Computational Modeling of the Interaction of Molecular Oxygen with the Flavin-dependent Enzyme RutA
DOI:
https://doi.org/10.14529/jsfi220204Keywords:
computational modeling, molecular dynamics, quantum mechanics/molecular mechanics, protein-oxygen interaction, flavin-dependent enzymesAbstract
Supercomputer molecular modeling methods are applied to characterize structure and dynamics of the flavin-dependent enzyme RutA in the complex with molecular oxygen. Following construction of a model protein system, molecular dynamics (MD) simulations were carried out using either classical force field interaction potentials or the quantum mechanics/molecular mechanics (QM/MM) potentials. Several oxygen-binding pockets in the protein cavities were located in these simulations. The QM/MM-based MD calculations rely on the interface between the quantum chemistry package TeraChem and the MD package NAMD. The results show a stable localization of the oxygen molecule in the enzyme active site. Static QM/MM calculations carried out with two different packages, NWChem and TURBOMOLE, allowed us to establish the structure of the RutA-O2 complex. Biochemical perspectives of the hallmark reaction of incorporating oxygen into organic compounds emerged from these simulations are formulated.
References
Adak, S., Begley, T.P.: RutA-Catalyzed Oxidative Cleavage of the Uracil Amide Involves Formation of a Flavin-N5-oxide. Biochemistry 56(29), 3708–3709 (2017). https://doi.org/ 10.1021/acs.biochem.7b00493
Adamo, C., Barone, V.: Toward reliable density functional methods without adjustable parameters: The PBE0 model. The Journal of Chemical Physics 110(13), 6158–6170 (1999). https://doi.org/10.1063/1.478522
Aleksandrov, A.: A molecular mechanics model for flavins. Journal of Computational Chemistry 40(32), 2834–2842 (2019). https://doi.org/10.1002/jcc.26061
Aprà, E., Bylaska, E.J., de Jong, W.A., et al.: NWChem: Past, present, and future. The Journal of Chemical Physics 152(18), 184102 (2020). https://doi.org/10.1063/5.0004997
Auhim, H.S., Grigorenko, B.L., Harris, T.K., et al.: Stalling chromophore synthesis of the fluorescent protein venus reveals the molecular basis of the final oxidation step. Chem. Sci. 12, 7735–7745 (2021). https://doi.org/10.1039/D0SC06693A
Balasubramani, S.G., Chen, G.P., Coriani, S., et al.: Turbomole: Modular program suite for ab initio quantum-chemical and condensed-matter simulations. The Journal of Chemical Physics 152(18), 184107 (2020). https://doi.org/10.1063/5.0004635
Berman, H.M., Westbrook, J., Feng, Z., et al.: The Protein Data Bank. Nucleic Acids Research 28(1), 235–242 (2000). https://doi.org/10.1093/nar/28.1.235
Best, R.B., Zhu, X., Shim, J., et al.: Optimization of the additive charmm all-atom protein force field targeting improved sampling of the backbone φ, ψ and side-chain ξ1 and ξ2 dihedral angles. Journal of Chemical Theory and Computation 8(9), 3257–3273 (2012). https://doi.org/10.1021/ct300400x
Chai, J.D., Head-Gordon, M.: Long-range corrected hybrid density functionals with damped atomatom dispersion corrections. Phys. Chem. Chem. Phys. 10, 6615–6620 (2008). https: //doi.org/10.1039/B810189B
Colloc'h, N., Gabison, L., Monard, G., et al.: Oxygen Pressurized X-Ray Crystallography: Probing the Dioxygen Binding Site in Cofactorless Urate Oxidase and Implications for Its Catalytic Mechanism. Biophysical Journal 95(5), 2415–2422 (2008). https://doi.org/10.1529/biophysj.107.122184
Giudetti, G., Polyakov, I., Grigorenko, B.L., et al.: How Reproducible are QM/MM Simulations? Lessons from Computational Studies of the Covalent Inhibition of the SARS-CoV-2 Main Protease by Carmofur. ChemRxiv (2022). https://doi.org/10.26434/chemrxiv-2022-4mmdc
Grimme, S., Antony, J., Ehrlich, S., Krieg, H.: A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. The Journal of Chemical Physics 132(15), 154104 (2010). https://doi.org/10.1063/1.3382344
Humphrey, W., Dalke, A., Schulten, K.: VMD: Visual molecular dynamics. Journal of Molecular Graphics 14(1), 33–38 (1996). https://doi.org/10.1016/0263-7855(96)00018-5
