Elements of a Digital Photonic Computer

Authors

  • Dmitriy A. Sorokin Supercomputers and Neurocomputers Research Center, Taganrog, Russia
  • Aleksey V. Kasarkin Supercomputers and Neurocomputers Research Center, Taganrog, Russia
  • Aleksandr V. Podoprigora Supercomputers and Neurocomputers Research Center, Taganrog, Russia

DOI:

https://doi.org/10.14529/jsfi230205

Keywords:

digital photonic computer, architecture of DPC, data flow synchronization, paradigm of structural calculations

Abstract

The paper covers a variant of architecture development of digital photonic computers. Along with quantum computers, they are one of the possible ways to overcome the crisis of computing performance. The data processing implementation in digital photonic computers at terahertz frequencies potentially provides the performance exceeding by two or more decimal orders of magnitude the performance of the most modern computing systems. The elements of digital photonic computer architecture described in the paper are focused on solving a wide class of computationally time-consuming problems in the paradigm of structural calculations. The problems of ensuring the performance and accuracy at solving problems on the developed digital photonic computer, as the processing rate should correspond to the data receipt rate, are considered. The synchronization and switching subsystem was designed and analyzed by the authors. At the synthesis (programming) stage, it forms a computational structure and provides both static and dynamic coordination of data flows in calculations.

References

Chernyak, L.: Amdahl’s Law and the future of multicore processors. Open systems. DBMS 04 (2009). https://www.osp.ru/os/2009/04/9288815/, accessed: 2023-05-02

Moore, G.: No Exponential is Forever: But “Forever” Can Be Delayed! In: International SolidState Circuits Conference (ISSCC), 2003. Session 1. Plenary 1.1. Vol. 91, no. 11, pp. 1934–1939. IEEE (2003). https://doi.org/10.1109/ISSCC.2003.1234194.

Benioff, P.: Quantum mechanical hamiltonian models of turing machines. Journal of Statistical Physics 29(3), 515–546 (1982). https://doi.org/10.1007/BF01342185

D-Wave Announces General Availability of First Quantum Computer Built for Business. https://www.dwavesys.com/company/newsroom/press-release/d-wave-announces-general-availability-of-first-quantum-computer-built-for-business/, accessed: 2023-05-02

Dalzell, A.M., Harrow, A.W., Koh, D.E., Placa, R.L.L.: How many qubits are needed for quantum computational supremacy? Quantum 4, 264 (2020). https://doi.org/10.22331/q-2020-05-11-264

Shubin, V.V., Balashov, K.I.: Fully optical logical basis based on a microring resonator. Patent No. 2677119. The Federal State Unitary Enterprise “Russian Federal Nuclear Center - All-Russian Research Institute of Experimental Physics” (FSUE RFNC-VNIIEF), Rosatom VNIEF

Tamer, A.: Moniem All-optical XNOR gate based on 2D photonic-crystal ring resonators. Quantum Electronics 47(2), 169 (2017). https://doi.org/10.1070/QEL16279

Next generation photonic memory devices are “light-written”, ultrafast and energy efficient (2019). https://www.tue.nl/en/news/news-overview/10-01-2019-next-generation-photonic-memory-devices-are-light-written-ultrafast-and-energy-efficient/, accessed: 2023-05-02

Using light for next-generation data storage (2018). https://phys.org/news/2018-06-next-generation-storage.html, accessed: 2023-05-02

Zhang, Q., Xia, Z., Cheng, Y.B., et al.: High-capacity optical long data memory based on enhanced Young’s modulus in nanoplasmonic hybrid glass composites. Nat Commun 9, 1183 (2018). https://doi.org/10.1038/s41467-018-03589-y

Gordeev, A., Voitovich, V., Svyatets, G.: Promising photonic and phonon domestic technologies for terahertz microprocessors, RAM and interface with ultralow power consumption. Modern Electronics 2(22). https://www.soel.ru/online/perspektivnye-fotonnye-i-fononnye-otechestvennye-tekhnologii-dlya-teragertsovykh-mikroprotsessorov-o/, accessed: 2023-05-02

Starikov, R.S.: Optical image correlators: History and current state. In: XVI International Conference on Holography and Applied Optical Technologies, HOLOEXPO 2019. Abstracts. pp. 82–90. Bauman Moscow State Technical University, Moscow (2019)

Lugt, A.V.: Signal detection by complex spatial filtering. IEEE Transactions on Information Theory 10(2), 139–145 (1964). https://doi.org/10.1109/TIT.1964.1053650

Arsenault, H.H., Sheng, Y.: An Introduction to Optics in Computers. Volume 8 of Tutorial texts in optical engineering. SPIE Press, Washington (1992). 126 p.

