Direct Numerical Simulation and Rank Analysis of Two-Dimensional Kolmogorov-type Vortex Flows

Authors

DOI:

https://doi.org/10.14529/jsfi250104

Keywords:

turbulence, numerical simulation, Kolmogorov-type flows, rank analysis

Abstract

The article is devoted to direct numerical modeling of viscous weakly compressible Kolmogorov-type flows in a square calculation cell. Several different conditions are observed. One of them is dominated by a large vortex with a well-defined average profile. In another state, strong chaotic large-scale fluctuations prevail. In the third state, laminar flow is observed. The nature of the realized state depends on the coefficient of kinematic viscosity of the liquid, the amplitude of the external pumping force, and the bottom friction coefficient. At constant values of the kinematic viscosity and the wave vector, a small value of the friction coefficient leads to the appearance of the first state. As the bottom friction coefficient increases, there is a transition from a flow with one large vortex to a laminar flow through a series of states with several unstable vortices, which we call chaotic flow. A rank analysis of the values of vorticity, energy, and pressure, as well as the frequency of their occurrence, is proposed. It is shown that for chaotic, vortex, laminar and transitional regimes of fluid motion, the inflection point in the rank frequency distributions of the above fields is a universal characteristic for classifying various types of flow.

References

Anderson, D.A., Tannehill, J.C., Pletcher, R.H.: Computational Fluid Mechanics and Heat Transfer. Taylor and Francis (2016). https://doi.org/10.1201/b12884

Arnold, V.I., Meshalkin, L.D.: A. N. Kolmogorov’s seminar on selected issues of analysis (1958-1959). Russ. Math. Surv. 15, 247–250 (1960)

Auerbach, F.: Das Gesetz der Bev¨olkerungskonzentration. Petermanns Geographische Mitteilungen 59, 74–76 (1913)

Batchelor, G.K.: Computation of the Energy Spectrum in Homogeneous Two-Dimensional Turbulence. Phys. Fluids 12, 233–239 (1969). https://doi.org/10.1063/1.1692443

Bondarenko, N.F., Gak, M.Z., Dolzhansky, F.V.: Laboratory and theoretical models of plane periodic flow. Izvestiia, Fizika Atmosfery i Okeana 15, 1017–1026 (1979)

Borue, V.: Inverse energy cascade in stationary two-dimensional homogeneous turbulence. Phys. Rev. Lett. 72, 1475 (1994). https://doi.org/10.1103/PhysRevLett.72.1475

Chertkov, M., Connaughton, C., Kolokolov, I., Lebedev, V.: Dynamics of Energy Condensation in Two-Dimensional Turbulence. Phys. Rev. Lett. 99 (2007). https://doi.org/10.1103/PhysRevLett.99.084501

Clauset, A., Shalizi, C.R., Newman, M.E.J.: Power-Law Distributions in Empirical Data. SIAM Review 51(4), 661–703 (2009). https://doi.org/10.1137/070710111

Clercx, H.J.H.: A Spectral Solver for the Navier-Stokes Equations in the Velocity-Vorticity Formulation for Flows with Two Nonperiodic Directions. J. Comp. Phys. 137, 186–211 (1997). https://doi.org/10.1006/jcph.1997.5799

Clercx, H.J.H., Maassen, S.R., van Heijst, G.J.F.: Spontaneous spin-up during the decay of 2D turbulence in a square container with rigid boundaries. Phys. Rev. Lett. 80, 5129 (1998). https://doi.org/10.1103/PhysRevLett.80.5129

Clercx, H.J.H., Nielsen, A.H., Torres, D.J., Coutsias, E.A.: Two-dimensional turbulence in square and circular domains with no-slip walls. Eur. J. Mech. B-Fluids 20, 557–576 (2001). https://doi.org/10.1016/S0997-7546(01)01130-X

Denisenko, V.V., Doludenko, A.N., Fortova, S.V., et al.: Numerical modelling of the Kolmogorov flow in a viscous media, forced by the periodic on space static force. Computer Research and Modeling 14(4), 741–753 (2022). https://doi.org/10.20537/2076-7633-2022-14-4-741-753

Doludenko, A.N., Fortova, S.V., Kolokolov, I.V., Lebedev, V.V.: Coherent vortex in a spatially restricted two-dimensional turbulent flow in absence of bottom friction. Physics of Fluids 33, 1–6 (2021). https://doi.org/10.1063/5.0038863

