HPC Optimization Algorithm for Assessing Haemodynamic Parameters in Synthetic Patient Cohorts

Authors

  • Artem V. Rogov Moscow Institute of Physics and TechnologyWorld-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First State Medical University, Moscow, Russian Federation; Moscow Institute of Physics and Technology, Dolgoprudny, Russian Federation https://orcid.org/0009-0000-1610-2034
  • Timur M. Gamilov World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First State Medical University, Moscow, Russian Federation; Marchuk Institute of Numerical Mathematics of the Russian Academy of Sciences, Moscow, Russian Federation https://orcid.org/0000-0002-1914-3859
  • Yaroslav Yu. Kirichenko I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation https://orcid.org/0009-0001-7755-3995
  • Philipp Yu. Kopylov World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First State Medical University, Moscow, Russian Federation https://orcid.org/0000-0001-5124-6383
  • Sergey S. Simakov Moscow Institute of Physics and Technology, Dolgoprudny, Russian Federation; Marchuk Institute of Numerical Mathematics of the Russian Academy of Sciences, Moscow, Russian Federation; I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation https://orcid.org/0000-0003-3406-9623

DOI:

https://doi.org/10.14529/jsfi240408

Keywords:

Unscented Kalman Filter, hemodynamic model, inverse problem, synthetic data base, virtual population, parallel computing, high-performance computing

Abstract

A computational framework for the generation of a synthetic pulse wave database is developed. This framework demonstrates the feasibility of generating large-scale, high-fidelity virtual patient cohorts for biomedical research. Pulse waves are generated using a one-dimensional hemodynamic model of the systemic circulation coupled with a model of the left heart. Each virtual patient in the database is defined by a set of physiological parameters, including systolic and diastolic blood pressure, stroke volume, and heart rate. The parameters are optimized to match the desired outputs by solving an inverse problem using the Unscented Kalman Filter (UKF). The UKF is selected for its ability to accurately and efficiently estimate parameters in nonlinear systems. The generation of a single virtual patient requires between one and several hundred iterations of the UKF, depending on the complexity of the desired outputs. To meet the computational demands of generating a database with thousands of virtual patients, a computing cluster with 24 CPU nodes, each containing 52 cores, is employed. Two levels of parallelization are implemented, resulting in a speedup factor of 8.

References

Abohtyra, R.M., Vincent, T.L.: Nonlinear parameter and state estimation approach in end-stage kidney disease patients. bioRxiv (2023). https://doi.org/10.1101/2022.04.02.486844

Allen, R.J., Rieger, T.R., Musante, C.J.: Efficient generation and selection of virtual populations in quantitative systems pharmacology models. CPT Pharmacometrics Syst Pharmacol 5(3), 140–146 (2016). https://doi.org/10.1002/psp4.12063

Arthurs, C., Xiao, N., Moireau, P., et al.: A flexible framework for sequential estimation of model parameters in computational hemodynamics. Advances in Modeling and Simulation in Engineering Sciences 7, 48 (2020). https://doi.org/10.1186/s40323-020-00186-x

Bertoglio, C., Moireau, P., Gerbeau, J.F.: Sequential parameter estimation for fluidstructure problems: Application to hemodynamics. International Journal for Numerical Methods in Biomedical Engineering 28(4), 434–455 (2012). https://doi.org/10.1002/cnm.1476

Boileau, E., Nithiarasu, P., Blanco, P.J., et al.: A benchmark study of numerical schemes for one-dimensional arterial blood flow modelling. International Journal for Numerical Methods in Biomedical Engineering 31(10) (2015). https://doi.org/10.1002/cnm.2732

Caiazzo, A., Caforio, F., Montecinos, G., et al.: Assessment of reduced-order unscented Kalman filter for parameter identification in 1-dimensional blood flow models using experimental data. International Journal for Numerical Methods in Biomedical Engineering 33(8), e2843 (2017). https://doi.org/10.1002/cnm.2843

Charlton, P.H., Harana, J.M., Vennin, S., et al.: Modeling arterial pulse waves in healthy aging: a database for in silico evaluation of hemodynamics and pulse wave indexes. American Journal of Physiology - Heart and Circulatory Physiology 317(5), H1062–H1085 (2019). https://doi.org/10.1152/ajpheart.00218.2019

Frazier, P.I.: A tutorial on bayesian optimization (2018)

Gamilov, T., Danilov, A., Chomakhidze, P., et al.: Computational analysis of hemodynamic indices in multivessel coronary artery disease in the presence of myocardial perfusion dysfunction. Computation 12(6) (2024). https://doi.org/10.3390/computation12060110