Stone, R.V., Zeise, F.F., Guilfoylev, P.S.: DOC II 32-bit digital optical computer: optoelectronic hardware and software. In: Optical Enhancements to Computing Technology. Proceedings, vol. 1563. SPIE (1991). https://doi.org/10.1117/12.49689

Barhen, J., Kotas, C., Humble, T.S., et al.: High performance FFT on multicore processors. In: 2010 Proceedings of the Fifth International Conference on Cognitive Radio Oriented Wireless Networks and Communications, (CROWNCOM). pp. 1–6. IEEE (2010). https://doi.org/10.4108/ICST.CROWNCOM2010.9283

Stepanenko, S.A.: Interference logic elements. Reports of the Russian Academy of Sciences. Mathematics, Computer Science, Management Processes 493, 68–73 (2020)

Kuznetsova, O.V., Speransky, V.S.: Solving optical signal processing problems without optoelectronic conversion. Telecommunications and Transport. T-Comm. 8, 35–39 (2012)

Wu, X., Tian, J., Yang, R.: A Type of All-Optical Logic Gate Base on Graphene Surface Plasmon Polaritons. Optics Communications 403, 185–192 (2017). http://doi.org/10.1016/j.optcom.2017.07.041

Papaioannou, M., Plum, E., Valente, J., et al.: All-Optical Multichannel Logic Based on Coherent Perfect Absorption in a Plasmonic Metamaterial. APL PHOTONICS 1, 090801 (2016). https://doi.org/10.1063/1.4966269

Hussein, M.E., Ali, T.A., Rafab, N.H.: New Design of a Complete Set of Photonic Crystals Logic Gates. Optics Communications 411, 175–181 (2018). https://doi.org/10.1016/j.optcom.2017.11.043

Stepanenko, S.A.: Photonic computing machine. Principles of implementation. Parameter estimates. Reports of the Academy of Sciences 476(4), 389–394 (2017). https://doi.org/10.1134/S1064562417050234

Levin, I.I., Sorokin, D.A., Kasatkin, A.V.: Perspective architecture of a digital photonic computer. Izvestiya of the SFeDu. Technical sciences 6(230), 61–71 (2022). https://doi.org/10.18522/2311-3103-2022-6-61-71

Besedin, I.V., Dmitrenko, N.N., Kalyaev, I.A., et al.: A family of basic modules for building reconfigurable computing systems with a structural and procedural organization of computing. In: Scientific service on the Internet. Proceedings of the All-Russian Conference. pp. 47–49. MSU, RSU, IVT RAS (2006)

Kalyaev, I.A., Levin, I.I.: Reconfigurable multiconveyor computing systems for solving streaming problems. Information technologies and computing systems 2, 12–22 (2011)

Kalyaev, I.A., Levin, I.I., Semernikov, E.A., Shmoilov, V.I.: Reconfigurable Multipipeline Computing Structures. Nova Science Publishers, Inc., New York, USA (2012). 345 p.

Dordopulo, A.I., Sorokin, D.A.: Methodology for reducing hardware costs in complex systems at solving problems with significantly variable intensity of data flows. Izvestiya SFeDu. Technical sciences 4(129), 194–199 (2012)

Supercomputers and Neurocomputers Research Center. Tertsius-2. http://superevm.ru/index.php?page=tertsius-2, accessed: 2023-05-02

Shpakovsky, G.I., Verkhoturov, A.E.: Algorithm of parallel SLOUGH solution by Gauss-Seidel method. Bulletin of BSU 1(1), 44–48 (2007)

Kalyaev, I.A., Levin, I.I.: Reconfigurable computing systems with high real performance. In: International Scientific Conference, Parallel Computational Technologies, PaCT-2009. Proceedings. SUSU Publishing House, Chelyabinsk (2009)

Downloads

Published

2023-08-28

How to Cite

Sorokin, D. A., Kasarkin, A. V., & Podoprigora, A. V. (2023). Elements of a Digital Photonic Computer. Supercomputing Frontiers and Innovations, 10(2), 62–76. https://doi.org/10.14529/jsfi230205