Study of the Effectiveness of Parallel Algorithms for Modeling the Dynamics of Collisionless Galactic Systems on GPUs
DOI:
https://doi.org/10.14529/jsfi240302Keywords:
N-body, GPUs, OpenMP-CUDA, GPUDirect, efficiencyAbstract
N-body model is a common research tool in galaxy physics and cosmology. The transition to the use of computing systems with GPUs can significantly improve the performance and quality of simulation results for gravitational systems. N-body – Particle-Particle algorithm is presented on a hybrid computing platform CPU + multi-GPUs. Using a direct method of calculating gravitational forces by summing the interactions of each particle with each other is resource-intensive, but provides the best accuracy in modeling dynamics at all scales. The main result is an analysis of the efficiency of parallel code depending on the number of GPUs and the choice of single and double precision floating-point arithmetics. The laws of conservation of energy, momentum and angular momentum are tested for a series of models, including major mergers of galaxies and the evolution of galactic stellar disc subject to the most severe gravitational instability. The general conclusion is that conservation laws are poorly implemented when using 4-byte numbers due to the accumulation of arithmetic errors. Calculations with 8-byte numbers ensure that the laws of conservation of momentum and angular momentum are satisfied to the limit of arithmetic accuracy without accumulating errors. The law of conservation of energy is determined primarily by the order of the numerical scheme for integrating the equations of motion. The additional reduction in the error of the conservation law of total energy due to the transition from 4-byte to 8-byte numbers is 1–2 orders of magnitude. Increasing the number of GPUs used helps improve the implementation of conservation laws due to a decrease in the number of particles per graphics processing unit.
References
Aarseth, S.J.: Gravitational N-Body Simulations: Tools and Algorithms. Cambridge University Press, Cambridge (2009)
Abraham, M.J., Murtola, T., Schulz, R., et al.: Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1-2, 19–25 (2015). https://doi.org/10.1016/j.softx.2015.06.001
Appleton, P.N., Emonts, B., Lisenfeld, U., et al.: The CO Emission in the Taffy Galaxies (UGC 12914/15) at 60 pc Resolution. I. The Battle for Star Formation in the Turbulent Taffy Bridge. Astrophysical Journal 931(2), 121 (2022). https://doi.org/10.3847/1538-4357/ac63b2
Belleman, R.G., Be dorf, J., Zwart, S.F.P.: High performance direct gravitational N-body simulations on graphics processing units II: An implementation in CUDA. New Astronomy 13, 103–112 (2008). https://doi.org/10.1016/j.newast.2007.07.004
Binney, J., Tremaine, S.: Galactic Dynamics. Princeton University Press, Princeton (2008)
Brasser, R., Grimm, S.L., Hatalova, P., Stadel, J.G.: Speeding up the GENGA N-body integrator on consumer-grade graphics cards. Astronomy & Astrophysics 678, A73 (2023). https://doi.org/10.1051/0004-6361/202347071
Bruno, D., Capitelli, M., Longo, S., et al.: Particle kinetic modelling of rarefied gases and plasmas. Plasma Sources Science and Technology 12(4), S89 (2003). https://doi.org/10.1088/0963-0252/12/4/024
Eckmann, J.P., Hassani, F.: The detection of relativistic corrections in cosmological N-body simulations. Celestial Mechanics and Dynamical Astronomy 132(2) (2020). https://doi.org/10.1007/s10569-019-9943-z
Fedorov, V.A., Kholina, E.G., Gudimchuk, N.B., Kovalenko, I.B.: High-performance computing of microtubule protofilament dynamics by means of all-atom molecular modeling. Supercomputing Frontiers and Innovations 10(4), 62–68 (2023). https://doi.org/10.14529/jsfi230406
Greengard, L.: The Numerical Solution of the N-Body Problem. Computers in Physics 4, 142–152 (1990). https://doi.org/10.1063/1.4822898
Grigoriev, F.V., Sulimov, V.B., Tikhonravov, A.V.: Study of thin optical films properties using high-performance atomistic simulation. Supercomputing Frontiers and Innovations 11(1), 97–108 (2024). https://doi.org/10.14529/jsfi240105
