/1.464303

Peterson, K.A., Woon, D.E., Dunning Jr., T.H.: Benchmark calculations with correlated molecular wave functions. IV. The classical barrier height of the H+H2 → H2+H reaction. J. Chem. Phys. 100, 7410–7415 (1994), DOI: 10.1063/1.466884

Wilson, A.K., van Mourik, T., Dunning Jr., T.H.: Gaussian Basis Sets for use in Correlated Molecular Calculations. VI. Sextuple zeta correlation consistent basis sets for boron through neon. J. Mol. Struct. (Theochem) 388, 339–349 (1996), DOI: 10.1016/S0166-1280(96)80048-0

Curtiss, L.A., Raghavachari, K., Redfern, P.C., et al.: Assessment of Gaussian-2 and density functional theories for the computation of enthalpies of formation. J. Chem. Phys. 106(3), 1063–1079 (1997), DOI: 10.1063/1.473182

NIST-JANAF Thermochemical tables. https://janaf.nist.gov/, accessed: 2020-10-30

Computational Chemistry Comparison and Benchmark DataBase. https://cccbdb.nist.gov/hf0k.asp, accessed: 2020-10-30

Efimov, A.I., Belorukova, L.P., Vasilkova, I.V., et al.: Properties of inorganic compounds. Reference book. Khimiya, Leningrad. 1983 (in Russian)

Gurvich, L.V. Bond Dissociation Energies. Nauka, Moscow. 1974 (in Russian)

Voevodin, Vl.V., Antonov, A.S., Nikitenko, D.A., et al.: Supercomputer Lomonosov-2: large scale, deep monitoring and fine analytics for the user community. Supercomput. Front. Innov. 6(2), 4–11 (2019), DOI: 10.14529/jsfi190201

Voevodin, V.V., Zhumatiy S.A., Sobolev, S.I., et al.: Practice of “Lomonosov” supercomputer. Open systems 7, 36–39 (2012). (in Russian)

Nikitenko, D.A., Voevodin, V.V., Zhumatiy, S.A.: Deep analysis of job state statisticson “Lomonosov-2” supercomputer. Supercomput. Front. Innov. 5(2), 4–10 (2019), DOI: 10.14529/jsfi180201

Downloads

Published

2021-02-10

How to Cite

Volokhov, V. M., Amosova, E. S., Volokhov, A. V., Zyubina, T. S., Lempert, D. B., Yanovskiy, L. S., & Fateev, I. D. (2021). Computer Design of Structure of Molecules of High-Energy Tetrazines. Calculation of Thermochemical Properties. Supercomputing Frontiers and Innovations, 7(4), 68–79. https://doi.org/10.14529/jsfi200406

Most read articles by the same author(s)