Khrenova, M.G., Polyakov, I.V., Nemukhin, A.V.: Molecular dynamics of enzyme-substrate complexes in guanosine-binding proteins. Khimicheskaya Fizika 41(6), 66–72 (2022). https://doi.org/10.31857/S0207401X22060061
Kstner, J., Carr, J.M., Keal, T.W., et al.: DL-FIND: An Open-Source Geometry Optimizer for Atomistic Simulations. The Journal of Physical Chemistry A 113(43), 11856–11865 (2009). https://doi.org/10.1021/jp9028968
Loh, K.D., Gyaneshwar, P., Papadimitriou, E.M., et al.: A previously undescribed pathway for pyrimidine catabolism. Proceedings of the National Academy of Sciences 103(13), 5114–5119 (2006). https://doi.org/10.1073/pnas.0600521103
Massey, V.: Activation of molecular oxygen by flavins and flavoproteins. Journal of Biological Chemistry 269(36), 22459–22462 (1994). https://doi.org/10.1016/S0021-9258(17) 31664-2
Matthews, A., Saleem-Batcha, R., Sanders, J.N., et. al: Aminoperoxide adducts expand the catalytic repertoire of flavin monooxygenases. Nature Chemical Biology 16(5), 556–563 (2020). https://doi.org/10.1038/s41589-020-0476-2
Melo, M.C.R., Bernardi, R.C., Rudack, T., et al.: NAMD goes quantum: an integrative suite for hybrid simulations. Nature Methods 15(5), 351–354 (2018). https://doi.org/10.1038/nmeth.4638
Nemukhin, A.V., Grigorenko, B.L., Khrenova, M.G., Krylov, A.I.: Computational challenges in modeling of representative bioimaging proteins: GFP-like proteins, flavoproteins, and phytochromes. The Journal of Physical Chemistry B 123(29), 6133–6149 (2019). https://doi.org/10.1021/acs.jpcb.9b00591
Nemukhin, A.V., Grigorenko, B.L., Polyakov, I.V., Lushchekina, S.V.: Computational modeling of the SARS-CoV-2 main protease inhibition by the covalent binding of prospective drug molecules. Supercomputing Frontiers and Innovations 7(3), 25–32 (2020). https://doi.org/10.14529/jsfi200303
Phillips, J.C., Hardy, D.J., Maia, J.D.C., et al.: Scalable molecular dynamics on CPU and GPU architectures with NAMD. The Journal of Chemical Physics 153(4), 044130 (2020). https://doi.org/10.1063/5.0014475
Seritan, S., Bannwarth, C., Fales, B.S., et al.: Terachem: A graphical processing unitaccelerated electronic structure package for large-scale ab initio molecular dynamics. WIREs Computational Molecular Science 11(2), e1494 (2021). https://doi.org/10.1002/wcms. 1494
Shabalin, I.G., Porebski, P.J., Minor, W.: Refining the macromolecular model – achieving the best agreement with the data from X-ray diffraction experiment. Crystallography Reviews 24(4), 236–262 (2018). https://doi.org/10.1080/0889311X.2018.1521805
Sherwood, P., de Vries, A.H., Guest, M.F., et al.: QUASI: A general purpose implementation of the QM/MM approach and its application to problems in catalysis. Journal of Molecular Structure: THEOCHEM 632(1), 1–28 (2003). https://doi.org/10.1016/S0166-1280(03)00285-9
Teufel, R.: Flavin-catalyzed redox tailoring reactions in natural product biosynthesis. Archives of Biochemistry and Biophysics 632, 20–27 (2017). https://doi.org/10.1016/j.abb.2017.06.008
Voevodin, V.V., Antonov, A.S., Nikitenko, D.A., et al.: Supercomputer Lomonosov-2: Large scale, deep monitoring and fine analytics for the user community. Supercomputing Frontiers and Innovations 6(2), 4–11 (2019). https://doi.org/10.14529/jsfi190201
Wang, J., Cieplak, P., Kollman, P.A.: How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? Journal of Computational Chemistry 21(12), 1049–1074 (2000). https://doi.org/10.1002/1096-987X(200009)21:12<1049::AID-JCC3>3.0.CO;2-F
Wang, S., Hou, K., Heinz, H.: Accurate and compatible force fields for molecular oxygen, nitrogen, and hydrogen to simulate gases, electrolytes, and heterogeneous interfaces. Journal of Chemical Theory and Computation 17(8), 5198–5213 (2021). https://doi.org/10.1021/acs.jctc.0c01132
Downloads
Published
How to Cite
License
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-Non Commercial 3.0 License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.