4D Technology of Variational Data Assimilation for Sea Dynamics Problems





sea dynamics modeling, variational data assimilation, observations, sea surface temperature


The technology aimed at high-performance computing is presented for modeling the sea dynamics problems based on 4D variational data assimilation technique developed at the Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences (INM RAS). The technology is based on the multicomponent splitting method for the mathematical model of sea dynamics and the minimization of cost functionals related to the observation data by solving an optimality system that involves the adjoint equations with observation data and observation error covariances. Efficient algorithms for solving the variational data assimilation problems are presented based on modern iterative processes with a special choice of iterative parameters. The technology is illustrated for the Baltic Sea dynamics model with variational data assimilation to restore the initial states and the heat fluxes on the sea surface.


Agoshkov, V.I.: Methods of Optimal Control and Adjoint Equations in Problems of Mathematial Physis. INM RAS, Moscow (2003)

Agoshkov, V.I., Gusev, A.V., Diansky, N.A., Oleinikov, R.V.: An algorithm for the solution of the ocean hydrothermodynamics problem with variational assimilation of the sea level function data. Russ. J. Numer. Anal. Math. Model 22(2), 133–161 (2007). https://doi.org/10.1515/RJNAMM.2007.007

Agoshkov, V.I., Parmuzin, E.I., Shutyaev, V.P.: Numerical algorithm for variational assimilation of sea surface temperature data. Comp. Math. and Math. Physics 48(8), 1293–1312 (2008). https://doi.org/10.1134/S0965542508080046

Agoshkov, V.I., Parmuzin, E.I., Zalesny, V.B., et al.: Variational assimilation of observation data in the mathematical model of the Baltic Sea dynamics. Russ. J. Numer. Anal. Math. Model 30(4), 203–212 (2015). https://doi.org/10.1515/rnam-2015-0018

Agoshkov, V.I., Zalesny, V.B., Parmuzin, E.I., et al.: Problems of variational assimilation of observational data for ocean general circulation models and methods for their solution. Izv. Atmos. Ocean. Phys. 46, 677–712 (2010). https://doi.org/10.1134/S0001433810060034

Agoshkov, V.I., Parmuzin, E.I., Zakharova, N.B., Shutyaev, V.P.: Variational assimilation with covariance matrices of observation data errors for the model of the Baltic Sea dynamics. Russ. J. Numer. Anal. Math. Model 33(3), 149–160 (2018). https://doi.org/10.1515/rnam-2018-0013

Asch, M., Bocquet, M., Nodet, M.: Data Assimilation: Methods, Algorithms, and Applications. SIAM, Philadelphia (2016). https://doi.org/10.1137/1.9781611974546

Carrassi, A., Bocquet, M., Bertino, L., Evensen, G.: Data assimilation in the geosciences: an overview of methods, issues, and perspectives. WIREs Clim. Change 9, 1–80 (2018). https://doi.org/10.1002/wcc.535

Chassignet, E.P., Verron, J.: Ocean Weather Forecasting: An Integrated View of Oceanography. Springer, Heidelberg (2006). https://doi.org/10.1007/1-4020-4028-8

Diansky, N.A., Fomin, V.V., Zhokhova, N.V., Korshenko, A.N.: Simulations of currents and pollution transport in the coastal waters of Big Sochi. Izv. Atmos. Ocean. Phy. 49(6), 611–621 (2013). https://doi.org/10.1134/S0001433813060042

Dymnikov, V.P., Zalesny, V.B.: Fundamentals of Computational Geophysical Fluid Dynamics. GEOS, Moscow (2019)

Fletcher, S.J.: Data Assimilation for the Geosciences: From Theory to Application. Elsevier, Amsterdam (2017)

Griffies, S.M., Boening, C., Bryan, F.O., et al.: Developments in ocean climate modelling. Ocean Model 2, 123–192 (2000). https://doi.org/10.1016/S1463-5003(00)00014-7

Hyer, J.L., Karagali, I.: Sea surface temperature climate data record for the North Sea and Baltic Sea. Journal of Climate 29(7), 2529–2541 (2016). https://doi.org/10.1175/JCLI-D-15-0663.1

Le Dimet, F., Talagrand, O.: Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects. Tellus A 38, 97–110 (1986). https://doi.org/10.3402/tellusa.v38i2.11706

Lions, J.L.: Contrôle Optimal de Systèmes Gouvernés par des Équations aux Dérivées Partielles. Dunod, Paris (1968). https://doi.org/10.1016/0041-5553(71)90092-9

Marchuk, G.I.: Splitting and alternating direction methods. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysi, pp. 197–462. North-Holland, Amsterdam (1990). https://doi.org/10.1016/S1570-8659(05)80035-3

Marchuk, G.I.: Adjoint Equations and Analysis of Complex Systems. Kluwer, Dordrecht (1995). https://doi.org/10.1007/978-94-017-0621-6

Marchuk, G.I., Dymnikov, V.P., Zalesny, V.B.: Mathematical Models in Geophysical Hydrodynamics and Numerical Methods for their Implementation. Hydrometeoizdat, Leningrad (1987)

Marchuk, G.I., Rusakov, A.S., Zalesny, V.B., Diansky, N.A.: Splitting numerical technique with application to the high resolution simulation of the Indian Ocean circulation. Pure Appl. Geophys. 162, 1407–1429 (2005). https://doi.org/10.1007/s00024-005-2677-8

Sarkisyan, A., Sündermann, J.: Modelling Ocean Climate Variability. Springer, Heidelberg (2009). https://doi.org/10.1007/978-1-4020-9208-4

Shutyaev, V.P.: Methods for observation data assimilation in problems of physics of atmosphere and ocean. Izv. Atmos. Ocean. Phys. 55, 17–31 (2019). https://doi.org/10.1134/S0001433819010080

Zakharova, N.B.: Verification of the sea surface temperature observation data. Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa 13(3), 106–113 (2016). https://doi.org/10.21046/2070-7401-2016-13-3-106-113

Zalesny, V., Agoshkov, V., Aps, R., et al.: Numerical modeling of marine circulation, pollution assessment and optimal ship routes. J. Mar. Sci. Eng. 5, 1–20 (2017). https://doi.org/10.3390/jmse5030027

Zalesny, V.B., Agoshkov, V.I., Shutyaev, V.P., et al.: Numerical modeling of ocean hydrodynamics with variational assimilation of observational data. Izv. Atmos. Ocean. Phys. 52, 431–442 (2016). https://doi.org/10.1134/S0001433816040137

Zalesny, V.B., Gusev, A.V., Ivchenko, V.O., et al.: Numerical model of the Baltic Sea circulation. Russ. J. Numer. Anal. Math. Model 28(1), 85–99 (2013). https://doi.org/10.1515/rnam-2013-0006

Zalesny, V.B., Marchuk, G.I., Agoshkov, V.I., et al.: Numerical simulation of large-scale ocean circulation based on the multicomponent splitting method. Russ. J. Numer. Anal. Math. Model 25(6), 581–609 (2010). https://doi.org/10.1515/rjnamm.2010.036




How to Cite

Shutyaev, V. P., Agoshkov, V. I., Zalesny, V. B., Parmuzin, E. I., & Zakharova, N. B. (2022). 4D Technology of Variational Data Assimilation for Sea Dynamics Problems. Supercomputing Frontiers and Innovations, 9(1), 4–16. https://doi.org/10.14529/jsfi220101