Hopkins, P.F., Nadler, E.O., Grudic, M.Y., et al.: Novel conservative methods for adaptive force softening in collisionless and multispecies N-body simulations. Monthly Notices of the Royal Astronomical Society 525(4), 5951–5977 (2023). https://doi.org/10.1093/mnras/stad2548
Ishchenko, M., Kovaleva, D.A., Berczik, P., et al.: Star-by-star dynamical evolution of the physical pair of the Collinder 135 and UBC 7 open clusters. Astronomy & Astrophysics 686, A225 (2024). https://doi.org/10.1051/0004-6361/202348978
Kamlah, A.W.H., Leveque, A., Spurzem, R., et al.: Preparing the next gravitational million-body simulations: evolution of single and binary stars in NBODY6++GPU, MOCCA, and MCLUSTER. Monthly Notices of the Royal Astronomical Society 511(3), 4060–4089. https://doi.org/10.1093/mnras/stab3748
Khan, R., Kandappan, V.A., Ambikasaran, S.: HODLRdD: A new black-box fast algorithm for N-body problems in d-dimensions with guaranteed error bounds: Applications to integral equations and support vector machines. Journal of Computational Physics 501, 112786 (2024). https://doi.org/10.1016/j.jcp.2024.112786
Khoperskov, A.V., Khrapov, S.S., Sirotin, D.S.: Formation of transitional cE/UCD galaxies through massive disc to dwarf galaxy mergers. Galaxies 12(1), 1 (2024). https://doi.org/10.3390/galaxies12010001
Khrapov, S.S., Khoperskov, A.V.: Retrograde infall of the intergalactic gas onto S-galaxy and activity of galactic nuclei. Open Astronomy 33(1), 20220231 (2024). https://doi.org/10.1515/astro-2022-0231
Khrapov, S.S., Khoperskov, A.V., Zaitseva, N.A., et al.: Formation of spiral dwarf galaxies: observational data and results of numerical simulation. St. Petersburg State Polytechnical University Journal. Physics and Mathematics 16(1.2), 395–402 (2023). https://doi.org/10.18721/JPM.161.260
Li, Y., Pinto, M.C., Holderied, F., et al.: Geometric Particle-In-Cell discretizations of a plasma hybrid model with kinetic ions and mass-less fluid electrons. Journal of Computational Physics 498, 112671 (2024). https://doi.org/10.1016/j.jcp.2023.112671
Liseykina, T.V., Dudnikova, G.I., Vshivkov, V.A., et al.: MHD-PIC Supercomputer Simulation of Plasma Injection into Open Magnetic Trap. Supercomputing Frontiers and Innovations 10(3), 11–17 (2024). https://doi.org/10.14529/jsfi230302
Navarro, C.A., Hitschfeld-Kahler, N., Mateu, L.: A Survey on Parallel Computing and its Applications in Data-Parallel Problems Using GPU Architectures. Communications in Computational Physics 15(2), 285–329 (2014). https://doi.org/10.4208/cicp.110113.010813a
Ong, B.W., Dhamankar, S.: Towards an Adaptive Treecode for N-body Problems 82, 72 (2020). https://doi.org/10.1007/s10915-020-01177-1
Rantala, A., Naab, T., Rizzuto, F.P., et al.: Bifrost: simulating compact subsystems in star clusters using a hierarchical fourth-order forward symplectic integrator code. Monthly Notices of the Royal Astronomical Society 522(4), 5180–5203 (2023). https://doi.org/10.1093/mnras/stad1360
Romeo, A.B., Horellou, C., Bergh, J.: N-body simulations with two-orders-of-magnitude higher performance using wavelets. Monthly Notice of the Royal Astronomical Society 342(2), 337–344 (2003). https://doi.org/10.1046/j.1365-8711.2003.06549.x
Smirnov, A.A., Sotnikova, N.Y., Koshkin, A.A.: Simulations of slow bars in anisotropic disk systems. Astronomy Letters 43(2), 61–74 (2017). https://doi.org/10.1134/S1063773717020062
Voevodin, V.V., Chulkevich, R.A., Kostenetskiy, P.S., et al.: Administration, Monitoring and Analysis of Supercomputers in Russia: a Survey of 10 HPC Centers. Supercomputing Frontiers and Innovations 8(3), 82–103 (2021). https://doi.org/10.14529/jsfi210305
Yokota, R., Barba, L.A.: Treecode and Fast Multipole Method for N-Body Simulation with CUDA. Springer (2011). https://doi.org/10.1016/B978-0-12-384988-5.00009-7
Zhang, H., Si, S., Hsieh, C.J.: GPU-acceleration for large-scale tree boosting. Eprint arXiv 1706.08359 (2017). https://doi.org/10.48550/arXiv.1706.08359
Zhou, K., Liu, B.: Molecular Dynamics Simulation: Fundamentals and Applications. Elsevier, Amsterdam (2022)
Downloads
Published
How to Cite
Issue
License
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-Non Commercial 3.0 License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.