Performance Portability of HPC Discovery Science Software: Fusion Energy Turbulence Simulations at Extreme Scale

Authors

  • William Tang Princeton Institute for Computational Science and Engineering, Princeton University, Princeton
  • Bei Wang Princeton Institute for Computational Science and Engineering, Princeton University, Princeton
  • Stephane Ethier Princeton Plasma Physics Laboratory, Princeton
  • Zhihong Lin University of California Irvine, Irvine

DOI:

https://doi.org/10.14529/jsfi170105

Abstract

As HPC R&D moves forward on a variety of “path to exascale” architectures today, an associated objective is to demonstrate performance portability of discovery-science-capable software.  Important application domains, such as Magnetic Fusion Energy (MFE), have improved modelling of increasingly complex physical systems -- especially with respect to reducing “time-to-solution” as well as  “energy to solution.”  The emergence of new insights on confinement scaling in MFE systems has been aided significantly by efficient software capable of harnessing powerful supercomputers to carry out simulations with unprecedented resolution and temporal duration to address increasing problem sizes.  Specifically, highly scalable particle-in-cell (PIC) programing methodology is used in this paper to demonstrate how modern scientific applications can achieve efficient architecture-dependent optimizations of performance scaling and code portability for path-to-exascale platforms.

References

Dennard, R.H., Gaensslen, F.H., Rideout, V.L., Bassous, E., LeBlanc, A.R.: Design of ion-implanted mosfet’s with very small physical dimensions. IEEE Journal of Solid-State Circuits 9(5), 256–268 (Oct 1974), DOI: 10.1109/jssc.1974.1050511

Ethier, S., Tang, W.M., Lin, Z.: Gyrokinetic particle-in-cell simulations of plasma microturbulence on advanced computing platforms. Journal of Physics: Conference Series 16, 1–15 (2005), DOI: 10.2172/1222712

Ibrahim, K.Z., Madduri, K., Williams, S., Wang, B., Ethier, S., Oliker, L.: Analysis and optimization of gyrokinetic toroidal simulations on homogenous and heterogenous platforms. International Journal of High Performance Computing Applications (2013), DOI: 10.1145/2063384.2063415

Lin, Z., Ethier, S., Hahm, T.S., Tang, W.M.: Size scaling of turbulent transport in magnetically confined plasmas. Phys. Rev. Lett. 88, 195004 (Apr 2002), DOI: 10.1145/1654059.1654108

Lin, Z., Hahm, T.S., Lee, W.W., Tang, W.M., White, R.B.: Turbulent transport reduction by zonal flows: Massively parallel simulations. Science 281(5384), 1835–1837 (1998), DOI: 10.1126/science.281.5384.1835

Lin, Z., Lee, W.W.: Method for solving the gyrokinetic poisson equation in general geometry. Phys. Rev. E 52, 5646–5652 (Nov 1995), DOI: 10.1145/2063384.2063415

Madduri, K., Ibrahim, K.Z., Williams, S., Im, E.J., Ethier, S., Shalf, J., Oliker, L.: Gyrokinetic toroidal simulations on leading multi- and manycore HPC systems. In: Proc. Int’l. Conf. for High Performance Computing, Networking, Storage and Analysis (SC ’11). pp. 23:1–23:12. ACM, New York, NY, USA (2011), DOI: 10.2172/1273408

Madduri, K., Williams, S., Ethier, S., Oliker, L., Shalf, J., Strohmaier, E., Yelick, K.: Memory-efficient optimization of gyrokinetic particle-to-grid interpolation for multicore processors. In: Proc. ACM/IEEE Conf. on Supercomputing (SC 2009). pp. 48:1–48:12 (Nov 2009), DOI: 10.1145/2616498.2616526

McMillan, B.F., Lapillonne, X., Brunner, S., Villard, L., Jolliet, S., Bottino, A., G̈orler, T., Jenko, F.: System size effects on gyrokinetic turbulence. Phys. Rev. Lett. 105, 155001 (Oct 2010), DOI: 10.1103/physrevlett.105.155001

Moore, G.E.: Cramming more components onto integrated circuits, reprinted from electronics, volume 38, number 8, april 19, 1965, pp.114 ff. IEEE Solid-State Circuits Society Newsletter 11(5), 33–35 (Sept 2006), DOI: 10.1088/1742-6596/16/1/001

Rosner, R., et al.: Opportunities and challenges of exascale computing - doe advanced scientific computing advisory committee report (2010),https://science.energy.gov/~

/media/ascr/ascac/pdf/reports/Exascale_subcommittee_report.pdf, accessed: 2017-02-15

Tang, W., Wang, B., Ethier, S.: Scientific discovery in fusion plasma turbulence simulations at extreme scale. Computing in Science Engineering 16(5), 44–52 (Sept 2014), DOI: 10.1103/physrevlett.103.085004

Tang, W., Keyes, D.: Scientific grand challenges: Fusion energy science and the role of computing at the extreme scale. In: PNNL-19404. p. 212 (2009), DOI: 10.1177/1094342013492446

Tang, W., Wang, B., Ethier, S., Kwasniewski, G., Hoefler, T., Ibrahim, K.Z., Madduri, K., Williams, S., Oliker, L., Rosales-Fernandez, C., Williams, T.: Extreme scale plasma turbulence simulations on top supercomputers worldwide. In: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis. pp. 43:1–43:12. SC ’16, IEEE Press, Piscataway, NJ, USA (2016), http://dl.acm.org/citation.cfm?id=3014904.3014962, DOI: 10.1145/2063384.2063415

Wang, B., Ethier, S., Tang, W., Williams, T., Ibrahim, K.Z., Madduri, K., Williams, S., Oliker, L.: Kinetic turbulence simulations at extreme scale on leadership-class systems. In: Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis. pp. 82:1–82:12. SC ’13, ACM, New York, NY, USA (2013), DOI: 10.1103/physreve.52.5646

Wang, Y., Lin, J., Cai, L., Tang, W., Ethier, S., Wang, B., See, S., Matsuoka, S.: Porting and optimizing gtc-p on taihulight supercomputer with sunway openacc. In: HPC China (2016)

Xiao, Y., Lin, Z.: Turbulent transport of trapped-electron modes in collisionless plasmas. Phys. Rev. Lett. 103, 085004 (Aug 2009), DOI:10.1109/n-ssc.2006.4785860

Zhang, W.L.: CAAR project mid-term report. To be submitted (2016)

Downloads

Published

2017-04-12

How to Cite

Tang, W., Wang, B., Ethier, S., & Lin, Z. (2017). Performance Portability of HPC Discovery Science Software: Fusion Energy Turbulence Simulations at Extreme Scale. Supercomputing Frontiers and Innovations, 4(1), 83–97. https://doi.org/10.14529/jsfi170105