Numerical Modeling of Complex Geometry Thin Composite Structures under Vibrational Testing
DOI:
https://doi.org/10.14529/jsfi240402Keywords:
inverse problem, vibrational testing, automatic differentiation, openmp, jaxAbstract
This paper considers the inverse problem of material elastic properties identification from vibrational testing data. The present work aims to describe the approach that uses different kinds of optimizations to allow fast inverse problem solution using single modern multicore CPU or GPU. This includes choosing the model that allows to minimize the computational cost still reproducing the experimental results with good quality. The model for mid-surface symmetric isotropic and composite plates that are moving in vibrational stand is provided. The inverse problem is formulated in terms of the loss function minimization and the solution is computed with stochastic global optimization algorithm and second-order local optimization algorithm, which uses automatic differentiation of the forward problem solver to compute the derivatives. The paper describes parallelization for CPU and GPU and also the approach to reduce RAM usage to fit into single server RAM or single GPU VRAM. The numerical experiments presented in the paper demonstrate the solutions for complex rheologies and geometries: laminated composite plates, isotropic materials with frequency dependent elastic properties, perforated samples.
References
Aksenov, V., Vasyukov, A., Beklemysheva, K.: Acquiring elastic properties of thin composite structure from vibrational testing data. Journal of Inverse and Ill-posed Problems 32(3), 467–484 (2024). https://doi.org/10.1515/jiip-2022-0081
Ayyagari, S., Al-Haik, M.: Enhancing the viscoelastic performance of carbon fiber composites by incorporating CNTs and ZnO nanofillers. Applied Sciences 9(11), 2281 (2019). https://doi.org/10.3390/app9112281
Bradbury, J., Frostig, R., Hawkins, P., et al.: JAX: composable transformations of Python+NumPy programs. http://github.com/google/jax (2018), accessed: 2024-05-30
Chaigne, A., Lambourg, C.: Time-domain simulation of damped impacted plates. I. Theory and experiments. The Journal of the Acoustical Society of America 109(4), 1422–1432 (2001). https://doi.org/10.1121/1.1354200
Dagum, L., Menon, R.: OpenMP: an industry standard API for shared-memory programming. IEEE Computational Science and Engineering 5(1), 46–55 (1998). https://doi.org/10.1109/99.660313
Davis, T.A.: Algorithm 832: UMFPACK V4.3 – an unsymmetric-pattern multifrontal method. ACM Trans. Math. Softw. 30(2), 196–199 (2004). https://doi.org/10.1145/992200.992206
Hecht, F.: New development in FreeFem++. J. Numer. Math. 20(3-4), 251–266 (2012). https://doi.org/10.1515/jnum-2012-0013
Jones, R.M.: Mechanics of composite materials. Taylor & Francis, Philadelphia, PA (1999). https://doi.org/10.1201/9781498711067
Kim, S.Y., Lee, D.H.: Identification of fractional-derivative-model parameters of viscoelastic materials from measured FRFs. Journal of sound and vibration 324(3-5), 570–586 (2009). https://doi.org/10.1016/j.jsv.2009.02.040
Koblar, D., Bolteˇzar, M.: Evaluation of the frequency-dependent Youngs modulus and damping factor of rubber from experiment and their implementation in a finite-element analysis. Experimental Techniques 40, 235–244 (2016). https://doi.org/10.1007/s40799-016-0027-7
Lavrenkov, S., Vasyukov, A.: Experimental data compression for GPU-based solution of inverse coefficient problem for vibrational testing data. In: Balandin, D., Barkalov, K., Meyerov, I. (eds.) Mathematical Modeling and Supercomputer Technologies, MMST 2023, Nizhny Novgorod, Russia, November 13-14, 2023. Proceedings. Communications in Computer and Information Science, vol. 1914, pp. 302–309. Springer Nature Switzerland (2024). https://doi.org/10.1007/978-3-031-52470-7_24
Menard, K.P., Menard, N.: Dynamic Mechanical Analysis. CRC Press, Boca Raton, FL (2020). https://doi.org/10.1201/9780429190308
Morley, L.S.D.: The triangular equilibrium element in the solution of plate bending problems. Aeronautical Quarterly 19(2), 149–169 (1968). https://doi.org/10.1017/S0001925900004546
Nocedal, J., Wright, S.J.: Numerical Optimization. Springer New York, New York, NY (2006). https://doi.org/10.1007/978-0-387-40065-5
Paimushin, V.N., Firsov, V.A., Gazizullin, R.K., Shishkin, V.M.: Theoretical and experimental method for determining the frequency-dependent dynamic modulus of elasticity and damping characteristics of a titanium alloy OT-4. Journal of Physics: Conference Series 1158(3), 032044 (2019). https://doi.org/10.1088/1742-6596/1158/3/032044
Paimushin, V.N., Firsov, V.A., Gyunal, I., Shishkin, V.M.: Accounting for the frequency-dependent dynamic elastic modulus of duralumin in deformation problems. Journal of Applied Mechanics and Technical Physics 58, 517–528 (2017). https://doi.org/10.1134/S0021894417030178
Pritz, T.: Frequency dependences of complex moduli and complex Poisson’s ratio of real solid materials. Journal of Sound and Vibration 214(1), 83–104 (1998). https://doi.org/10.1006/jsvi.1998.1534
Rahmani, H., Najaf, S.H.M., Ashori, A., Golriz, M.: Elastic properties of carbon fibre-reinforced epoxy composites. Polymers and Polymer Composites 23(7), 475–482 (2015). https://doi.org/10.1177/096739111502300706
Reddy, J.N.: Mechanics of Laminated Composite Plates and Shells. CRC Press, Boca Raton, FL (2003). https://doi.org/10.1201/b12409
Reddy, J.N.: Theory and Analysis of Elastic Plates and Shells. CRC Press, Boca Raton, FL (2006). https://doi.org/10.1201/9780849384165
Ruzek, M., Guyader, J.L., Pezerat, C.: Experimental identification of the bending equation of beams from the vibration shape measurements. Journal of Sound and Vibration 332(16), 3623–3635 (2013). https://doi.org/10.1016/j.jsv.2013.02.017
Storn, R., Prince, K.: Differential evolution a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization 11(4), 341–359 (1997). https://doi.org/10.1023/A:1008202821328
Treviso, A., Van Genechten, B., Mundo, D., Tournour, M.: Damping in composite materials: Properties and models. Composites Part B: Engineering 78, 144–152 (2015). https://doi.org/10.1016/j.compositesb.2015.03.081
Tuan, P.H., Wen, C.P., Chiang, P.Y., et al.: Exploring the resonant vibration of thin plates: reconstruction of Chladni patterns and determination of resonant wave numbers. The Journal of the Acoustical Society of America 137(4), 2113–2123 (2015). https://doi.org/10.1121/1.4916704
Downloads
Published
How to Cite
Issue
License
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-Non Commercial 3.0 License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.