In Situ Visualization for 3D Agent-Based Vocal Fold Inflammation and Repair Simulation

Nuttiiya Seekhao, Joseph JaJa, Luc Mongeau, Nicole Y.K. Li-Jessen


A fast and insightful visualization is essential in modeling biological system behaviors and understanding underlying inter-cellular mechanisms. High fidelity models produce billions of data points per time step, making in situ visualization techniques extremely desirable as they mitigate I/O bottlenecks and provide computational steering capability. In this work, we present a novel high-performance scheme to couple in situ visualization with the simulation of the vocal fold inflammation and repair using little to no extra cost in execution time or computing resources. The visualization component is first optimized with an adaptive sampling scheme to accelerate the rendering process while maintaining the precision of the displayed visual results. Our software employs VirtualGL to perform visualization in situ. The scheme overlaps visualization and simulation, resulting in the optimal utilization of computing resources. This results in an in situ system biology simulation suite capable of remote simulation of 17 million biological cells and 1.2 billion chemical data points, remote visualization of the results, and delivery of visualized frames with aggregated statistics to remote clients in real-time.

Full Text:



Voice, speech, and language quick statistics. (2012) (accessed: 2016-10-3)

Ahrens, J., Jourdain, S., OLeary, P., Patchett, J., Rogers, D.H., Petersen, M.: An image-based approach to extreme scale in situ visualization and analysis. In: Damkroger, T., Dongarra, J. (eds.) SC14: International Conference for High Performance Computing, Networking, Storage and Analysis. pp. 424–434. IEEE (nov 2014), DOI: 10.1109/sc.2014.40

Arthur, W.B.: Chapter 32 out-of-equilibrium economics and agent-based modeling. In: Handbook of Computational Economics, pp. 1551–1564. Elsevier (2006), DOI: 10.1016/s1574-0021(05)02032-0

Ayachit, U., Bauer, A., Geveci, B., O'Leary, P., Moreland, K., Fabian, N., Mauldin, J.: ParaView catalyst. In: Weber, G.H. (ed.) Proceedings of the First Workshop on In Situ Infrastructures for Enabling Extreme-Scale Analysis and Visualization - ISAV2015. pp. 25–29. ACM Press (2015), DOI: 10.1145/2828612.2828624

Bainbridge, P.: Wound healing and the role of fibroblasts. Journal of Wound Care 22(8), 407–412 (aug 2013), DOI: 10.12968/jowc.2013.22.8.407

Bauer, A.C., Geveci, B., Schroeder, W.: The paraview catalyst users guide (2013)

Bhattacharyya, N.: The prevalence of voice problems among adults in the united states. The Laryngoscope 124(10), 2359–2362 (may 2014), DOI: 10.1002/lary.24740

Bonabeau, E.: Agent-based modeling: Methods and techniques for simulating human systems. Proceedings of the National Academy of Sciences 99(Supplement 3), 7280–7287 (may 2002), DOI: 10.1073/pnas.082080899

Brown, B.N., Price, I.M., Toapanta, F.R., DeAlmeida, D.R., Wiley, C.A., Ross, T.M., Oury, T.D., Vodovotz, Y.: An agent-based model of inflammation and fibrosis following particulate exposure in the lung. Mathematical Biosciences 231(2), 186–196 (jun 2011), DOI: 10.1016/j.mbs.2011.03.00510.

