Multiscale Simulations Approach: Crosslinked Polymer Matrices


  • Pavel V. Komarov A.N.Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Tver State University
  • Daria V. Guseva Lomonosov Moscow State University
  • Vladimir Yu. Rudyak Lomonosov Moscow State University
  • Alexander V. Chertovich Lomonosov Moscow State University



Atomistic molecular dynamics simulations can usually cover only a very limited range in space and time. Thus, the materials like polymer resin networks, the properties of which are formed on macroscopic scale, are hard to study thoroughly using only molecular dynamics. Our work presents a multiscale simulation methodology to overcome this shortcoming. To demonstrate its effectiveness, we conducted a study of thermal and mechanical properties of complex polymer matrices and establish a direct correspondence between simulations and experimental results. We believe this methodology can be successfully used for predictive simulations of a broad range of polymer matrices in glassy state.


Antonietti, M., Ozin, G.A.: Promises and problems of mesoscale materials chemistry or why meso? Chem. Eur. J. 10 (1), 28–41 (2004), DOI: 10.1002/chem.200305009

Komarov, P.V., Chiu, Y.-T., Chen, S.-M., Khalatur, P.G., Reineker, P.: Highly cross-linked epoxy resins: an atomistic molecular dynamics simulation combined with a mapping/reverse mapping procedure. Macromolecules 40(22), 8104–8113 (2007), DOI: 10.1021/ma070702+

Gavrilov, A.A., Komarov, P.V., Khalatur, P.G.: Thermal properties and topology of epoxy networks: a multiscale simulation methodology. Macromolecules 48(1), 206–212 (2015), DOI: 10.1021/ma502220k

Rudyak, V.Y., Gavrilov, A.A., Guseva, D.V., Chertovich, A.V.: Complex curing pathways and their influence on the phthalonitrile resin hardening and elasticity. Macromol. Theory Simul. 26(4), 1700015 (2017), DOI: 10.1002/mats.201700015

Guseva, D.V., Rudyak, V.Y., Komarov, P.V., Sulimov, A.V., Bulgakov, B.A., Chertovich, A.V.: Crosslinking mechanisms, structure and glass transition in phthalonitrile resins: insight from computer multiscale simulations and experiments. J. Polym. Sci. Part B. Polym. Phys. 56(5), 362–374 (2018), DOI: 10.1002/polb.24548

Guseva, D.V., Rudyak, V.Yu., Komarov, P.V., Bulgakov, B.A., Babkin, A.V., Chertovich, A.V.: Dynamic and static mechanical properties of crosslinked polymer matrices: multiscale simulations and experiments. Polymers 10(7), 792 (2018), DOI: 10.3390/polym10070792

Bulgakov, B.A., Sulimov, A.V., Babkin, A.V., Timoshkin, I.A., Solopchenko, A.V., Kepman, A.V., Avdeev, V.V.: Phthalonitrile-carbon fiber composites produced by vacuum infusion process. J. Compos. Mater. 51(30), 4157–4164 (2017), DOI: 10.1177/0021998317699452

Hoogerbrugge, P.J., Koelman, J.M.V.A.: Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhys. Lett. 19, 155–160 (1992), DOI: 10.1209/0295- 5075/19/3/001

Sun, H.: Ab initio calculations and force field development for computer simulation of polysilanes. Macromolecules 28(3), 701–712 (1995), DOI: 10.1021/ma00107a006

Menard, K.P.: DMA: Introduction to the Technique, Its Applications and Theory, CRC Press (1999)




How to Cite

Komarov, P. V., Guseva, D. V., Rudyak, V. Y., & Chertovich, A. V. (2018). Multiscale Simulations Approach: Crosslinked Polymer Matrices. Supercomputing Frontiers and Innovations, 5(3), 55–59.

Most read articles by the same author(s)