High Performance Computing with Coarse Grained Model of Biological Macromolecules

Emilia Agnieszka Lubecka, Adam Kazimierz Sieradzan, Cezary Czaplewski, Paweł Krupa, Adam Liwo


The Unified Coarse Grained Model of biological macromolecules (UCGM) that is being developed in our laboratory is a model designed to carry out large-scale simulations of biological macromolecules. The simplified chain representation used in the model allows to obtain 3-4 orders of magnitude extention of the time-scale of simulations, compared to that of all-atom simulations. Unlike most of the other coarse-grained force fields, UCGM is a physics-based force field, independent of structural databases and applicable to treat non-standard systems. In this communication, the efficiency and scalability of the new version of UCGM package with Fortran 90, with two parallelization levels: coarse-grained and fine-grained, is reported for systems with various size and oligomeric state. The performance was tested in the canonical- and replica exchange MD mode, with small- and moderate-size proteins and protein complexes (20 to 1,636 amino-acid residues), as well as with large systems such as, e.g., human proteosome 20S with size over 6,200 aminoacid residues, which show the advantage of using coarse-graining. It is demonstrated that, with using massively parallel architectures, and owing to the physics-based nature of UCGM, real-time simulations of the behavior of subcellular systems are feasible.

Full Text:



Abraham, M.J., Murtola, T., Schulz, R., Pall, S., Smith, J.C., Hess, B., Lindahl, E.: Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1-2, 19–25 (2015), DOI: 10.1016/j.softx.2015.06.001

Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., DiNola, A., Haak, J.R.: Molecular dynamics with coupling to an external bath. Journal of Chemical Physics 81(8), 3684–3690 (1984), DOI: 10.1063/1.448118

Berendsen, H.J.C., van der Spoel, D., van Drunen, R.: Gromacs: A message-passing parallel molecular dynamics implementation. Computer Physics Communications 91(1), 43–56 (1995), DOI: 10.1016/0010-4655(95)00042-E

Czaplewski, C., Kalinowski, S., Liwo, A., Scheraga, H.A.: Application of multiplexing

replica exchange molecular dynamics method to the UNRES force field: Tests with

and + proteins. Journal of Chemical Theory and Computation 5(3), 627–640 (2009), DOI: 10.1021/ct800397z

Duan, Y., Wu, C., Chowdhury, S., Lee, M.C., Xiong, G., Zhang, W., Yang, R., Cieplak, P., Luo, R., Lee, T., Caldwell, J., Wang, J., Kollman, P.: A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. Journal of Computational Chemistry 24(16), 1999–2012 (2003), DOI: 10.1002/jcc.10349

Hansmann, U.H.E., Okamoto, Y.: Comparative study of multicanonical and simulated annealing algorithms in the protein folding problem. Physica A 212(3-4), 415–437 (1994), DOI: 10.1016/0378-4371(94)90342-5

He, Y., Maciejczyk, M., O ldziej, S., Scheraga, H.A., Liwo, A.: Mean-field interactions

between nucleic-acid-base dipoles can drive the formation of a double helix. Physical Review Letters 110(9), 098101 (2013), DOI: 10.1103/PhysRevLett.110.098101

He, Y., Mozolewska, M.A., Krupa, P., Sieradzan, A.K., Wirecki, T., Liwo, A., Kachlishvili,

K., Rackovsky, S., Jagie la, D., Slusarz, R., Czaplewski, C., O ldziej, S., Scheraga, H.A.: Lessons from application of the UNRES force field to predictions of structures of CASP10 targets. Proceedings of the National Academy of Sciences U. S. A. 110(37), 14936–14941 (2013), DOI: 10.1073/pnas.1313316110

Khalili, M., Liwo, A., Jagielska, A., Scheraga, H.A.: Molecular dynamics with the united-residue model of polypeptide chains. II. Langevin and Berendsen-bath dynamics and tests on model alpha-helical systems. Journal of Physical Chemistry B 109(28), 13798–13810 (2005), DOI: 10.1021/jp058007w

Khalili, M., Liwo, A., Rakowski, F., Grochowski, P., Scheraga, H.A.: Molecular dynamics with the united-residue model of polypeptide chains. I. Lagrange equations of motion and tests of numerical stability in the microcanonical mode. Journal of Physical Chemistry B 109(28), 13785–13797 (2005), DOI: 10.1021/jp058008o

Kleinerman, D.S., Czaplewski, C., Liwo, A., Scheraga, H.A.: Implementations of Nose – Hoover and Nose–Poincare thermostats in mesoscopic dynamic simulations with the united-residue model of a polypeptide chain. Journal of Chemical Physics 128(24), 245103 (2008), DOI: 10.1063/1.2943146