Caiani, A., Russo, A., Palestrini, A., Gallegati, M.: Economics with Heterogeneous Interacting Agents: A Practical Guide to Agent-Based Modeling. Springer (2016)

Cilfone, N.A., Kirschner, D.E., Linderman, J.J.: Strategies for efficient numerical implementation of hybrid multi-scale agent-based models to describe biological systems. Cellular and Molecular Bioengineering 8(1), 119–136 (nov 2014), DOI: 10.1007/s12195-014-0363-6

D'Souza, R.M., Lysenko, M., Marino, S., Kirschner, D.: Data-parallel algorithms for agent-based model simulation of tuberculosis on graphics processing units. In: Wainer, G.A., Shaffer, C.A., McGraw, R.M., Chinni, M.J. (eds.) Proceedings of the 2009 Spring Simulation Multiconference. p. 21. Society for Computer Simulation International, SCS/ACM (2009)

Gras, R., Devaurs, D., Wozniak, A., Aspinall, A.: An individual-based evolving predatorprey ecosystem simulation using a fuzzy cognitive map as the behavior model. Artificial Life 15(4), 423–463 (oct 2009), DOI: 10.1162/artl.2009.gras.012

Henderson, A., Ahrens, J., Law, C., et al.: The ParaView Guide. Kitware Clifton Park, NY (2004)

Janssen, M.A.: Agent-based modelling. Modelling in ecological economics pp. 155–172 (2005)

Johns, M.M.: Update on the etiology, diagnosis, and treatment of vocal fold nodules, polyps, and cysts. Current Opinion in Otolaryngology & Head and Neck Surgery 11(6), 456–461 (Dec 2003), DOI: 10.1097/00020840-200312000-00009

Krekhov, A., Grninger, J., Schlnvoigt, R., Krger, J.: Towards in situ visualization of extreme-scale, agent-based, worldwide disease-spreading simulations. In: SIGGRAPH Asia 2015 Visualization in High Performance Computing on - SA '15. ACM Press (2015), DOI: 10.1145/2818517.2818543

Lampert, A., Hastings, A.: Stability and distribution of predator-prey systems: local and regional mechanisms and patterns. Ecology Letters 19(3), 279–288 (jan 2016), DOI: 10.1111/ele.12565

Li, N.Y.K., Abbott, K.V., Rosen, C., An, G., Hebda, P.A., Vodovotz, Y.: Translational systems biology and voice pathophysiology. The Laryngoscope 120(3), 511–515 (mar 2010), DOI: 10.1002/lary.20755

Li, N.Y.K., Verdolini, K., Clermont, G., Mi, Q., Rubinstein, E.N., Hebda, P.A., Vodovotz, Y.: A patient-specific in silico model of inflammation and healing tested in acute vocal fold injury. PLoS ONE 3(7), e2789 (jul 2008), DOI: 10.1371/journal.pone.0002789

Li, N.Y.K., Vodovotz, Y., Hebda, P.A., Abbott, K.V.: Biosimulation of inflammation and healing in surgically injured vocal folds. Annals of Otology, Rhinology & Laryngology 119(6), 412–423 (jun 2010), DOI: 10.1177/000348941011900609

Li, N.Y.K., Vodovotz, Y., Kim, K.H., Mi, Q., Hebda, P.A., Abbott, K.V.: Biosimulation of acute phonotrauma: An extended model. The Laryngoscope 121(11), 2418–2428 (oct 2011), DOI: 10.1002/lary.2222623.

Martin, K.S., Blemker, S.S., Peirce, S.M.: Agent-based computational model investigates muscle-specific responses to disuse-induced atrophy. Journal of Applied Physiology 118(10), 1299–1309 (feb 2015), DOI: 10.1152/japplphysiol.01150.2014

McLane, A.J., Semeniuk, C., McDermid, G.J., Marceau, D.J.: The role of agent-based models in wildlife ecology and management. Ecological Modelling 222(8), 1544–1556 (apr 2011), DOI: 10.1016/j.ecolmodel.2011.01.020

McLane, A.J., Semeniuk, C., McDermid, G.J., Tomback, D.F., Lorenz, T., Marceau, D.: Energetic behavioural-strategy prioritization of clark’s nutcrackers in whitebark pine communities: An agent-based modeling approach. Ecological Modelling 354, 123–139 (jun 2017), DOI: 10.1016/j.ecolmodel.2017.03.019

