Performance Evaluation of Runtime Data Exploration Framework based on In-Situ Particle Based Volume Rendering

Authors

  • Takuma Kawamura Japan Atomic Energy Agency
  • Tomoyuki Noda Japan Atomic Energy Agency
  • Yasuhiro Idomura

DOI:

https://doi.org/10.14529/jsfi170302

Abstract

We examine the performance of the in-situ data exploration framework based on the in-situ Particle Based Volume Rendering (In-Situ PBVR) on the latest many-core platform. In-Situ PBVR converts extreme scale volume data into small rendering primitive particle data via parallel Monte-Carlo sampling without costly visibility ordering. This feature avoids severe bottlenecks such as limited memory size per node and significant performance gap between computation and inter-node communication. In addition, remote in-situ data exploration is enabled by asynchronous file-based control sequences, which transfer the small particle data to client PCs, generate view-independent volume rendering images on client PCs, and change visualization parameters at runtime.
In-Situ PBVR shows excellent strong scaling with low memory usage up to ~100k cores on the Oakforest-PACS, which consists of 8,208 Intel Xeon Phi7250 (Knights Landing) processors. This performance is compatible with the remote in-situ data exploration capability.

References

Visit user’s manual. Tech. rep., Lawlence Livermore National Laboratory (2005), https: //wci.llnl.gov/simulation/computer-codes/visit/manuals

Henderso, A.: Paraview guide, a parallel visualization application. Tech. rep., Kitware Inc. (2005), http://www.paraview.org

Howison, M., Bethel, E.W., Childs, H.: Hybrid parallelism for volume rendering on large- , multi-, and many-core systems. IEEE Trans. Vis. Comput. Graph. 18(1), 17–29 (2012), DOI: 10.1109/TVCG.2011.24

Kawamura, T., Idomura, Y., Miyamura, H., Takemiya, H.: Algebraic design of multi- dimensional transfer function using transfer function synthesizer. Journal of Visualization 20(1), 151–162 (Feb 2017), DOI: 10.1007/s12650-016-0387-1

Kawamura, T., Idomura, Y., Miyamura, H., Takemiya, H., Sakamoto, N., Koyamada, K.: Remote visualization system based on particle based volume rendering. In: Pro- ceedings of the conference on VDA. Visualization and Data Analysis 2015, SPIE (2015), DOI: 10.1117/12.2083501

Kawamura, T., Noda, T., Idomura, Y.: In-situ visual exploration of multivariate volume data based on particle based volume rendering. In: Proceedings of the 2Nd Workshop on In Situ Infrastructures for Enabling Extreme-scale Analysis and Visualization. pp. 18–22. ISAV ’16, IEEE Press, Piscataway, NJ, USA (2016), DOI: 10.1109/ISAV.2016.9

Kawamura, T., Sakamoto, N., Koyamada, K.: Level-of-detail rendering of a large-scale irregular volume dataset using particles. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 25(5), 905–915 (2010), DOI: 10.1007/s11390-010-9375-4

Knoll, A., Wald, I., Navr ́atil, P.A., Papka, M.E., Gaither, K.P.: Ray tracing and volume rendering large molecular data on multi-core and many-core architectures. In: Proceedings of the 8th International Workshop on Ultrascale Visualization. pp. 5:1–5:8. UltraVis ’13, ACM, New York, NY, USA (2013), http://doi.acm.org/10.1145/2535571.2535594

Larsen, M., Meredith, J., Navr ́atil, P., Childs, H.: Ray-Tracing Within a Data Parallel Framework. In: Proceedings of the IEEE Pacific Visualization Symposium. pp. 279–286. Hangzhou, China (Apr 2015), 10.1109/PACIFICVIS.2015.7156388

Larsen, M., Brugger, E., Childs, H., Eliot, J., Griffin, K., Harrison, C.: Strawman: A batch in situ visualization and analysis infrastructure for multi-physics simulation codes. In: Proceedings of the First Workshop on In Situ Infrastructures for Enabling Extreme-Scale Analysis and Visualization (ISAV), held in conjunction with SC15. pp. 30–35. Austin, TX (Nov 2015), http://doi.acm.org/10.1145/2828612.2828625

Levoy, M.: Display of surfaces from volume data. IEEE Comput. Graph. Appl. 8(3), 29–37 (May 1988), DOI: 10.1109/38.511

