Penalized Wall Function Method for Turbulent Flow Modeling




turbulence modeling, wall function, wall-bounded compressible turbulent flow, volume penalization


A novel penalized wall function method for simulations of wall-bounded compressible turbulent flows is proposed. The new approach is based on the Reynolds-averaged Navier–Stokes (RANS) equations to model the outer region of the turbulent boundary layer, while the inner part is approximated by the equilibrium wall function model. The differential formulation to match the external and the wall function solutions is reformulated in a form of the generalized characteristic-based volume penalization method to model the transfer of the shear stress from the outer region of the boundary layer to the wall and to impose the wall-stress boundary conditions on the RANS solution. The exchange location is specified implicitly through a localized source term in the boundary layer equation, written as a function of the normalized distance from the wall. The wall-stress condition is determined by solving an auxiliary equation for the wall-stress, ensuring the correct matching of the RANS and the wall function solutions at the exchange layer. The proposed method noticeably reduces the near-wall mesh resolution requirements without significant modification of the RANS solver and removes the ill-defined explicit matching procedure, commonly used by traditional wall function-based methods. The penalized wall function approach is implemented using the vertex-centered control volume method on unstructured computational grids. The effectiveness of the developed penalized wall function method is demonstrated for twodimensional bump-in-channel flow for the Spalart–Allmaras turbulence model.


NASA Langley research center turbulence modeling resource,, accessed: 2022-11-07

Abalakin, I.V., Vasilyev, O.V., Zhdanova, N.S., Kozubskaya, T.K.: Characteristic based volume penalization method for numerical simulation of compressible flows on unstructured meshes. Comput. Math. and Math. Phys. 61(8), 1315–1329 (2021).

Bakhvalov, P., Abalakin, I., Kozubskaya, T.: Edge-based reconstruction schemes for unstructured tetrahedral meshes. Int. J. Numer. Meth. Fluids 81(6), 331–356 (2016).

Bardina, J., Huang, P., Coakley, T., et al.: Turbulence modeling validation. In: 28th Fluid dynamics conference. p. 2121 (1997)

Beaugendre, H., Morency, F.: Penalization of the Spalart–Allmaras turbulence model without and with a wall function: Methodology for a vortex in cell scheme. Computers & Fluids 170, 313–323 (Jul 2018),

Beaugendre, H., Morency, F.: Penalization of the Spalart–Allmaras turbulence model without and with a wall function: Methodology for a vortex in cell scheme. Computers & Fluids 170, 313–323 (2018).

Bodart, J., Larsson, J.: Wall-modeled large eddy simulation in complex geometries with application to high-lift devices. Annual Research Briefs, Center for Turbulence Research, Stanford University pp. 37–48 (2011)

Brown-Dymkoski, E., Kasimov, N., Vasilyev, O.V.: A characteristic based volume penalization method for general evolution problems applied to compressible viscous flows. J. Comp. Phys. 262, 344–357 (2014).

Brown-Dymkoski, E., Kasimov, N., Vasilyev, O.V.: A characteristic-based volume penalization method for arbitrary mach flows around solid obstacles. In: Fröhlich, J., Kuerten, H., Geurts, B.J., Armenio, V. (eds.) Direct and Large-Eddy Simulation IX. pp. 109–115. Springer, Cham (2015).

Cai, S.G., Degrigny, J., Boussuge, J.F., Sagaut, P.: Coupling of turbulence wall models and immersed boundaries on cartesian grids. J. Comp. Phys. 429, 109995 (2021).

Craft, T., Gant, S., Gerasimov, A., et al.: Development and application of wall-function treatments for turbulent forced and mixed convection flows. Fluid Dyn. Res. 38(2), 127–144 (2006).

Dhamankar, N., Blaisdell, G., Lyrintzis, A.: Implementation of a wall-modeled sharp immersed boundary method in a high-order large eddy simulation tool for jet aeroacoustics. In: 54th AIAA Aerospace Sciences Meeting (01 2016).

Duben, A.P., Abalakin, I.V., Tsvetkova, V.O.: On boundary conditions on solid walls in viscous flow problems. Math. Models and Comput. Simul. 13(4), 591–603 (2021).

Durbin, P.A., Reif, B.A.P.: Statistical Theory and Modeling for Turbulent Flows. Wiley (2001)

Froehlich, J., von Terzi, D.: Hybrid LES/RANS methods for the simulation of turbulent flows. Progress in Aerospace Sciences 44(5), 349–377 (2008).

