4D Technology of Variational Data Assimilation for Sea Dynamics Problems
DOI:
https://doi.org/10.14529/jsfi220101Keywords:
sea dynamics modeling, variational data assimilation, observations, sea surface temperatureAbstract
The technology aimed at high-performance computing is presented for modeling the sea dynamics problems based on 4D variational data assimilation technique developed at the Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences (INM RAS). The technology is based on the multicomponent splitting method for the mathematical model of sea dynamics and the minimization of cost functionals related to the observation data by solving an optimality system that involves the adjoint equations with observation data and observation error covariances. Efficient algorithms for solving the variational data assimilation problems are presented based on modern iterative processes with a special choice of iterative parameters. The technology is illustrated for the Baltic Sea dynamics model with variational data assimilation to restore the initial states and the heat fluxes on the sea surface.
References
Agoshkov, V.I.: Methods of Optimal Control and Adjoint Equations in Problems of Mathematial Physis. INM RAS, Moscow (2003)
Agoshkov, V.I., Gusev, A.V., Diansky, N.A., Oleinikov, R.V.: An algorithm for the solution of the ocean hydrothermodynamics problem with variational assimilation of the sea level function data. Russ. J. Numer. Anal. Math. Model 22(2), 133–161 (2007). https://doi.org/10.1515/RJNAMM.2007.007
Agoshkov, V.I., Parmuzin, E.I., Shutyaev, V.P.: Numerical algorithm for variational assimilation of sea surface temperature data. Comp. Math. and Math. Physics 48(8), 1293–1312 (2008). https://doi.org/10.1134/S0965542508080046
Agoshkov, V.I., Parmuzin, E.I., Zalesny, V.B., et al.: Variational assimilation of observation data in the mathematical model of the Baltic Sea dynamics. Russ. J. Numer. Anal. Math. Model 30(4), 203–212 (2015). https://doi.org/10.1515/rnam-2015-0018
Agoshkov, V.I., Zalesny, V.B., Parmuzin, E.I., et al.: Problems of variational assimilation of observational data for ocean general circulation models and methods for their solution. Izv. Atmos. Ocean. Phys. 46, 677–712 (2010). https://doi.org/10.1134/S0001433810060034
Agoshkov, V.I., Parmuzin, E.I., Zakharova, N.B., Shutyaev, V.P.: Variational assimilation with covariance matrices of observation data errors for the model of the Baltic Sea dynamics. Russ. J. Numer. Anal. Math. Model 33(3), 149–160 (2018). https://doi.org/10.1515/rnam-2018-0013
Asch, M., Bocquet, M., Nodet, M.: Data Assimilation: Methods, Algorithms, and Applications. SIAM, Philadelphia (2016). https://doi.org/10.1137/1.9781611974546
Carrassi, A., Bocquet, M., Bertino, L., Evensen, G.: Data assimilation in the geosciences: an overview of methods, issues, and perspectives. WIREs Clim. Change 9, 1–80 (2018). https://doi.org/10.1002/wcc.535
Chassignet, E.P., Verron, J.: Ocean Weather Forecasting: An Integrated View of Oceanography. Springer, Heidelberg (2006). https://doi.org/10.1007/1-4020-4028-8
Diansky, N.A., Fomin, V.V., Zhokhova, N.V., Korshenko, A.N.: Simulations of currents and pollution transport in the coastal waters of Big Sochi. Izv. Atmos. Ocean. Phy. 49(6), 611–621 (2013). https://doi.org/10.1134/S0001433813060042
Dymnikov, V.P., Zalesny, V.B.: Fundamentals of Computational Geophysical Fluid Dynamics. GEOS, Moscow (2019)
Fletcher, S.J.: Data Assimilation for the Geosciences: From Theory to Application. Elsevier, Amsterdam (2017)
Griffies, S.M., Boening, C., Bryan, F.O., et al.: Developments in ocean climate modelling. Ocean Model 2, 123–192 (2000). https://doi.org/10.1016/S1463-5003(00)00014-7
Hyer, J.L., Karagali, I.: Sea surface temperature climate data record for the North Sea and Baltic Sea. Journal of Climate 29(7), 2529–2541 (2016). https://doi.org/10.1175/JCLI-D-15-0663.1
Le Dimet, F., Talagrand, O.: Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects. Tellus A 38, 97–110 (1986). https://doi.org/10.3402/tellusa.v38i2.11706
Lions, J.L.: Contrôle Optimal de Systèmes Gouvernés par des Équations aux Dérivées Partielles. Dunod, Paris (1968). https://doi.org/10.1016/0041-5553(71)90092-9
Marchuk, G.I.: Splitting and alternating direction methods. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysi, pp. 197–462. North-Holland, Amsterdam (1990). https://doi.org/10.1016/S1570-8659(05)80035-3
Marchuk, G.I.: Adjoint Equations and Analysis of Complex Systems. Kluwer, Dordrecht (1995). https://doi.org/10.1007/978-94-017-0621-6
Marchuk, G.I., Dymnikov, V.P., Zalesny, V.B.: Mathematical Models in Geophysical Hydrodynamics and Numerical Methods for their Implementation. Hydrometeoizdat, Leningrad (1987)
Marchuk, G.I., Rusakov, A.S., Zalesny, V.B., Diansky, N.A.: Splitting numerical technique with application to the high resolution simulation of the Indian Ocean circulation. Pure Appl. Geophys. 162, 1407–1429 (2005). https://doi.org/10.1007/s00024-005-2677-8
Sarkisyan, A., Sündermann, J.: Modelling Ocean Climate Variability. Springer, Heidelberg (2009). https://doi.org/10.1007/978-1-4020-9208-4
Shutyaev, V.P.: Methods for observation data assimilation in problems of physics of atmosphere and ocean. Izv. Atmos. Ocean. Phys. 55, 17–31 (2019). https://doi.org/10.1134/S0001433819010080
Zakharova, N.B.: Verification of the sea surface temperature observation data. Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa 13(3), 106–113 (2016). https://doi.org/10.21046/2070-7401-2016-13-3-106-113
Zalesny, V., Agoshkov, V., Aps, R., et al.: Numerical modeling of marine circulation, pollution assessment and optimal ship routes. J. Mar. Sci. Eng. 5, 1–20 (2017). https://doi.org/10.3390/jmse5030027
Zalesny, V.B., Agoshkov, V.I., Shutyaev, V.P., et al.: Numerical modeling of ocean hydrodynamics with variational assimilation of observational data. Izv. Atmos. Ocean. Phys. 52, 431–442 (2016). https://doi.org/10.1134/S0001433816040137
Zalesny, V.B., Gusev, A.V., Ivchenko, V.O., et al.: Numerical model of the Baltic Sea circulation. Russ. J. Numer. Anal. Math. Model 28(1), 85–99 (2013). https://doi.org/10.1515/rnam-2013-0006
Zalesny, V.B., Marchuk, G.I., Agoshkov, V.I., et al.: Numerical simulation of large-scale ocean circulation based on the multicomponent splitting method. Russ. J. Numer. Anal. Math. Model 25(6), 581–609 (2010). https://doi.org/10.1515/rjnamm.2010.036
Downloads
Published
How to Cite
Issue
License
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-Non Commercial 3.0 License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.