Doludenko, A.N., Fortova, S.V., Kolokolov, I.V., Lebedev, V.V.: Coherent vortex versus chaotic state in two-dimension turbulence. Annals of Physics 447 (2022). https://doi.org/10.1016/j.aop.2022.169072

Doludenko, A.N., Kulikov, Y.M., Savel’ev, A.S.: Chaotic flow under the influence of volumetric force. Computer Research and Modeling 16(4), 883–912 (2024). https://doi.org/10.20537/2076-7633-2024-16-4-883-912

Fock, V.A.: Konfigurationsraum und zweite Quantelung. Zeitschrift f¨ur Physik 75, 622–647 (1932). https://doi.org/10.1007/BF01344458

Francois, N., Xia, Y., Punzmann, H., et al.: Three-Dimensional Fluid Motion in Faraday Waves: Creation of Vorticity and Generation of Two-Dimensional Turbulence. Phys. Rev. X 4 (2014). https://doi.org/10.1103/PhysRevX.4.021021

Gleason, H.A.: The Significance of Raunkiaer’s Law of Frequency. Ecology 10(4), 406–408 (1929). https://doi.org/10.2307/1931149

Golitsyn, G.S.: A. N. Kolmogorov’s 1934 paper is the basis for explaining the statistics of natural phenomena of the macrocosm. Physics-Uspekhi 67, 80–90 (2024). https://doi.org/2023.05.039355

Gutenberg, B., Richter, C.F.: Frequency of earthquakes in California. Bulletin of the Seismological Society of America 34(4), 185–188 (1944). https://doi.org/10.1785/BSSA0340040185

Guzev, M.A., Fortova, S.V., Doludenko, A.N., et al.: Maslov Rank Distributions for the Analysis of Two-Dimensional and Quasi-Two-Dimensional Turbulent Flows. Russian Journal of Mathematical Physics 31, 438–449 (2024). https://doi.org/10.1134/S1061920824030075

Guzev, M.A., Nikitina, E.Y., Chernysh, E.V.: V. P. Maslov’s Approach to the Analysis of Rank Distributions. Russian Journal of Mathematical Physics 28, 56–65 (2021). https://doi.org/10.1134/S1061920821010064

Kolmogorov, A.N.: Doklady Akademii Nauk SSSR 30, 299–303 (1941)

Kolmogorov, A.N.: Three approaches to the definition of the concept "quantity of information". Probl. Peredachi Inf. 1, 3–11 (1965)

Kolokolov, I.V., Lebedev, V.V.: Structure of coherent vortices generated by the inverse cascade of two-dimensional turbulence in a finite box. Phys. Rev. E 93 (2016). https://doi.org/10.1103/PhysRevE.93.033104

Kolokolov, I.V., Lebedev, V.V.: Large-scale flow in two-dimensional turbulence at static pumping. JETP Lett. 106, 659–661 (2017). https://doi.org/10.1134/S0021364017220027

Kolokolov, I.V., Lebedev, V.V.: Coherent vortex in two-dimensional turbulence: Interplay of viscosity and bottom friction. Phys. Rev. E 102 (2020). https://doi.org/10.1103/PhysRevE.102.023108

Kraichnan, R.H.: Inertial Ranges in Two-Dimensional Turbulence. Phys. Fluids 10, 1417–1423 (1967). https://doi.org/10.1063/1.1762301

Kudryavtsev, A.N., Kuznetsov, E.A., Sereshchenko, E.V.: Statistical properties of freely decaying two-dimensional hydrodynamic turbulence. JETP Letters 96, 699–705 (2013). https://doi.org/10.1134/S0021364012230105

Kuznetsov, E.A., Naulin, V., Nielsen, A.H., Rasmussen, J.J.: Effects of sharp vorticity gradients in two-dimensional hydrodynamic turbulence. Physics of Fluids 19(10), 10 (2007). https://doi.org/10.1063/1.2793150

Kuznetsov, E.A., Naulin, V., Nielsen, A.H., Rasmussen, J.J.: Sharp vorticity gradients in two-dimensional turbulence and the energy spectrum. Theoretical and Computational Fluid Dynamics 24, 253–258 (2010). https://doi.org/10.1007/s00162-009-0135-4

Kuznetsov, E.A., Sereshchenko, E.V.: Anisotropic characteristics of the kraichnan direct cascade in two-dimensional hydrodynamic turbulence. JETP Letters 102(11), 760–765 (2015). https://doi.org/10.1134/S0021364015230083

