Computational Characterization of N-acetylaspartylglutamate Synthetase: From the Protein Primary Sequence to Plausible Catalytic Mechanism

Authors

DOI:

https://doi.org/10.14529/jsfi220201

Keywords:

molecular dynamics, quantum mechanics/molecular mechanics, QM/MM MD, GPU-accelerated algorithms, N-acetylaspartylglutamate synthetase, enzyme-substrate complexes, reaction intermediates

Abstract

The methods of supercomputer molecular modeling are applied to characterize structure and dynamics of one of the key human brain enzymes, N-acetylaspartylglutamate synthetase. The three-dimensional all-atom models of the enzyme with the reactants in the active site are constructed in several steps, starting from pilot protein structure in the apo-form obtained with the AlphaFold2 from the protein primary sequence. Deposition of reactant molecules into the protein cavity, construction of the reaction intermediate and relaxation of the complex are carried out with the help of large-scale classical molecular dynamics calculations. On the top of the construct, molecular dynamics simulations with the quantum mechanics/molecular mechanics interaction potentials are performed for the most promising conformations of the model system. Analysis of the latter allows us to propose plausible catalytic mechanisms of chemical reactions in the enzyme active site. The applied computational strategy opens the way towards ab initio enzymology using modern supercomputer simulations.

References

Ahmadi, S., Barrios Herrera, L., et al.: Multiscale modeling of enzymes: QM-cluster, QM/MM, and QM/MM/MD: A tutorial review. International Journal of Quantum Chemistry 118(9), e25558 (2018). https://doi.org/10.1002/qua.25558

Aminpour, M., Montemagno, C., Tuszynski, J.A.: An overview of molecular modeling for drug discovery with specific illustrative examples of applications. Molecules 24(9), 1693 (Apr 2019). https://doi.org/10.3390/molecules24091693

Apweiler, R.: UniProt: the Universal Protein knowledgebase. Nucleic Acids Research 32(90001), D115–D119 (Jan 2004). https://doi.org/10.1093/nar/gkh131

Becker, I., Lodder, J., Gieselmann, V., Eckhardt, M.: Molecular characterization of Nacetylaspartylglutamate Synthetase. Journal of Biological Chemistry 285(38), 29156–29164 (Sep 2010). https://doi.org/10.1074/jbc.m110.111765

Becker, I., Wang-Eckhardt, L., Lodder-Gadaczek, J., et al.: Mice deficient in the NAAG synthetase II gene Rimkla are impaired in a novel object recognition task. Journal of Neurochemistry 157(6), 2008–2023 (Mar 2021). https://doi.org/10.1111/jnc.15333

Berman, H.M.: The protein data bank. Nucleic Acids Research 28(1), 235–242 (Jan 2000). https://doi.org/10.1093/nar/28.1.235

Dall’Acqua, W., Carter, P.: Substrate-assisted catalysis: Molecular basis and biological significance. Protein Science 9(1), 1–9 (Dec 2008). https://doi.org/10.1110/ps.9.1.1

Fan, C., Moews, P.C., Walsh, C.T., Knox, J.R.: Vancomycin Resistance: Structure of D-Alanine:D-Alanine Ligase at 2.3 Å Resolution. Science 266(5184), 439–443 (Oct 1994). https://doi.org/10.1126/science.7939684

Hara, T., Kato, H., Katsube, Y., Oda, J.: A Pseudo-Michaelis Quaternary Complex in the Reverse Reaction of a Ligase: Structure of Escherichia coli B Glutathione Synthetase Complexed with ADP, Glutathione, and Sulfate at 2.0 Å Resolution. Biochemistry 35(37), 11967–11974 (1996). https://doi.org/10.1021/bi9605245

Heo, L., Feig, M.: Experimental accuracy in protein structure refinement via molecular dynamics simulations. Proceedings of the National Academy of Sciences 115(52), 13276–13281 (2018). https://doi.org/10.1073/pnas.1811364115

Humphrey, W., Dalke, A., Schulten, K.: VMD: Visual molecular dynamics. Journal of Molecular Graphics 14(1), 33–38 (Feb 1996). https://doi.org/10.1016/0263-7855(96)00018-5