Mi, Q., Li, N.Y.K., Ziraldo, C., Ghuma, A., Mikheev, M., Squires, R., Okonkwo, D.O., Verdolini-Abbott, K., Constantine, G., An, G., Vodovotz, Y.: Translational systems biology of inflammation: potential applications to personalized medicine. Personalized Medicine 7(5), 549–559 (sep 2010), DOI: 10.2217/pme.10.45

Misono, S., Marmor, S., Roy, N., Mau, T., Cohen, S.M.: Multi-institutional study of voice disorders and voice therapy referral. Otolaryngology-Head and Neck Surgery 155(1), 33–41 (jul 2016), DOI: 10.1177/0194599816639244

Nvidia, C.: Compute unified device architecture programming guide (2007)

Page, S.E.: Agent based models. The New Palgrave Dictionary of Economics. Palgrave MacMillan, New York (2005), DOI: 10.1057/9780230226203.0016

Project, T.V.: VirtualGL background. (2015)

Richmond, P., Walker, D., Coakley, S., Romano, D.: High performance cellular level agentbased simulation with FLAME for the GPU. Briefings in Bioinformatics 11(3), 334–347 (Feb 2010), DOI: 10.1093/bib/bbp073

Seekhao, N., Shung, C., Jaja, J., Mongeau, L., Li-Jessen, N.Y.K.: Real-time agent-based modeling simulation with in-situ visualization of complex biological systems: A case study on vocal fold inflammation and healing. In: 2016 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW). IEEE (may 2016), DOI: 10.1109/ipdpsw.2016.20

Seekhao, N., Shung, C., JaJa, J., Mongeau, L., Li-Jessen, N.Y.: High-resolution 3d vocal fold repair simulation using highly-parallelized agent-based modeling. submitted to PloS one (2017)

Shi, Z., Chapes, S.K., Ben-Arieh, D., Wu, C.H.: An agent-based model of a hepatic inflammatory response to salmonella: A computational study under a large set of experimental data. PLOS ONE 11(8), e0161131 (aug 2016), DOI: 10.1371/journal.pone.0161131

Su, Y., Wang, Y., Agrawal, G.: In-situ bitmaps generation and efficient data analysis based on bitmaps. In: Kielmann, T., Hildebrand, D., Taufer, M. (eds.) Proceedings of the 24th International Symposium on High-Performance Parallel and Distributed Computing - HPDC '15. pp. 61–72. ACM Press (2015), DOI: 10.1145/2749246.274926836.

Tesfatsion, L.: Agent-based computational economics: modeling economies as complex adaptive systems. Information Sciences 149(4), 262–268 (feb 2003), DOI: 10.1016/s0020-0255(02)00280-3

Tesfatsion, L.: Agent-based computational economics: Growing economies from the bottom up. Artificial Life 8(1), 55–82 (jan 2002), DOI: 10.1162/106454602753694765

Tesfatsion, L.: Chapter 16 agent-based computational economics: A constructive approach to economic theory. In: Handbook of Computational Economics, pp. 831–880. Elsevier (2006), DOI: 10.1016/s1574-0021(05)02016-2

Tesfatsion, L., Judd, K.L.: Handbook of computational economics: agent-based computational economics, vol. 2. Elsevier (2006)

Velnar, T., Bailey, T., Smrkolj, V.: The wound healing process: An overview of the cellular and molecular mechanisms. Journal of International Medical Research 37(5), 1528–1542 (Oct 2009), DOI: 10.1177/147323000903700531

Wang, Z., Butner, J.D., Kerketta, R., Cristini, V., Deisboeck, T.S.: Simulating cancer growth with multiscale agent-based modeling. Seminars in Cancer Biology 30, 70–78 (Feb 2015), DOI: 10.1016/j.semcancer.2014.04.001

Publishing Center of South Ural State University (454080, Lenin prospekt, 76, Chelyabinsk, Russia)