Improving the Computational Efficiency of the Global SL-AV Numerical Weather Prediction Model

Authors

  • Mikhail A. Tolstykh Marchuk Institute of Numerical Mathematcis RAS, Hydrometeorological Research Center
  • Rostislav Yu. Fadeev Marchuk Institute of Numerical Mathematcis RAS, Hydrometeorological Research Center
  • Vladimir V. Shashkin Marchuk Institute of Numerical Mathematcis RAS, Hydrometeorological Research Center
  • Gordey S. Goyman Marchuk Institute of Numerical Mathematcis RAS

DOI:

https://doi.org/10.14529/jsfi210402

Keywords:

numerical weather prediction, global atmosphere model, computational efficiency, I/O optimization

Abstract

The recent works on improving the efficiency of the Russian SL-AV global numerical weather prediction model both for medium- and long-range forecasts are described. The algorithmic improvements of SL-AV dynamical core, implementation of parallel I/O and several code optimizations are presented. We investigate the impact of single precision computations in some parts of the code on present climate simulations. As a result of efforts described in this article, we are now able to compute a 24-hour forecast for the model version having about 10 km horizontal resolution and 104 vertical levels in 13 min using 2916 processor cores of Cray XC40 system. This timing allows multiple experiments for tuning this new model and fits the requirements for operational weather forecast. The single long-range forecast with low-resolution SL-AV version now takes just 89 minutes instead of 111. We have also verified that the partial utilization of single precision computations produces approximately the same model climate as the previous version with fully double precision computations.

References

Manual on Codes - International Codes, Volume I.2, Annex II to the WMO Technical Regulations: Part B Binary Codes, Part C Common Features to Binary and Alphanumeric Codes WMO-TD 611. Geneva, Switzerland (1994)

Learning HDF5. https://portal.hdfgroup.org/display/HDF5/Learning+HDF5 (2021), accessed: 2021-10-21

Network common data form (NetCDF). https://www.unidata.ucar.edu/software/netcdf/ (2021), accessed: 2021-10-21

Xios. XML-IO-Server. https://portal.enes.org/models/software-tools/xios (2021), accessed: 2021-10-21

Bauer, P., Stevens, B., Hazeleger, W.: A digital twin of Earth for the green transition. Nature Climate Change 11, 80–83 (2021). https://doi.org/10.1038/s41558-021-00986-y

Dennis, J.M., Edwards, J., Loy, R., et al.: An application-level parallel I/O library for Earth system models. Int. J. High Perf. Comput. Appl. 26, 43–53 (2012). https://doi.org/10.1177/1094342011428143

Hortal, M.: Aspects of the numerics of the ECMWF model. In: Procs. of the ECWMF Seminar, September 7-11, 1998. Reading, UK (1999)

Jablonowski, C., Williamson, D.L.: The Pros and Cons of Diffusion, Filters and Fixers in Atmospheric General Circulation Models, chap. 13, pp. 381–493. Springer (2011). https://doi.org/10.1007/978-3-642-11640-7_13

Lindberg, K., Alexeev, V.A.: A study of the spurious orographic resonance in semi-implicit semi-Lagrangian models. MonthlyWeather Review 128(6), 1982–1989 (2000). https://doi.org/10.1175/1520-0493(2000)128<1982:ASOTSO>2.0.CO;2

Ritchie, H., Tanguay, M.: A comparison of spatially averaged Eulerian and semi-Lagrangian treatments of mountains. Mon.Wea. Rev. 124, 167–181 (1996). https://doi.org/10.1175/1520-0493(1996)124$<$0167:ACOSAE$>$2.0.CO;2

Rivest, C., Staniforth, A., Robert, A.: Spurious resonant response of semi-Lagrangian discretizations to orographic forcing: Diagnosis and solution. Monthly Weather Review 122(2), 366–376 (1994). https://doi.org/10.1175/1520-0493(1994)122<0366:SRROSL>2.0.CO;2

Slingo, J., Palmer, T.: Uncertainty in weather and climate prediction. Phil. Trans. R. Soc. A 369, 4751–4767 (2011). https://doi.org/10.1098/rsta.2011.0161

Strohmaier, E., Dongarra, J., Simon, H., Meuer, M.: Top500 list. https://top500.org/lists/top500/ (2021), accessed: 2021-10-21

Tolstykh, M., Fadeev, R., Mizyak, V.: Parallel program complex for numerical weather prediction and climate modeling. In: CEUR Worskshop Proceedings. RuSCDays 2015 - Proceedings of the 1st Russian Conference on Supercomputing Days 2015, Moscow, Russia, September 28-29, 2015. vol. 1482, pp. 356–367 (2015)

Tolstykh, M., Goyman, G., Fadeev, R., Shashkin, V.: Structure and algorithms of SL-AV atmosphere model parallel program complex. Lobachevskii Journal of Mathematics 39(4), 587–595 (2018). https://doi.org/10.1134/S1995080218040145

Tolstykh, M., Shashkin, V., Fadeev, R., Goyman, G.: Vorticity-divergence semi-Lagrangian global atmospheric model SL-AV20: dynamical core. Geoscientific Model Development 10(5), 1961–1983 (2017). https://doi.org/10.5194/gmd-10-1961-2017

Tolstykh, M., Fadeev, R., Shashkin, V., et al.: Multiscale global atmosphere model SL-AV: the results of medium-range weather forecasts. Russ. Meteorol. Hydrol. 43, 773–779 (2018). https://doi.org/10.3103/S1068373918110080

Tolstykh, M., Goyman, G., Fadeev, R., et al.: Development of the global multiscale atmosphere model: computational aspects. In: Journal of Physics: Conference Series. vol. 1740, p. 012074. IOP Publishing (2021). https://doi.org/10.1088/1742-6596/1740/1/012074

Tolstykh, M.A., Goyman, G., Fadeev, R., Shashkin, V.V.: Implementation of SL-AV global atmosphere model with 10 km horizontal resolution. In: Supercomputing - 6th Russian Supercomputing Days, RuSCDays 2020, Moscow, Russia, September 21-22, 2020, Revised Selected Papers. Communications in Computer and Information Science, vol. 1331, pp. 216–225. Springer (2020). https://doi.org/10.1007/978-3-030-64616-5_19

Tolstykh, M.A., Goyman, G., Fadeev, R., et al.: SL-AV model: Numerical weather prediction at extra-massively parallel supercomputer. In: Supercomputing - 4th Russian Supercomputing Days, RuSCDays 2018, Moscow, Russia, September 24-25, 2018, Revised Selected Papers. Communications in Computer and Information Science, vol. 965, pp. 379–387. Springer (2018). https://doi.org/10.1007/978-3-030-05807-4_32

Yang, R., Ward, M., Evans, B.: Parallel I/O in Flexible Modelling System (FMS) and Modular Ocean Model 5 (MOM5). Geosci. Model Dev. 13, 1885–1902 (2020). https://doi.org/10.5194/gmd-13-1885-2020

Downloads

Published

2022-02-03

How to Cite

Tolstykh, M. A., Fadeev, R. Y., Shashkin, V. . V., & Goyman, G. S. (2022). Improving the Computational Efficiency of the Global SL-AV Numerical Weather Prediction Model. Supercomputing Frontiers and Innovations, 8(4), 11–23. https://doi.org/10.14529/jsfi210402