Multi-Scale Supercomputing of Large Molecular Aggregates: A Case Study of the Light-Harvesting Photosynthetic Center

Alexander V. Nemukhin, Igor V. Polyakov, Alexander I. Moskovsky


Numerical solution of the quantum mechanical Schrödinger equation is required to model electronic excitations in the light-harvesting photosynthetic complexes composed of up to millions of atoms. We demonstrate that the modern supercomputers can be used to treat electronic structure calculations in such large molecular aggregates if proper multi-scale massive-parallel approaches are applied. We show that the three-level parallelization scheme based on the novel numerical algorithms assuming fragmentation of a light-harvesting complex allows us to reduce considerably the high scaling of ab initio quantum chemistry methods. More specifically we applied the time-dependent density functional theory based upon the fragment molecular orbital presentation (FMO-TDDFT) implemented at the modern supercomputers to obtain a realistic estimate of the electronic excitation in the complex. The application shows a good overall scaling.  

Full Text:



K. Kitaura, E. Ikeo, T. Asada, T. Nakano, and M. Uebayasi. Fragment molecular orbital method: an approximate computational method for large molecules. Chem. Phys. Lett., 313: 701-706, 1999. DOI: 10.1016/S0009-2614(99)00874-X.

D. G. Fedorov and K. Kitaura in Modern Methods for Theoretical Physical Chemistry and Biopolymers, edited by E. B. Starikov, J. P. Lewis, and S. Tanaka, Elsevier, Amsterdam, pp. 3–38, 2006.

T. Nagata, D. G. Fedorov, and K. Kitaura, in Linear-Scaling Techniques in Computational Chemistry and Physics, edited by R. Zaleśny et al., Springer, pp.17-64, 2011.

M.G. Khrenova, A.V. Nemukhin, B.L. Grigorenko, P. Wang, and J.-P. Zhang. All-atom structures and calcium binding sites of the bacterial photosynthetic LH1-RC core complex from Thermochromatium tepidum. J. Mol. Model.,20: 2287(1-6), 2014. DOI:10.1007/s00894-014-2287-4.

Mahito Chiba, Dmitri Fedorov, and Kazuo Kitaura. Time-dependent density functional theory based upon the fragment molecular orbital method. J. Chem. Phys., 27: 104108, 2007. DOI: 10.1063/1.2772850.

M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.H. Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen, S.J. Su, T.L. Windus, M. Dupuis, J.A. Montgomery. General Atomic and Molecular Electronic Structure System. J. Comput. Chem., 14: 1347-1363, 1993. DOI: 10.1002/jcc.540141112.

V. Sadovnichy, A. Tikhonravov, Vl. Voevodin, and V. Opanasenko. "Lomonosov": Supercomputing at Moscow State University. In Contemporary High Performance Computing: From Petascale toward Exascale (Chapman & Hall/CRC Computational Science), pp.283-307, Boca Raton, USA, CRC Press, 2013.

D. G. Fedorov, R. M. Olson, K. Kitaura, M. S. Gordon, and S. Koseki. A new hierarchical parallelization scheme: generalized distributed data interface (GDDI), and an application to the fragment molecular orbital method (FMO). J. Comput. Chem., 25: 872-880, 2004. DOI: 10.1002/jcc.20018.

Igor V. Polyakov, Bella L. Grigorenko, Alexander A. Moskovsky, Vladimir M. Pentkovski, and Alexander V. Nemukhin. Towards quantum-based modeling of enzymatic reaction pathways: Application to the acetylholinesterase catalysis. Chem. Phys. Lett., 556: 251–255, 2013. DOI:10.1016/j.cplett.2012.11.021.

Xiche Hu, Thorsten Ritz, Ana Damjanovic, and Klaus Schulten. Pigment organization and transfer of electronic excitation in the photosynthetic unit of purple bacteria. J. Phys. Chem. B, 101: 3854-3871, 1997. DOI: 10.1021/jp963777g.

S. Tretiak, C. Middleton, V. Chernyak, and S. Mukamel. Bacteriochlorophyll and carotenoid excitonic couplings in the LH2 system of purple bacteria. J. Phys. Chem. B, 104: 9540-9553 2000. DOI: 10.1021/jp001585m.

B. Scott Fales and Benjamin G. Levine. Nanoscale multireference quantum chemistry: Full configuration interaction on graphical processing units. J. Chem. Theory Comput., 11: 4708−4716, 2015. DOI: 10.1021/acs.jctc.5b00634.

Publishing Center of South Ural State University (454080, Lenin prospekt, 76, Chelyabinsk, Russia)