Potential of I/O Aware Workflows in Climate and Weather


  • Julian M. Kunkel Department of Computer Science, University of Reading
  • Luciana R. Pedro Department of Computer Science, University of Reading




The efficient, convenient, and robust execution of data-driven workflows and enhanced data management are essential for productivity in scientific computing. In HPC, the concerns of storage and computing are traditionally separated and optimised independently from each other and the needs of the end-to-end user. However, in complex workflows, this is becoming problematic. These problems are particularly acute in climate and weather workflows, which as well as becoming increasingly complex and exploiting deep storage hierarchies, can involve multiple data centres.

The key contributions of this paper are: 1) A sketch of a vision for an integrated data-driven approach, with a discussion of the associated challenges and implications, and 2) An architecture and roadmap consistent with this vision that would allow a seamless integration into current climate and weather workflows as it utilises versions of existing tools (ESDM, Cylc, XIOS, and DDN’s IME).

The vision proposed here is built on the belief that workflows composed of data, computing, and communication-intensive tasks should drive interfaces and hardware configurations to better support the programming models. When delivered, this work will increase the opportunity for smarter scheduling of computing by considering storage in heterogeneous storage systems. We illustrate the performance-impact on an example workload using a model built on measured performance data using ESDM at DKRZ.


Alkhanak, E.N., Lee, S.P., Rezaei, R., Parizi, R.M.: Cost optimization approaches for scientific workflow scheduling in cloud and grid computing: a review, classifications, and open issues. Journal of Systems and Software 113, 1–26 (2016), DOI: 10.1016/j.jss.2015.11.023

Betke, E., Kunkel, J.: Benefit of DDN’s IME-Fuse and IME-Lustre file systems for I/O intensive HPC applications. In: Yokota, R., Weiland, M., Shalf, J., Alam, S. (eds.) High Performance Computing: ISC High Performance 2018 International Workshops, Frankfurt/Main, Germany, 28 June, 2018, Revised Selected Papers. Lecture Notes in Computer Science, vol. 11203, pp. 131–144. ISC Team, Springer (2019), DOI: 10.1007/978-3-030-02465-9_9

Braam, P.: The Lustre storage architecture. CoRR abs/1903.01955 (2019), http://arxiv.org/abs/1903.01955

Center, U.P.: Network Common Data Form (NetCDF), DOI: 10.5065/D6H70CW6

Chowdhury, F., Zhu, Y., Heer, T., Paredes, S., Moody, A.T., Goldstone, R., Mohror, K.M., Yu, W.: The parallel I/O architecture of the high-performance storage system (HPSS). In: Proceedings of the 48th International Conference on Parallel Processing, August 2019, Kyoto, Japan. pp. 1–10 (2019), DOI: 10.1145/3337821.3337902

Dai, D., Ross, R., Khaldi, D., Yan, Y., Dorier, M., Tavakoli, N., Chen, Y.: A cross-layer solution in scientific workflow system for tackling data movement challenge. CoRR abs/1805.061675 (2018), https://arxiv.org/abs/1805.06167

Deelman, E., Mandal, A., Jiang, M., Sakellariou, R.: The role of machine learning in scientific workflows. The International Journal of High Performance Computing Applications 33(6), 1128–1139 (2019), DOI: 10.1177/1094342019852127

Di Tommaso, P., Chatzou, M., Floden, E.W., Barja, P., Palumbo, E., Notredame, C.: Nextflow enables reproducible computational workflows. Nature Biotechnology 35, 316 319 (2017), DOI: 10.1038/nbt.3820

Isard, M., Budiu, M., Yu, Y., Birrell, A., Fetterly, D.: Dryad: Distributed data-parallel programs from sequential building blocks. In: Proceedings of the 2nd ACM SIGOPS/EuroSys European Conference on Computer Systems 2007, March 2007, Lisbon, Portugal. p. 59–72. Association for Computing Machinery, New York, NY, USA (2007), DOI: 10.1145/1272996.1273005

Jette, M.A., Yoo, A.B., Grondona, M.: SLURM: Simple Linux Utility for Resource Management. In: Proceedings of Job Scheduling Strategies for Parallel Processing, 24 June, Seattle, WA, USA. Lecture Notes in Computer Science, vol. 2862, pp. 44–60. Springer, Berlin, Heidelberg (2002), DOI: 10.1007/10968987_3

Jimenez, I., Sevilla, M., Watkins, N., Maltzahn, C., Lofstead, J., Mohror, K., Arpaci-Dusseau, A., Arpaci-Dusseau, R.: The popper convention: making reproducible systems evaluation practical. In: 2017 IEEE International Parallel and Distributed Processing Symposium Workshops, 29 May-2 June 2017, Lake Buena Vista, FL, USA. pp. 1561–1570. IEEE (2017), DOI: 10.1109/IPDPSW.2017.157

Kougkas, A., Devarajan, H., Sun, X.H.: I/O acceleration via multi-tiered data buffering and prefetching. Journal of Computer Science and Technology 35(1), 92–120 (2020), DOI: 10.1007/s11390-020-9781-1

Koster, J., Rahmann, S.: Snakemake: a scalable bioinformatics workflow engine. Bioinformatics 28(19), 2520–2522 (2012), DOI: 10.1093/bioinformatics/bts480

