Improving Quantum Annealing Performance on Embedded Problems
Abstract
Full Text:
PDFReferences
Abbott, A.A., Calude, C.S., Dinneen, M.J., et al.: A hybrid quantum-classical paradigm to mitigate embedding costs in quantum annealing. International Journal of Quantum Information 17(05), 1950042 (2019), DOI: 10.1142/S0219749919500424
Albash, T., Lidar, D.A.: Demonstration of a scaling advantage for a quantum annealer over simulated annealing. Phys. Rev. X 8(3), 031016 (2018), DOI: 10.1103/PhysRevX.8.031016
Amin, M.H.: Searching for quantum speedup in quasistatic quantum annealers. Phys. Rev. A 92(5), 052323 (2015), DOI: 10.1103/PhysRevA.92.052323
Applegate, D.L., Cook, W.J.: A computational study of the job-shop scheduling problem. INFORMS J. Comput. 3(2), 149–156 (1991), DOI: 10.1287/ijoc.3.2.149
Boothby, K., Bunyk, P., Raymond, J., et al.: Next-generation topology of D-Wave quantum processors. https://www.dwavesys.com/sites/default/files/14-1026A-C_Next-Generation-Topology-of-DW-Quantum-Processors.pdf (2019), accessed: 2020-11-18
Bowman, E.H.: The schedule-sequencing problem. Operations Research 7(5), 621–624 (1959), DOI: 10.1287/opre.7.5.621
Cai, J., Macready, W.G., Roy, A.: A practical heuristic for finding graph minors. https://arxiv.org/abs/1406.2741 (2014), accessed: 2020-11-18
D-Wave Systems: D-Wave Binary CSP. https://github.com/dwavesystems/dwavebinarycsp, accessed: 2020-07-10
D-Wave Systems: dimod. https://github.com/dwavesystems/dimod, accessed: 2020-07-10
D-Wave Systems: dwave-system. https://github.com/dwavesystems/dwave-system, accessed: 2020-07-10
Date, P., Patton, R.M., Schuman, C.D., et al.: Efficiently embedding QUBO problems on adiabatic quantum computers. Quantum Inf. Process. 18(4), 117 (2019), DOI: 10.1007/s11128-019-2236-3
Denchev, V.S., Boixo, S., Isakov, S.V., et al.: What is the computational value of finite-range tunneling? Phys. Rev. X 6(3), 031015 (2016), DOI: 10.1103/PhysRevX.6.031015
Farhi, E., Goldstone, J., Gutmann, S., et al.: Quantum computation by adiabatic evolution. https://arxiv.org/abs/quant-ph/0001106 (2000), accessed: 2020-11-18
Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Miller, G.L. (ed.) Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing, 22-24 May 1996, Philadelphia, Pennsylvania, USA. pp. 212–219. ACM (1996), DOI: 10.1145/237814.237866
Hen, I., Job, J., Albash, T., et al.: Probing for quantum speedup in spin-glass problems with planted solutions. Phys. Rev. A 92(4), 042325 (2015), DOI: 10.1103/PhysRevA.92.042325
Ikeda, K., Nakamura, Y., Humble, T.S.: Application of quantum annealing to nurse scheduling problem. Scientific Reports 9(1), 12837 (2019), DOI: 10.1038/s41598-019-49172-3
Izquierdo, Z.G., Grabbe, S., Hadfield, S., et al.: Ferromagnetically shifting the power of pausing. https://arxiv.org/abs/2006.08526 (2020), accessed: 2020-11-18
Kadowaki, T., Nishimori, H.: Quantum annealing in the transverse Ising model. Phys. Rev. E 58(5), 5355–5363 (1998), DOI: 10.1103/PhysRevE.58.5355
Karimi, H., Rosenberg, G.: Boosting quantum annealer performance via sample persistence. Quantum Inf. Process. 16(7), 166 (2017), DOI: 10.1007/s11128-017-1615-x
Katzgraber, H.G., Hamze, F., Zhu, Z., et al.: Seeking quantum speedup through spin glasses: The good, the bad, and the ugly. Phys. Rev. X 5(3), 031026 (2015), DOI: 10.1103/PhysRevX.5.031026
Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983), DOI: 10.1126/science.220.4598.671
Lanting, T., King, A.D., Evert, B., et al.: Experimental demonstration of perturbative anticrossing mitigation using nonuniform driver hamiltonians. Phys. Rev. A 96(4), 042322 (2017), DOI: 10.1103/PhysRevA.96.042322