Laurie, J., Boffetta, G., Falkovich, G., et al.: Universal Profile of the Vortex Condensate in Two-Dimensional Turbulence. Phys. Rev. Lett. 113 (2014). https://doi.org/10.1103/PhysRevLett.113.254503

Lees, R.B.: Logique, langage et th´eorie de l’information by L´eo Apostel, Benoit Mandelbrot, Albert Morf. Language 35(2) (1959). https://doi.org/10.2307/410536

Lotka, A.J.: The Frequency Distribution of Scientific Productivity. Journal of the Washington Academy of Sciences 16(12), 317–323 (1926)

Lutsenko, D.V.: Combinatorial Theory of Rank Dynamics. Kaliningrad: Tekhnotsenoz (2018)

MacCormack, R.W.: A Numerical Method for Solving the Equations of Compressible Viscous Flow. AIAA Journal 20, 1275–1281 (1982). https://doi.org/10.2514/6.1981-110

Mandelbrot, B.: Statistical Macro-Linguistics. Il Nuovo Cimento (1955-1965) 13, 518–520 (1959). https://doi.org/10.1007/bf02724682

Maslov, V.P.: On one general theorem of set theory leading to the Gibbs, Bose-Einstein, Pareto distribution and the Mandelbrot–Zipf law for the stock market. Mat. notes. 78, 807–813 (2005). https://doi.org/10.1007/s11006-005-0186-9

Maslov, V.P.: Quantum Linguistic Statistics. Russian Journal of Mathematical Physics 13, 315–325 (2006). https://doi.org/10.1134/S1061920806030071

Mitzenmacher, M.: A Brief History of Generative Models for Power Law and Lognormal Distributions. Internet Mathematics 1(2), 226–251 (2004). https://doi.org/10.1080/15427951.2004.10129088

Molenaar, D., Clercx, H.J.H., van Heijst, G.J.F.: Angular momentum of forced 2D turbulence in a square no-slip domain. Physica D 196, 329–340 (2004). https://doi.org/10.1016/j.physd.2004.06.001

Posudnevskaya, A.O., Fortova, S.V., Doludenko, A.N., et al.: Numerical Study of Transient Regimes of Kolmogorov Flow in a Square Cell. Computational Mathematics and Mathematical Physics 64, 2102–2110 (2024). https://doi.org/10.1134/S0965542524701033

Puzachenko, Y.G.: Rank distribution in ecology and nonextensive statistical mechanism. Archives of Zoological Museum of Lomonosov Moscow State University 54, 42–71 (2016)

Smith, L.M., Yakhot, V.: Bose condensation and small-scale structure generation in a random force driven 2D turbulence. Phys. Rev. Lett. 171, 352 (1993). https://doi.org/10.1103/PhysRevLett.71.352

Smith, L.M., Yakhot, V.: Finite-size effects in forced two-dimensional turbulence. J. Fluid Mech. 274, 115–138 (1994). https://doi.org/10.1017/S0022112094002065

Sommeria, J.: Experimental study of the two-dimensional inverse energy cascade in a square box. J. Fluid Mech 170, 139–168 (1986). https://doi.org/10.1017/S0022112086000836

Tsang, Y.K.: Nonuniversal velocity probability densities in two-dimensional turbulence: The effect of large-scale dissipation. Phys. Fluids 22 (2010). https://doi.org/10.1063/1.3504377

Tsang, Y.K., R.Young, W.: Forced-dissipative two-dimensional turbulence: A scaling regime controlled by drag. Phys. Rev. E 79 (2009). https://doi.org/10.1103/PhysRevE.79.045308

Xia, H., Punzmann, H., Falkovich, G., Shats, M.G.: Turbulence-Condensate Interaction in Two Dimensions. Phys. Rev. Lett. 101 (2008). https://doi.org/10.1103/PhysRevLett.101.194504

Xia, H., Shats, M., Falkovich, G.: Spectrally condensed turbulence in thin layers. Phys. Fluids 21 (2009). https://doi.org/10.1063/1.3275861

Zipf, G.K.: Human behavior and the principle of least effort. Addison-Wesley Press (1949)

Downloads

Published

2025-05-16

How to Cite

Guzev, M. A., Doludenko, A. N., Ermakov, A. D., Posudnevskaya, A. O., & Fortova, S. V. (2025). Direct Numerical Simulation and Rank Analysis of Two-Dimensional Kolmogorov-type Vortex Flows. Supercomputing Frontiers and Innovations, 12(1), 43–59. https://doi.org/10.14529/jsfi250104