High-Performance Computing of Microtubule Protofilament Dynamics by Means of All-Atom Molecular Modeling





molecular dynamics, tubulin, microtubule, CPU, GPU, computing performance


Molecular dynamics (MD) simulation is a useful tool for understanding biological systems at the level of individual molecules and atoms. However, studying such massive biological systems as microtubules and even their constituent components (tubulin protofilaments) takes an enormous amount of processing power. In this paper, using MD calculations of individual microtubule protofilaments, we demonstrate how computational architecture and calculation options affect computing performance. When using the “GPU-resident” option in the GROMACS MD package, you may gain a fantastic computation acceleration by using the newest high-end graphics processing unit (GPU), even in conjunction with a rather outdated central processing unit (CPU). For instance, MD of the biomolecular system containing a tubulin protofilament in an explicitly specified solvent consisting of more than 300 thousand atoms can be investigated with performance of 171 ns/day at time step 2 fs when using a single-node computer with the latest CPU and GPU generation architecture (Intel Core i9-13900K and Nvidia RTX4090 respectively). Nevertheless, high performance computing platforms (e.g., the volta2 partition of "Lomonosov-2" supercomputer) can be very suitable for simulation experiments with a large number of independent calculations, such as the umbrella sampling technique. Obtained results allow one to choose the best price-performance solution to study molecular dynamics of biological systems.


Abraham, M., Alekseenko, A., Bergh, C., et al.: Gromacs 2023.2 manual (Jul 2023). https://doi.org/10.5281/zenodo.8134388

Abraham, M.J., Murtola, T., Schulz, R., et al.: Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1, 19–25 (2015). https://doi.org/10.1016/j.softx.2015.06.001

Ewald, P.P.: Die berechnung optischer und elektrostatischer gitterpotentiale. Annalen der physik 369(3), 253–287 (1921). https://doi.org/10.1002/andp.19213690304

Gudimchuk, N.B., McIntosh, J.R.: Regulation of microtubule dynamics, mechanics and function through the growing tip. Nature reviews Molecular cell biology 22(12), 777–795 (2021). https://doi.org/10.1038/s41580-021-00399-x

Kellogg, E.H., Hejab, N.M., Howes, S., et al.: Insights into the distinct mechanisms of action of taxane and non-taxane microtubule stabilizers from cryo-em structures. Journal of molecular biology 429(5), 633–646 (2017). https://doi.org/10.1016/j.jmb.2017.01.001

MacKerell Jr, A.D., Feig, M., Brooks, C.L.: Improved treatment of the protein backbone in empirical force fields. Journal of the American Chemical Society 126(3), 698–699 (2004). https://doi.org/10.1021/ja036959e




How to Cite

Fedorov, V. A., Kholina, E. G., Gudimchuk, N. B., & Kovalenko, I. B. . (2024). High-Performance Computing of Microtubule Protofilament Dynamics by Means of All-Atom Molecular Modeling. Supercomputing Frontiers and Innovations, 10(4), 62–68. https://doi.org/10.14529/jsfi230406