The High Performance Interconnect Architecture for Supercomputers

Authors

  • Alexey S. Simonov Federal State Unitary Enterprise “Russian Federal Nuclear Center-Zababakhin All – Russia Research Institute of Technical Physics”, Snezhinsk, Russia; Federal State Budgetary Educational Institution of Higher Education Moscow Aviation Institute (National Research University), Moscow, Russia
  • Alexander S. Semenov Federal State Unitary Enterprise “Russian Federal Nuclear Center-Zababakhin All – Russia Research Institute of Technical Physics”, Snezhinsk, Russia https://orcid.org/0000-0003-4878-6287
  • Andrey N. Shcherbak Federal State Unitary Enterprise “Russian Federal Nuclear Center-Zababakhin All – Russia Research Institute of Technical Physics”, Snezhinsk, Russia
  • Ivan A. Zhabin Federal State Unitary Enterprise “Russian Federal Nuclear Center-Zababakhin All – Russia Research Institute of Technical Physics”, Snezhinsk, Russia

DOI:

https://doi.org/10.14529/jsfi230208

Keywords:

interconnect, high performance computing, supercomputer, Angara

Abstract

In this paper, we introduce the design of an advanced high-performance interconnect architecture for supercomputers. In the first part of the paper, we consider the first generation high-performance Angara interconnect (Angara G1). The Angara interconnect is based on the router ASIC, which supports a 4D torus topology, a deterministic and an adaptive routing, and has the hardware support of the RDMA technology. The interface with a processor unit is PCI Express. The Angara G1 interconnect has an extremely low communication latency of 850 ns using the MPI library, as well as a link bandwidth of 75 Gbps. In the paper, we present the scalability performance results of the considered application problems on the supercomputers equipped with the Angara G1 interconnect. In the second part of the paper, using research results and experience we present the architecture of the advanced interconnect for supercomputers (G2). The G2 architecture supports 6D torus topology, the advanced deterministic and zone adaptive routing algorithms, and a low-level interconnect operations including acknowledgments and notifications. G2 includes support for exceptions, performance counters, and SR-IOV virtualization. A G2 hardware is planned in the form factor of a 32-port switch with the QSFP-DD connectors and a two-port low profile PCI Express adapter. The switches can be combined to 4D torus topology. We show the performance evaluation of an experimental FPGA prototype, which confirm the possibility of implementing the proposed advanced high performance interconnect architecture.

References

Abts, D.: The Cray XT4 and Seastar 3D torus interconnect (2011)

Adiga, N.R., Blumrich, M.A., Chen, D., et al.: Blue Gene/L torus interconnection network. IBM Journal of Research and Development 49(2.3), 265–276 (2005). https://doi.org/10.1147/rd.492.0265

Agarkov, A., Ismagilov, T., Makagon, D., et al.: Performance evaluation of the Angara interconnect. In: Proc. Int. Conf. on Russian Supercomputing Days, Moscow, Russia. pp. 626–639 (2016). https://russianscdays.org/files/pdf16/626.pdf, accessed: 2023-05-15 (in Russian)

Akimov, V., Silaev, D., Aksenov, A., et al.: FlowVision scalability on supercomputers with Angara interconnect. Lobachevskii Journal of Mathematics 39, 1159–1169 (2018). https://doi.org/10.1134/S1995080218090081

Alam, S.R., Kuehn, J.A., Barrett, R.F., et al.: Cray XT4: an early evaluation for petascale scientific simulation. In: Proceedings of the 2007 ACM/IEEE Conference on Supercomputing. pp. 1–12 (2007). https://doi.org/10.1145/1362622.1362675

Almasi, G., Asaad, S., Bellofatto, R.E., et al.: Overview of the IBM Blue Gene/P project. IBM Journal of Research and Development 52(1-2), 199–220 (2008). https://doi.org/10.1147/rd.521.0199

Alverson, R., Roweth, D., Kaplan, L.: The Gemini system interconnect. In: 2010 18th IEEE Symposium on High Performance Interconnects. pp. 83–87. IEEE (2010). https://doi.org/10.1109/HOTI.2010.23