Kmiecik, S., Gront, D., Kolinski, M., Wieteska, L., Dawid, A.E., Kolinski, A.: Coarse-grained protein models and their applications. Chemical Reviews 116(14), 7898–7936 (2016), DOI: 10.1021/acs.chemrev.6b00163

Kolinski, A., Skolnick, J.: Reduced models of proteins and their applications. Polymer 45(2), 511–524 (2004), DOI: 10.1016/j.polymer.2003.10.064

Kolinski, A., Skolnick, J.: Assembly of protein structure from sparse experimental data: An efficient Monte Carlo model. Proteins: Structure, Function, and Bioinformatics 32(4), 475–494 (1998), DOI: 10.1002/(SICI)1097-0134(19980901)32:43.0.CO;2-F

Krupa, P., Mozolewska, M.A., Wisniewska, M., Yin, Y., He, Y., Sieradzan, A.K.,

Ganzynkowicz, R., Lipska, A.G., Karczynska, A., Slusarz, M., Slusarz, R., Gieldon, A.,

Czaplewski, C., Jagie la, D., Zaborowski, B., Scheraga, H.A., Liwo, A.: Performance of

protein-structure predictions with the physics-based UNRES force field in CASP11. Bioinformatics 32(21), 3270–3278 (2016), DOI: 10.1093/bioinformatics/btw404

Krupa, P., Hal abis, A., Zmudzinska, W., Ol dziej, S., Scheraga, H.A., Liwo, A.: Maximum likelihood calibration of the UNRES force field for simulation of protein structure and dynamics. Journal of Chemical Information and Modeling 57(9), 2364–2377 (2017), DOI: 10.1021/acs.jcim.7b00254

Kubo, R.: Generalized cumulant expansion method. Journal of the Physical Society Japan 17(7), 1100–1120 (1962), DOI: 10.1143/JPSJ.17.1100

Kumar, S., Rosenberg, J.M., Bouzida, D., Swendsen, R.H., Kollman, P.A.: The weighted histogram analysis method for free-energy calculations on biomolecules. I. The Method. Journal of Computational Chemistry 13(8), 1011–1021 (1992), DOI: 10.1002/jcc.540130812

Liwo, A., Baranowski, M., Czaplewski, C., Go las, E., He, Y., Jagie la, D., Krupa, P., Maciejczyk, M., Makowski, M., Mozolewska, M.A., Niadzvedtski, A., O ldziej, S., Scheraga, H.A., Sieradzan, A.K., Slusarz, R., Wirecki, T., Yin, Y., Zaborowski, B.: A unified coarsegrained model of biological macromolecules based on mean-field multipole-multipole interactions. Journal of Molecular Modeling 20(8), 2306 (2014), DOI: 10.1007/s00894-014-2306-5

Liwo, A., Czaplewski, C., O ldziej, S., Rojas, A.V., Kazmierkiewicz, R., Makowski, M.,

Murarka, R.K., Scheraga, H.A.: Simulation of protein structure and dynamics with

the coarse-grained UNRES force field. In: Voth, G. (ed.) Coarse-Graining of Condensed Phase and Biomolecular Systems, chap. 8, pp. 1391–1411. CRC Press (2008), DOI: 10.1201/9781420059564.ch8

Liwo, A., Czaplewski, C., Pillardy, J., Scheraga, H.A.: Cumulant-based expressions for

the multibody terms for the correlation between local and electrostatic interactions in

the united-residue force field. Journal of Chemical Physics 115(5), 2323–2347 (2001), DOI: 10.1063/1.1383989

Liwo, A., Khalili, M., Czaplewski, C., Kalinowski, S., O ldziej, S., Wachucik, K., Scheraga, H.A.: Modification and optimization of the united-residue (UNRES) potential energy function for canonical simulations. I. Temperature dependence of the effective energy function and tests of the optimization method with single training proteins. Journal of Physical Chemistry B 111(1), 260–285 (2007), DOI: 10.1021/jp065380a

Liwo, A., O ldziej, S., Czaplewski, C., Kleinerman, D.S., Blood, P., Scheraga, H.A.: Implementation of molecular dynamics and its extensions with the coarse-grained UNRES force field on massively parallel systems: Towards millisecond-scale simulations of protein structure, dynamics, and thermodynamics. Journal of Chemical Theory and Computation 6(3), 583–595 (2010), DOI: 10.1021/ct9004068

