Modeling the Recovery of the Earth's Gravitational Field from Satellite Measurements Using Parallel Computations


  • Aleksandr S. Zhamkov Sternberg Astronomical Institute, M.V. Lomonosov Moscow State University, Moscow, Russian Federation
  • Vadim K. Milyukov Sternberg Astronomical Institute, M.V. Lomonosov Moscow State University, Moscow, Russian Federation
  • Sergey V. Ayukov Sternberg Astronomical Institute, M.V. Lomonosov Moscow State University, Moscow, Russian Federation
  • Aleksandr I. Filetkin Sternberg Astronomical Institute, M.V. Lomonosov Moscow State University, Moscow, Russian Federation
  • Igor Yu. Vlasov Sternberg Astronomical Institute, M.V. Lomonosov Moscow State University, Moscow, Russian Federation
  • Vladimir E. Zharov Sternberg Astronomical Institute, M.V. Lomonosov Moscow State University, Moscow, Russian Federation



Earth's gravity field, space gravimetry, gravity field recovery, parallel computations


Global models of the Earth’s gravitational field, built from data collected by space geodetic missions, play a very important role in studying global processes across Earth’s various geospheres. The paper is devoted to the development of a program for the recovery of the Earth’s gravity field parameters. This program will enable in the future to process the results of measurements from the Russian satellite constellation and to build gravity field models of different spatial and temporal resolution. The recovery of the gravity field from satellite measurements is a rather resourceconsuming computational process, and parallel computations are crucial for its optimization. This paper describes the mathematical model, the algorithm and the results of parallelization, as well as presents the results of the gravity field recovery using parallel computations working with real measurement data. The static model of the Earth’s gravitational field MSU2024-1 was built using the GRACE-FO mission data for the whole year 2021. The model is decomposed to degrees and orders of n = m = 120 and presented in terms of geoid heights. We also compared the EGF recovery on a monthly interval using the GRACE-FO data obtained in this work with the CSR, GFZ, and JPL temporal models built at other world centers.


Abich, K., Abramovici, A., Amparan, B., et al.: In-Orbit Performance of the GRACE Follow-on Laser Ranging Interferometer. Phys. Rev. Lett. 123, 031101 (Jul 2019).

Albertella, A., Migliaccio, F., Sans, F.: GOCE: The Earth Gravity Field by Space Gradiometry. Celestial Mechanics and Dynamical Astronomy 83, 1–15 (05 2002).

Anderson, E., Bai, Z., Bischof, C., Blackford, S., et al.: LAPACK Users’ Guide. Society for Industrial and Applied Mathematics, Philadelphia, PA, third edn. (1999)

AVISO: Global tide FES 2014 Description.

Belikov, M.V., Taibatorov, K.A.: Efficient algorithm for calculating the Earth’s gravitational potential and its first derivatives for solving satellite problems. Kinematics and physics of celestial bodies (in Russian) 6(2), 24–32 (1990)

Carr`ere, L., Lyard, F.H., Cancet, M., Guillot, A.: FES 2014, a new tidal model on the global ocean with enhanced accuracy in shallow seas and in the Arctic region. In: Geophysical Research Abstracts (2015),

Chandra, R., Dagum, L., Kohr, D., et al.: Parallel programming in OpenMP. Morgan Kaufmann (2001)

Ince, E.S., Barthelmes, F., Reißland, S., et al.: ICGEM – 15 years of successful collection and distribution of global gravitational models, associated services, and future plans. Earth System Science Data 11(2), 647–674 (2019).

Kornfeld, R.P., Arnold, B.W., Gross, M.A., et al.: GRACE-FO: The Gravity Recovery and Climate Experiment Follow-On Mission. Journal of Spacecraft and Rockets 56(3), 931–951 (2019).

Kvas, A., Behzadpour, S., Ellmer, M., et al.: ITSG-Grace2018: Overview and Evaluation of a New GRACE-Only Gravity Field Time Series. Journal of Geophysical Research: Solid Earth 124(8), 9332–9344 (2019).

Landerer, F.W., Flechtner, F.M., Save, H., et al.: Extending the Global Mass Change Data Record: GRACE Follow-On Instrument and Science Data Performance. Geophysical Research Letters 47(12), e2020GL088306 (2020).

Luo, J., Chen, L.S., Duan, H.Z., et al.: TianQin: a space-borne gravitational wave detector. Classical and Quantum Gravity 33(3), 035010 (jan 2016).

Lyard, F.H., Allain, D.J., Cancet, M., et al.: FES2014 global ocean tide atlas: design and performance. Ocean Science 17(3), 615–649 (2021).

Mayer-Gurr, T., Eicker, A., Ilk, K.H.: ITG-Grace03 Gravity Field Model. (2007)

Mayer-Gurr, T., Kurtenbach, E., Eicker, A.: ITG-Grace2010 Gravity Field Model. (2010)

Mayer-Gurr, T., Behzadpur, S., Ellmer, M., et al.: ITSG-Grace2018 - Monthly, Daily and Static Gravity Field Solutions from GRACE. GFZ Data Services (2018).

Petit, G., Luzum, B.: IERS conventions (2010). Tech. Rep. DTIC Document 36, 180 (01 2010),

Reigber, C., Lhr, H., Schwintzer, P.: CHAMP mission status. Advances in Space Research 30(2), 129–134 (2002).

Reigber, C., Balmino, G., Schwintzer, P., et al.: A high-quality global gravity field model from CHAMP GPS tracking data and accelerometry (EIGEN-1S). Geophysical Research Letters 29(14), 37-1–37-4 (2002).

Tapley, B.D., Bettadpur, S., Watkins, M., Reigber, C.: The gravity recovery and climate experiment: Mission overview and early results. Geophysical Research Letters 31(9) (2004).

Tapley, B., Reigber, C.: The GRACE Mission: Status And Future Plans. AGU Fall Meeting Abstracts -1, 02 (11 2001)

Watkins, M.M., Bettadpur, S.V.: The GRACE Mission: The Challenges of Using Micron-Level Satellite-to-Satellite Ranging to Measure the Earth’s Gravity Field. In: Physics, Environmental Science (2000),

Zhamkov, A., Milyukov, V.: Next Generation Gravity Missions to Address the Challenges of High-Precision Space Gravimetry. Izvestiya, Physics of the Solid Earth 57, 266–278 (03 2021).

Zhao, Y., Li, J., Xu, X., et al.: Determination of static gravity field model by using satellite data of GOCE and GRACE. Chinese Journal of Geophysics (in Chinese) 66(6), 2322–2336 (2023).

Zhou, H., Wang, P., Pail, R., et al.: Assessment of a near-polar pair mission for detecting the Earth’s temporal gravity field. Geophysical Journal International 234(2), 852–869 (03 2023).




How to Cite

Zhamkov, A. S., Milyukov, V. K., Ayukov, S. V., Filetkin, A. I., Vlasov, I. Y., & Zharov, V. E. (2024). Modeling the Recovery of the Earth’s Gravitational Field from Satellite Measurements Using Parallel Computations. Supercomputing Frontiers and Innovations, 11(1), 67–80.