Lawrence, B.N., Kunkel, J.M., Churchill, J., Massey, N., Kershaw, P., Pritchard, M.: Beating data bottlenecks in weather and climate science. In: Extreme Data Workshop – Forschungszentrum Julich, Proceedings, IAS series. vol. 40, pp. 31–36 (2018)

Liu, J., Pacitti, E., Valduriez, P., Mattoso, M.: A survey of data-intensive scientific workflow management. Journal of Grid Computing 13(4), 457–493 (2015), DOI: 10.1007/s10723-015-9329-8

Luttgau, J., Snyder, S., Carns, P., Wozniak, J.M., Kunkel, J., Ludwig, T.: Toward understanding I/O behavior in HPC workflows. In: IEEE/ACM 3rd International Workshop on Parallel Data Storage & Data Intensive Scalable Computing Systems, 12 Nov. 2018, Dallas, Texas. pp. 64–75. IEEE Computer Society, Washington, DC, USA (2019), DOI: 10.1109/PDSW-DISCS.2018.00012

Meurdesoif, Y., Caubel, A., Lacroix, R., D’erouillat, J., Nguyen, M.H.: XIOS Tutorial (2016), http://forge.ipsl.jussieu.fr/ioserver/raw-attachment/wiki/WikiStart/XIOS-tutorial.pdf

Miranda, A., Jackson, A., Tocci, T., Panourgias, I., Nou, R.: NORNS: extending Slurm to support data-driven workflows through asynchronous data staging. In: 2019 IEEE International Conference on Cluster Computing, 23-26 Sept. 2019, Albuquerque, NM, USA. pp. 1–12. IEEE (2019), DOI: 10.1109/CLUSTER.2019.8891014

Oliver, H., Shin, M., Matthews, D., Sanders, O., Bartholomew, S., Clark, A., Fitzpatrick, B., van Haren, R., Hut, R., Drost, N.: Workflow automation for cycling systems: the Cylc workflow engine. Computing in Science Engineering 21(4), 7–21 (2019), DOI: 10.1109/MCSE.2019.2906593

Ozik, J., Collier, N.T., Wozniak, J.M., Spagnuolo, C.: From desktop to large-scale model exploration with Swift/T. In: 2016 Winter Simulation Conference, 11-14 Dec. 2016, Washington, DC, USA. pp. 206–220. IEEE (2016), DOI: 10.1109/WSC.2016.7822090

Rajasekar, A., Moore, R., Hou, C.y., Lee, C.A., et al.: iRODS primer: integrated rule-oriented data system. Synthesis Lectures on Information Concepts, Retrieval, and Services 2(1), 1–143 (2010), DOI: 10.2200/S00233ED1V01Y200912ICR012

Romanus, M., Ross, R.B., Parashar, M.: Challenges and considerations for utilizing burst buffers in high-performance computing. CoRR abs/1509.05492 (2015), http://arxiv.org/abs/1509.05492

Schmuck, F., Haskin, R.: Gpfs: A shared-disk file system for large computing clusters. In: Proceedings of the 1st USENIX Conference on File and Storage Technologies, Monterey, CA. pp. 231–244. USENIX Association, USA (2002), DOI: 10.5555/1083323.1083349

Slawinska, M., Clark, M., Wolf, M., Bode, T., Zou, H., Laguna, P., Logan, J., Kinsey, M., Klasky, S.: A Maya use case: adaptable scientific workflows with ADIOS for general relativistic astrophysics. In: Proceedings of the Conference on Extreme Science and Engineering Discovery Environment: Gateway to Discovery, July 2013, San Diego, California, USA. pp. 1–8. Association for Computing Machinery, New York, NY, USA (2013), DOI: 10.1145/2484762.2484795

Subedi, P., Davis, P.E., Parashar, M.: Leveraging machine learning for anticipatory data delivery in extreme scale in-situ workflows. In: 2019 IEEE International Conference on Cluster Computing, 23-26 Sept. 2019, Albuquerque, NM, USA. pp. 1–11. IEEE (2019), DOI: 10.1109/CLUSTER.2019.8891003

Watson, R.W., Coyne, R.A.: The parallel I/O architecture of the high-performance storage system, 11-14 Sept. 1995, Monterey, CA, USA. In: Proceedings of IEEE 14th Symposium on Mass Storage Systems. pp. 27–44. IEEE (1995), DOI: 10.1109/MASS.1995.528214

Wozniak, J.M., Armstrong, T.G., Wilde, M., Katz, D.S., Lusk, E., Foster, I.T.: Swift/T: Large-Scale Application Composition via Distributed-Memory Dataflow Processing. In: 2013 13th IEEE/ACM International Symposium on Cluster, Cloud, and Grid Computing, 13-16 May 2013, Delft, Netherlands. pp. 95–102. IEEE (2013), DOI: 10.1109/CCGrid.2013.99




How to Cite

Kunkel, J. M., & Pedro, L. R. (2020). Potential of I/O Aware Workflows in Climate and Weather. Supercomputing Frontiers and Innovations, 7(2), 35–53. https://doi.org/10.14529/jsfi200203