Jumper, J., Evans, R., Pritzel, A., et al.: Highly accurate protein structure prediction with AlphaFold. Nature 596(7873), 583–589 (Aug 2021). https://doi.org/10.1038/s41586-021-03819-2

Khrenova, M.G., Polyakov, I.V., Nemukhin, A.V.: Molecular dynamics of enzyme-substrate complexes in guanosine-binding proteins. Khimicheskaya Fizika 41(6), 66–72 (2022). https://doi.org/10.31857/S0207401X22060061

Khrenova, M.G., Bulavko, E.S., Mulashkin, F.D., Nemukhin, A.V.: Mechanism of Guanosine Triphosphate Hydrolysis by the Visual Proteins Arl3-RP2: Free Energy Reaction Profiles Computed with Ab Initio Type QM/MM Potentials. Molecules 26(13), 3998 (Jun 2021). https://doi.org/10.3390/molecules26133998

Kuhlman, B., Bradley, P.: Advances in protein structure prediction and design. Nature Reviews Molecular Cell Biology 20(11), 681–697 (Nov 2019). https://doi.org/10.1038/s41580-019-0163-x

Melo, M.C.R., Bernardi, R.C., Rudack, T., et al.: NAMD goes quantum: an integrative suite for hybrid simulations. Nature Methods 15(5), 351–354 (May 2018). https://doi.org/10.1038/nmeth.4638

Mirdita, M., Schtze, K., Moriwaki, Y., et al.: ColabFold: making protein folding accessible to all. Nature Methods 19(6), 679–682 (may 2022). https://doi.org/10.1038/s41592-022-01488-1

Morozenko, A., Stuchebrukhov, A.A.: Dowser++, a new method of hydrating protein structures. Proteins: Structure, Function, and Bioinformatics 84(10), 1347–1357 (Jul 2016). https://doi.org/10.1002/prot.25081

Phillips, J.C., Hardy, D.J., Maia, J.D.C., et al.: Scalable molecular dynamics on CPU and GPU architectures with NAMD. J. Chem. Phys. 153(4), 044130 (Jul 2020). https://doi.org/10.1063/5.0014475

Polyakov, I.V., Kniga, A.E., Grigorenko, B.L., et al.: Computer Modeling of N-Acetylglutamate Synthase: From Primary Structure to Elemental Stages of Catalysis. Doklady Biochemistry and Biophysics 495(1), 334–337 (Nov 2020). https://doi.org/10.1134/s1607672920060125

Polyakov, I.V., Kniga, A.E., Grigorenko, B.L., Nemukhin, A.V.: Structure of the brain N-acetylaspartate biosynthetic enzyme NAT8l revealed by computer modeling. ACS Chemical Neuroscience 11(15), 2296–2302 (Jul 2020). https://doi.org/10.1021/acschemneuro.0c00250

Seritan, S., Bannwarth, C., Fales, B.S., et al.: TeraChem: A graphical processing unitaccelerated electronic structure package for large-scale ab initio molecular dynamics. WIREs Computational Molecular Science 11(2) (Jul 2020). https://doi.org/10.1002/wcms.1494

Shabalin, I.G., Porebski, P.J., Minor, W.: Refining the macromolecular model – achieving the best agreement with the data from X-ray diffraction experiment. Crystallography Reviews 24(4), 236–262 (Sep 2018). https://doi.org/10.1080/0889311x.2018.1521805

Steinegger, M., Söding, J.: MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nature Biotechnology 35(11), 1026–1028 (Oct 2017). https://doi.org/10.1038/nbt.3988

Downloads

Published

2022-11-07

How to Cite

Polyakov, I. V., Kniga, A. E., & Nemukhin, A. V. (2022). Computational Characterization of N-acetylaspartylglutamate Synthetase: From the Protein Primary Sequence to Plausible Catalytic Mechanism. Supercomputing Frontiers and Innovations, 9(2), 4–13. https://doi.org/10.14529/jsfi220201

Most read articles by the same author(s)