Lucas, A.: Ising formulations of many NP problems. Frontiers in Physics 2, 5 (2014), DOI: 10.3389/fphy.2014.00005
Mandrà, S., Zhu, Z., Wang, W., et al.: Strengths and weaknesses of weak-strong cluster problems: A detailed overview of state-of-the-art classical heuristics versus quantum approaches. Phys. Rev. A 94(2), 022337 (2016), DOI: 10.1103/PhysRevA.94.022337
Marshall, J., Venturelli, D., Hen, I., et al.: Power of pausing: Advancing understanding of thermalization in experimental quantum annealers. Phys. Rev. Applied 11(4), 044083 (2019), DOI: 10.1103/PhysRevApplied.11.044083
Okada, S., Ohzeki, M., Taguchi, S.: Efficient partition of integer optimization problems with one-hot encoding. Scientific Reports 9(1), 13036 (2019), DOI: 10.1038/s41598-019-49539-6
Pudenz, K.L., Albash, T., Lidar, D.A.: Error-corrected quantum annealing with hundreds of qubits. Nature Communications 5(1), 3243 (2014), DOI: 10.1038/ncomms4243
Recruit Communications: PyQUBO. https://github.com/recruit-communications/pyqubo, accessed: 2020-07-10
Rieffel, E.G., Venturelli, D., OGorman, B., et al.: A case study in programming a quantum annealer for hard operational planning problems. Quantum Information Processing 14(1), 1–36 (2015), DOI: 10.1007/s11128-014-0892-x
Rosenberg, G., Vazifeh, M., Woods, B., et al.: Building an iterative heuristic solver for a quantum annealer. Comput. Optim. Appl. 65(3), 845–869 (2016), DOI: 10.1007/s10589-016-9844-y
Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999), DOI: 10.1137/S0036144598347011
Stollenwerk, T., OGorman, B., Venturelli, D., et al.: Quantum annealing applied to deconflicting optimal trajectories for air traffic management. IEEE Transactions on Intelligent Transportation Systems 21(1), 285–297 (2020), DOI: 10.1109/TITS.2019.2891235
Tanahashi, K., Takayanagi, S., Motohashi, T., et al.: Application of Ising machines and a software development for Ising machines. Journal of the Physical Society of Japan 88(6), 061010 (2019), DOI: 10.7566/JPSJ.88.061010
Tran, T.T., Do, M., Rieffel, E.G., et al.: A hybrid quantum-classical approach to solving scheduling problems. In: Proceedings of the Ninth Annual Symposium on Combinatorial Search, SOCS 2016, 6-8 July 2016, Tarrytown, NY, USA. pp. 98–106. AAAI Press (2016), http://aaai.org/ocs/index.php/SOCS/SOCS16/paper/view/13958
Tran, T.T., Wang, Z., Do, M., et al.: Explorations of quantum-classical approaches to scheduling a Mars lander activity problem. In: Planning for Hybrid Systems, Papers from the 2016 AAAI Workshop, 13 February 2016, Phoenix, Arizona, USA. AAAI Workshops, vol. WS-16-12. AAAI Press (2016), http://www.aaai.org/ocs/index.php/WS/AAAIW16/paper/view/12664
Venturelli, D., Marchand, D.J.J., Rojo, G.: Quantum annealing implementation of job-shop scheduling. In: Proceedings of the EleventhWorkshop on Constraint Satisfaction Techniques for Planning and Scheduling, COPLAS 2016, 13-14 June 2016, London, UK. pp. 25–34 (2016)
Yarkoni, S., Plaat, A., Bäck, T.: First results solving arbitrarily structured maximum independent set problems using quantum annealing. In: 2018 IEEE Congress on Evolutionary Computation, CEC 2018, 8-13 July 2018, Rio de Janeiro, Brazil. pp. 1–6. IEEE (2018), DOI: 10.1109/CEC.2018.8477865
Yarkoni, S., Wang, H., Plaat, A., et al.: Boosting quantum annealing performance using evolution strategies for annealing offsets tuning. In: Feld, S., Linnhoff-Popien, C. (eds.) Quantum Technology and Optimization Problems - First InternationalWorkshop, QTOP@NetSys 2019, 18 March 2019, Munich, Germany, Proceedings. Lecture Notes in Computer Science, vol. 11413, pp. 157–168. Springer (2017), DOI: 10.1007/978-3-030-14082-3_14