Chen, D., Eisley, N., Heidelberger, P., et al.: The IBM Blue Gene/Q interconnection fabric. IEEE Micro 32(1), 32–43 (2011). https://doi.org/10.1109/MM.2011.96

Dally, W.J., Seitz, C.L.: The torus routing chip. Distributed computing 1(4), 187–196 (1986). https://doi.org/10.1007/BF01660031

Duato, J., Yalamanchili, S., Ni, L.: Interconnection networks. Morgan Kaufmann (2003)

Gara, A., Blumrich, M.A., Chen, D., et al.: Overview of the Blue Gene/L system architecture. IBM Journal of research and development 49(2.3), 195–212 (2005). https://doi.org/10.1147/rd.492.0195

Mukosey, A., Simonov, A., Semenov, A.: Extended routing table generation algorithm for the Angara interconnect. In: Russian Supercomputing Days. pp. 573–583. Springer (2019). https://doi.org/10.1007/978-3-030-36592-9_47

Nikolskiy, V., Pavlov, D., Stegailov, V.: State-of-the-art molecular dynamics packages for GPU computations: Performance, scalability and limitations. In: Russian Supercomputing Days. pp. 342–355. Springer (2022). https://doi.org/10.1007/978-3-031-22941-1_25

Ostroumova, G., Orekhov, N., Stegailov, V.: Reactive molecular-dynamics study of onion-like carbon nanoparticle formation. Diamond and Related Materials 94, 14–20 (2019). https://doi.org/10.1016/j.diamond.2019.01.019

Polyakov, S., Podryga, V., Puzyrkov, D.: High performance computing in multiscale problems of gas dynamics. Lobachevskii Journal of Mathematics 39(9), 1239–1250 (2018). https://doi.org/10.1134/S1995080218090160

Puente, V., Izu, C., Beivide, R., et al.: The adaptive bubble router. Journal of Parallel and Distributed Computing 61(9), 1180–1208 (2001). https://doi.org/10.1006/jpdc.2001.1746

Pugachev, L., Umarov, I., Popov, V., et al.: PIConGPU on Desmos supercomputer: GPU acceleration, scalability and storage bottleneck. In: Russian Supercomputing Days. pp. 290–302. Springer (2022). https://doi.org/10.1007/978-3-031-22941-1_21

Scott, S.L., et al.: The Cray T3E network: adaptive routing in a high performance 3D torus (1996)

Shamsutdinov, A., Khalilov, M., Ismagilov, T., et al.: Performance of supercomputers based on Angara interconnect and novel AMD CPUs/GPUs. In: International Conference on Mathematical Modeling and Supercomputer Technologies. pp. 401–416. Springer (2020). https://doi.org/10.1007/978-3-030-78759-2_33

Simonov, A.: Simulation model of high-speed Angara communication network with kd-tor topology. Trudy MAI (109), 22–22 (2019). https://doi.org/10.34759/trd-2019-109-22, (in Russian)

Simonov, A., Makagon, D., Zhabin, I., et al.: The first generation of Angara high-speed interconnect. Science Technologies 15(1), 21–28 (2014) (in Russian)

Stegailov, V., Dlinnova, E., Ismagilov, T., et al.: Angara interconnect makes GPU-based Desmos supercomputer an efficient tool for molecular dynamics calculations. The International Journal of High Performance Computing Applications 33(3) (2019). https://doi.org/10.1177/1094342019826667

Stegailov, V., Smirnov, G., Vecher, V.: VASP hits the memory wall: Processors efficiency comparison. Concurrency and Computation: Practice and Experience, p. e5136 (2019). https://doi.org/10.1002/cpe.5136

Tolstykh, M., Goyman, G., Fadeev, R., Shashkin, V.: Structure and algorithms of SLAV atmosphere model parallel program complex. Lobachevskii Journal of Mathematics 39(4), 587–595 (2018). https://doi.org/10.1134/S199508021804014

Downloads

Published

2023-08-28

How to Cite

Simonov, A. S., Semenov, A. S., Shcherbak, A. N., & Zhabin, I. A. (2023). The High Performance Interconnect Architecture for Supercomputers. Supercomputing Frontiers and Innovations, 10(2), 127–136. https://doi.org/10.14529/jsfi230208