Application of the Nonlinear SST Turbulence Model for Simulation of Anisotropic Flows

Authors

  • Andrey A. Savelyev Central Aerohydrodynamic Institute (TsAGI), Zhukovsky, Russia https://orcid.org/0000-0003-1174-1894
  • Innokentiy A. Kursakov https://orcid.org/0000-0001-9183-1763
  • Evgeniy S. Matyash Central Aerohydrodynamic Institute (TsAGI), Zhukovsky, Russia
  • Evgeny V. Streltsov Central Aerohydrodynamic Institute (TsAGI), Zhukovsky, Russia
  • Ruslan A. Shtin Central Aerohydrodynamic Institute (TsAGI), Zhukovsky, Russia

DOI:

https://doi.org/10.14529/jsfi220404

Keywords:

turbulence model, nonlinear SST, SST NL, turbulence anisotropy, corner flow, corner separation

Abstract

The application of the nonlinear SST turbulence model (SST NL) for the calculation of flows with turbulence anisotropy is considered. The results of the following validation test cases are presented: the flow in a square duct, the corner flow separation at a wing-body junction (NASA Juncture Flow) and the transonic wing flow (NASA CRM). The nonlinear model has been found to significantly improve the quality of simulating the anisotropic flows as compared to models based on the Boussinesq hypothesis. It is shown that the model prevents false corner separation at the wing-body junction and thereby achieves a qualitative improvement in simulation results. The test case of the transonic wing flow revealed an upstream displacement of the shock wave on the upper side of the wing which leads to an underestimation of the lift force when using the SST NL model. In all the tests considered, the SST NL model required an increase in computational cost of at most 5 % compared to the conventional SST model.

References

Allmaras, S.R., Johnson, F.T., Spalart, P.R.: Modifications and clarifications for the implementation of the Spalart–Allmaras turbulence model. In: Seventh International Conference on Computational Fluid Dynamics (ICCFD7). pp. 1–11. No. 1902 (2012)

Bosnyakov, S., Kursakov, I., Lysenkov, A., et al.: Computational tools for supporting the testing of civil aircraft configurations in wind tunnels. Progress in Aerospace Sciences 44(2), 67–120 (2008). https://doi.org/10.1016/j.paerosci.2007.10.003

Bosnyakov, S.M., Gorbushin, A.R., Kursakov, I.A., et al.: About verification and validation of computational methods and codes on the basis of Godunov method. TsAGI Science Journal 48(7), 597–615 (2017). https://doi.org/10.1615/TsAGISciJ.2018026173

Cecora, R.D., Radespiel, R., Eisfeld, B., Probst, A.: Differential Reynolds-stress modeling for aeronautics. AIAA Journal 53(3), 739–755 (2015). https://doi.org/10.2514/1.J053250

Garbaruk, A.V.: Numerical simulation and stability analysis of wall-bounded turbulent flows. DSc Thesis, Peter the Great St. Petersburg Polytechnic University (2020)

Kegerise, M.A., Neuhart, D.H.: An experimental investigation of a wing-fuselage junction model in the NASA Langley 14- by 22-foot subsonic tunnel. NASA TM (220286), 1–195 (2019). https://doi.org/10.2514/6.2019-0077

Launder, B.E., Reece, G.J., Rodi, W.: Progress in the development of a Reynolds-stress turbulence closure. Journal of Fluid Mechanics 68(3), 537–566 (1975)

Matyash, E.S., Savelyev, A.A., Troshin, A.I., Ustinov, M.V.: Allowance for gas compressibility in the γ-model of the laminar-turbulent transition. Computational Mathematics and Mathematical Physics 59(10), 1720–1731 (2019). https://doi.org/10.1134/S0965542519100117

Matyushenko, A.A., Garbaruk, A.V.: Non-linear correction for the k-ω SST turbulence model. Journal of Physics: Conference Series 929(1), 1–6 (2017). https://doi.org/10.1088/1742-6596/929/1/012102

Menter, F.R., Garbaruk, A.V., Egorov, Y.: Explicit algebraic Reynolds stress models for anisotropic wall-bounded flows. Progress in Flight Physics 3, 89–104 (2012). https://doi.org/10.1051/eucass/201203089

Menter, F.R., Kuntz, M., Langtry, R.: Ten years of industrial experience with the SST turbulence model. Turbulence Heat and Mass Transfer 4, 625–632 (2003)

Menter, F.R.: Zonal two equation k-ω turbulence models for aerodynamic Flows. AIAA Paper (2906) (1993)

Morrison, J.H.: 7th AIAA CFD Drag Prediction Workshop. https://aiaa-dpw.larc.nasa.gov, accessed: 2022-09-10

Morrison, J.H., Kleb, B.: Observations on CFD verification and validation from the AIAA drag prediction workshops. AIAA Paper (0202), 1–21 (2014). https://doi.org/10.2514/6.2014-0202

Pope, S.: A more general effective-viscosity hypothesis. Journal of Fluid Mechanics 72, 331–340 (1975)

Raiesi, H., Piomelli, U., Pollard, A.: Evaluation of turbulence models using direct numerical and large-eddy simulation data. Journal of Fluids Engineering 133(2) (2011). https://doi.org/10.1115/1.4003425

Rivers, M.: NASA Common Research Model. https://commonresearchmodel.larc.nasa.gov, accessed: 2022-09-10

Rumsey, C.L., Lee, H.C., Pulliam, T.H.: Reynolds-averaged Navier–Stokes computations of the NASA Juncture Flow model using FUN3D and OVERFLOW. AIAA Paper (1304), 1–31 (2020). https://doi.org/10.2514/6.2020-1304

Rumsey, C.: NASA Juncture Flow. https://turbmodels.larc.nasa.gov/Other_exp_Data/junctureflow_exp.html, accessed: 2022-09-10

Spalart, P.R.: Strategies for turbulence modelling and simulations. International Journal of Heat and Fluid Flow 21(3), 252–263 (2000). https://doi.org/10.1016/S0142-727X(00)00007-2

Spalart, P.R., Allmaras, S.R.: A one-equation turbulence model for aerodynamic flows. AIAA Paper (0439) (1992). https://doi.org/10.2514/6.1992-439

Tinoco, E., Keye, S.: Drag predictions at and beyond cruise for the Common Research Model by an international collaborative community (2022)

Tinoco, E.N., Brodersen, O.P., Keye, S., et al.: Summary data from the sixth AIAA CFD drag prediction workshop: CRM cases. Journal of Aircraft 55(4), 1352–1379 (2018). https://doi.org/10.2514/1.C034409

Wallin, S., Johansson, A.V.: An explicit algebraic Reynolds stress model for incompressible and compressible turbulent flows. Journal of Fluid Mechanics 403, 89–132 (2000). https://doi.org/10.1017/S0022112099007004

Downloads

Published

2022-12-30

How to Cite

Savelyev, A. A., Kursakov, I. A., Matyash, E. S., Streltsov, E. V., & Shtin, R. A. (2022). Application of the Nonlinear SST Turbulence Model for Simulation of Anisotropic Flows. Supercomputing Frontiers and Innovations, 9(4), 38–48. https://doi.org/10.14529/jsfi220404

Most read articles by the same author(s)