Garay, J., Dunstan, J., Uribe, S., Costabal, F.: Physics-informed neural networks for blood flow inverse problems (08 2023). https://doi.org/10.48550/arXiv.2308.00927

Hall, K.: Predicting metabolic adaptation, body weight change, and energy intake in humans. Am J Physiol Endocrinol Metab 298(3), E449–66 (2009). https://doi.org/10.1152/ajpendo.00559.2009

Hickson, S.S., Butlin, M., Graves, M., et al.: The relationship of age with regional aortic stiffness and diameter. JACC.Cardiovascular Imaging 3(12), 1247–1255 (2010). https://doi.org/10.1016/j.jcmg.2010.09.016

Jeanson, F., Farkouh, M.E., Godoy, L.C., et al.: Medical calculators derived synthetic cohorts: a novel method for generating synthetic patient data. Scientific Reports 14, 11437 (2024). https://doi.org/10.1038/s41598-024-61721-z

Khorchani, T., Gadiya, Y., Witt, G., et al.: SASC: A simple approach to synthetic cohorts for generating longitudinal observational patient cohorts from COVID-19 clinical data. Patterns (N Y) 3(4), 100453 (2022). https://doi.org/10.1016/j.patter.2022.100453

Korakianitis, T., Shi, Y.: A concentrated parameter model for the human cardiovascular system including heart valve dynamics and atrioventricular interaction. Medical Engineering & Physics 28(7), 613–628 (2006). https://doi.org/10.1016/j.medengphy.2005.10.004

Korakianitis, T., Shi, Y.: Numerical simulation of cardiovascular dynamics with healthy and diseased heart valves. Journal of Biomechanics 39(11), 1964–1982 (2006). https://doi.org/10.1016/j.jbiomech.2005.06.016

Moireau, P., Chapelle, D.: Reduced-order Unscented Kalman Filtering with application to parameter identification in large-dimensional systems. ESAIM: Control, Optimisation and Calculus of Variations 17(2), 380–405 (2011). https://doi.org/10.1051/cocv/2010006

Nolte, D., Bertoglio, C.: Inverse problems in blood flow modeling: A review. International Journal for Numerical Methods in Biomedical Engineering 38(8), e3613 (2022). https://doi.org/10.1002/cnm.3613

Rammah Abohtyra, T.V., Schneditz, D.: Magnitude and precision of absolute blood volume estimated during hemodialysis. Renal Failure 46(2), 2377781 (2024). https://doi.org/10.1080/0886022X.2024.2377781

Simakov, S., Gamilov, T., Soe, Y.N.: Computational study of blood flow in lower extremities under intense physical load. Russian Journal of Numerical Analysis and Mathematical Modelling 28(5), 485–504 (2013). https://doi.org/10.1515/rnam-2013-0027

Simakov, S., Timofeev, A., Gamilov, T., et al.: Analysis of the impact of left ventricular assist devices on the systemic circulation. Russian Journal of Numerical Analysis and Mathematical Modelling 35(5), 295–314 (2020). https://doi.org/10.1515/rnam-2020-0025

Stamler, J., Stamler, R., Neaton, J.D.: Blood pressure, systolic, and diastolic, and cardiovascular risks: Us population data. Archives of Internal Medicine 153, 598–615 (1993). https://doi.org/10.1001/archinte.153.5.598

Wan, E.A., Merwe, R.V.D.: The unscented Kalman filter for nonlinear estimation. In: Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium (Cat. No.00EX373). pp. 153–158. Lake Louise, AB, Canada (2000). https://doi.org/10.1109/ASSPCC.2000.882463

Wang, T., Jin, W., Liang, F., Alastruey, J.: Machine learning-based pulse wave analysis for early detection of abdominal aortic aneurysms using in silico pulse waves. Symmetry 13(5) (2021). https://doi.org/10.3390/sym13050804

Young, D.F., Tsai, F.Y.: Flow characteristics in models of arterial stenoses. I. Steady flow. Journal of Biomechanics 6(4), 395–410 (1973). https://doi.org/10.1016/0021-9290(73)90099-7

Young, D.F., Tsai, F.Y.: Flow characteristics in models of arterial stenoses. II. Unsteady flow. Journal of Biomechanics 6(5), 547–559 (1973). https://doi.org/10.1016/0021-9290(73)90012-2

Downloads

Published

2025-02-04

How to Cite

Rogov, A. V., Gamilov, T. M., Kirichenko, Y. Y., Kopylov, P. Y., & Simakov, S. S. (2025). HPC Optimization Algorithm for Assessing Haemodynamic Parameters in Synthetic Patient Cohorts. Supercomputing Frontiers and Innovations, 11(4), 92–106. https://doi.org/10.14529/jsfi240408