Moreland, K., Sewell, C., Usher, W., ta Lo, L., Meredith, J., Pugmire, D., Kress, J., Sch- roots, H., Ma, K.L., Childs, H., Larsen, M., Chen, C.M., Maynard, R., Geveci, B.: Vtk-m: Accelerating the visualization toolkit for massively threaded architectures. IEEE Computer Graphics and Applications 36(3), 48–58 (2016), DOI: 10.1109/MCG.2016.48

Peterka, T., Yu, H., Ross, R., Ma, K.L.: Parallel volume rendering on the ibm blue gene/p. In: Proceedings of the 8th Eurographics Conference on Parallel Graphics and Visualization. pp. 73–80. EGPGV ’08, Eurographics Association, Aire-la-Ville, Switzerland, Switzerland (2008), DOI: 10.2312/EGPGV/EGPGV08/073-080

Peterka, T., Yu, H., Ross, R., Ma, K.L., Latham, R.: End-to-end study of parallel volume rendering on the ibm blue gene/p. In: Proceedings of ICPP 09. Vienna, Austria (2009), DOI: 10.1109/ICPP.2009.27

Sakamoto, N., Kawamura, T., Koyamada, K., Nozaki, K.: Improvement of particle-based volume rendering for visualizing irregular volume data sets. Computers & Graphics 34(1), 34–42 (2010), DOI: 10.1016/j.cag.2009.12.001

Sakamoto, N., Koyamada, K.: Kvs: A simple and effective framework for scientific visu- alization. Journal of Advanced Simulation in Science and Engineering 2(1), 76–95 (2015), http://doi.org/10.15748/jasse.2.76

Sakamoto, N., Nonaka, J., Koyamada, K., Tanaka, S.: Particle-based volume rendering. Asia-Pacific Symposium on Visualization 2007 pp. 129–132 (2007), DOI: 10.3154/tvsj.27.7

Tu, T., Yu, H., Bielak, J., Ghattas, O., L ́opez, J.C., Ma, K., O’Hallaron, D.R., Ram ́ırez- Guzm ́an, L., Stone, N., Taborda-Rios, R., Urbanic, J.: Analytics challenge - remote run- time steering of integrated terascale simulation and visualization. In: Proceedings of the ACM/IEEE SC2006 Conference on High Performance Networking and Computing, Novem- ber 11-17, 2006, Tampa, FL, USA. p. 297 (2006), DOI: 10.1145/1188455.1188767

Tu, T., Yu, H., Ramirez-Guzman, L., Bielak, J., Ghattas, O., Ma, K.L., O’Hallaron, D.R.: From mesh generation to scientific visualization: An end-to-end approach to parallel super- computing. In: Proceedings of the 2006 ACM/IEEE Conference on Supercomputing. SC ’06, ACM, New York, NY, USA (2006), DOI: 10.1145/1188455.1188551

Wald, I., Johnson, G.P., Amstutz, J., Brownlee, C., Knoll, A., Jeffers, J., Gunther, J., Navr ́atil, P.A.: Ospray - A CPU ray tracing framework for scientific visualization. IEEE Trans. Vis. Comput. Graph. 23(1), 931–940 (2017), DOI: 10.1109/TVCG.2016.2599041

Woop, S., Feng, L., Wald, I., Benthin, C.: Embree ray tracing kernels for cpus and the xeon phi architecture. In: ACM SIGGRAPH 2013 Talks. pp. 44:1–44:1. SIGGRAPH ’13, ACM, New York, NY, USA (2013), DOI: 10.1145/2504459.2504515

Yamashita, S., Yoshida, H., Takase, K.: Development of numerical simulation method for relocation behavior of molten debris in nuclear reactors (1) preliminary analysis of relocation of molten debris to lower plenum. In: Proceedings of 21st International Conference on Nuclear Engineering (ICONE-21). vol. 4, p. V004T09A109. Nuclear Engineering Division (2013), DOI: 10.1115/icone21-16604

Downloads

Published

2017-10-19

How to Cite

Kawamura, T., Noda, T., & Idomura, Y. (2017). Performance Evaluation of Runtime Data Exploration Framework based on In-Situ Particle Based Volume Rendering. Supercomputing Frontiers and Innovations, 4(3), 43–54. https://doi.org/10.14529/jsfi170302