Lopez, C.A., Rzepiela, A., de Vries, A.H., Dijkhuizen, L., Hunenberger, P.H., Marrink, S.J.: Martini coarse-grained force field: Extension to carbohydrates. Journal of Chemical Theory and Computation 5(12), 3195–3210 (2009), DOI: 10.1021/ct900313w

Lubecka, E.A., Liwo, A.: New UNRES force field package with FORTRAN 90. TASK

Quarterly 20(4), 399–407 (2016), DOI: 10.17466/tq2016/20.4/n

Markutsya, S., Devarajan, A., Baluyut, J., Windus, T.L., Gordon, M.S., Lamm, M.H.:

Evaluation of coarse-grained mapping schemes for polysaccharide chains in cellulose. Journal of Chemical Physics 138(21), 214108 (2013), DOI: 10.1063/1.4808025

Marrink, S.J., Tieleman, D.P.: Perspective on the Martini model. Chemical Society Reviews 42(16), 6801–6822 (2013), DOI: 10.1039/C3CS60093A

Molinero, V., Goddard III, W.A.: M3b: a coarse-grain force field for molecular simulations of malto-oligosaccharides and their water mixtures. Journal of Physical Chemistry B 108(4), 1414–1427 (2004), DOI: 10.1021/jp0354752

Monticelli, L., Kandasamy, S.K., Periole, X., Larson, R.G., Tieleman, D.P., Marrink, S.J.: The Martini coarse-grained force field: Extension to proteins. Journal of Chemical Theory and Computation 4(5), 819–834 (2008), DOI: 10.1021/ct700324x

Mozolewska, M.A., Krupa, P., Scheraga, H.A., Liwo, A.: Molecular modeling of the binding modes of the iron-sulfur protein to the Jac1 co-chaperone from Saccharomyces cerevisiae by all-atom and coarse-grained approaches. Proteins: Structure, Function, and Bioinformatics 83(8), 1414–1426 (2015), DOI: 10.1002/prot.24824

Rakowski, F., Grochowski, P., Lesyng, B., Liwo, A., Scheraga, H.A.: Implementation of a symplectic multiple-time-step molecular dynamics algorithm, based on the united-residue mesoscopic potential energy function. Journal of Chemical Physics 125(20), 204107 (2006), DOI: 10.1063/1.2399526

Rhee, Y.M., Pande, V.S.: Multiplexed-replica exchange molecular dynamics method for protein folding simulation. Biophysical Journal 84(2), 775–786 (2003), DOI: 10.1016/S0006-3495(03)74897-8

Rojas, A., Liwo, A., Browne, D., Scheraga, H.A.: Mechanism of fiber assembly; treatment of A-peptide peptide aggregation with a coarse-grained united-residue force field. Journal of Molecular Biology 404(3), 537–552 (2010), DOI: 10.1016/j.jmb.2010.09.057

Samsonov, S.A., Bichmann, L., Pisabarro, M.T.: Coarse-grained model of glycosoaminoglycans. Journal of Chemical Information and Modeling 55(1), 114–124 (2015), DOI: 10.1021/ci500669w

Sieradzan, A.K., Krupa, P., Wales, D.J.: What makes telomeres unique? Journal of Physical Chemistry B 121(10), 2207–2219 (2016), DOI: 10.1021/acs.jpcb.6b08780

Sieradzan, A.K., Makowski, M., Augustynowicz, A., Liwo, A.: A general method for the

derivation of the functional forms of the effective energy terms in coarse-grained energy functions of polymers. I. Backbone potentials of coarse-grained polypeptide chains. Journal of Chemical Physics 146(12), 124106 (2017), DOI: 10.1063/1.4978680

Takada, S., Kanada, R., Tan, C., Terakawa, T., Li, W., Kenzaki, H.: Modeling structural

dynamics of biomolecular complexes by coarse-grained molecular simulations. Accounts of Chemical Research 48(12), 3026–3035 (2015), DOI: 10.1021/acs.accounts.5b00338

Zhou, R., Maisuradze, G.G., Sunol, D., Todorovski, T., Macias, M.J., Xiao, Y., Scheraga, H.A., Czaplewski, C., Liwo, A.: Folding kinetics of WW domains with the united residue force field for bridging microscopic motions and experimental measurements.

Proceedings of the National Academy of Sciences U.S.A. 111(51), 18243–18248 (2014), DOI: 10.1073/pnas.1420914111

Publishing Center of South Ural State University (454080, Lenin prospekt, 76, Chelyabinsk, Russia)