Gatski, T.B., Hussaini, M.Y., Lumley, J.L.: Simulation and Modeling of Turbulent Flows. Oxford (1996)

Gorobets, A., Bakhvalov, P.: Heterogeneous CPU+GPU parallelization for high-accuracy scale-resolving simulations of compressible turbulent flows on hybrid supercomputers. Comput. Phys. Commun. 271, 108231 (2022).

Gorobets, A., Duben, A.: Technology for supercomputer simulation of turbulent flows in the good new days of exascale computing. Supercomput. Front. Innov. 8(4), 4–10 (Feb 2021).

Kasimov, N., Dymkoski, E., De Stefano, G., Vasilyev, O.V.: Galilean-invariant characteristic-based volume penalization method for supersonic flows with moving boundaries. Fluids 6(8) (2021).

Kawai, S., Larsson, J.: Wall-modeling in large eddy simulation: length scales, grid resolution, and accuracy. Phys. Fluids. 24(1), 015105 (2012).

Kawai, S., Larsson, J.: Dynamic non-equilibrium wall-modeling for large eddy simulation at high Reynolds numbers. Phys. Fluids. 25(1), 015105 (2013).

Liu, Q., Vasilyev, O.V.: Hybrid adaptive wavelet collocation – Brinkman penalization method for unsteady RANS simulations of compressible flow around bluff bodies. In: 36th AIAA Fluid Dynamics Conference and Exhibit, San Francisco, California, USA, June 5–8, 2006 (2006).

Liu, Q., Vasilyev, O.V.: A Brinkman penalization method for compressible flows in complex geometries. J. Comp. Phys. 227(2), 946–966 (2007).

Moin, P., Mahesh, K.: Direct numerical simulation: A tool in turbulence research. Annual Rev. Fluid Mech. 30, 539–578 (1998).

Nichols, R.H., Nelson, C.C.: Wall function boundary conditions including heat transfer and compressibility. AIAA Journal 42(6), 1107–1114 (2004).

Park, G.I., Moin, P.: An improved dynamic non-equilibrium wall-model for large eddy simulation. Phys. Fluids. 26(1), 37–48 (2014).

Patankar, S.V., Spalding, D.B.: Heat and Mass Transfer in Boundary Layers. Morgan-Grampia (1968)

Reichardt, H.: Vollständige darstellung der turbulenten geschwindigkeitsverteilung in glatten leitungend. Zeitschrift für Angewandte Mathematik und Mechanik 31(7), 208–219 (1951)

Rumsey, C., Gatski, T., Sellers, W., et al.: Summary of the 2004 CFD validation workshop on synthetic jets and turbulent separation control. In: 2nd AIAA Flow Control Conference, Portland, Oregon, June 28 – July 1, 2004. p. 2217 (2004).

Shur, M.L., Spalart, P.R., Strelets, M.K., Travin, A.K.: A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities. Int. J. Heat Fluid Flow 29(6), 1638–1649 (2008).

Spalart, P.R., Allmaras, S.R.: A one equation turbulence model for aerodinamic flows. AIAA journal 94 (1992).

Spalart, P.R., Deck, S., Shur, M.L., et al.: A new version of detached-eddy simulation, resistant to ambiguous grid densities. Theoretical and computational fluid dynamics 20(3), 181–195 (2006).

Spalart, P.R., Jou, W.H., Strelets, M., et al.: Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach. In: First AFOSR international conference on DNS/LES, Ruston, Louisiana. vol. 1, pp. 4–8. Greyden Press, Columbus, OH (1997)

van der Vorst, H.A.: BI-CGSTAB: A fast and smoothly converging variant of BI-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 13(2), 631–644 (1992).

Wilcox, D.C.: Formulation of the k−w turbulence model revisited. AIAA Journal 46(11), 2823–2838 (2008).

Xiao, H., Jenny, P.: A consistent dual-mesh framework for hybrid LES/RANS modeling. J. Comp. Phys. 231(4), 1848–1865 (feb 20 2012).

Zhdanova, N.S., Abalakin, I.V., Vasilyev, O.V.: Generalized Brinkman volume penalization method for compressible flows around moving obstacles. Math. Models. and Comput. Simul. 14(5), 716–726 (2022).




How to Cite

Zhdanova, N. S., & Vasilyev, O. V. (2022). Penalized Wall Function Method for Turbulent Flow Modeling. Supercomputing Frontiers and Innovations, 9(4), 55–68.