Distinct Element Simulation of Mechanical Properties of Hypothetical CNT Nanofabrics

Igor A. Ostanin

Abstract


A universal framework for modeling composites and fabrics of micro- and nanofibers, such as carbon nanotubes, carbon fibers and amyloid fibrils, is presented. Within this framework, fibers are represented with chains of rigid bodies, linked with elastic bonds. Elasticity of the bonds utilizes recently developed enhanced vector model formalism. The type of interactions between fibers is determined by their nature and physical length scale of the simulation. The dynamics of fibers is computed using the modification of rigid particle dynamics module of the waLBerla multiphysics framework. Our modeling system demonstrates exceptionally high parallel performance combined with the physical accuracy of the modeling. The efficiency of our technique is demonstrated with an illustrative mechanical test on a hypothetical carbon nanotube textile. In this example, the elasticity of the fibers represents the coarse-grained covalent bond within CNT surface, whereas interfiber interactions represent coarse-grained van der Waals forces between cylindrical segments of nanotubes. Numerical simulation demonstrates stability and extremal strength of a hypothetical carbon nanotube fabric.

Full Text:

PDF

References


Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991). DOI: 10.1038/354056a0

Baughman, R.: Carbon nanotubes – the route towards application. Science 297, 787–792 (2002). DOI: 10.1126/science.1060928

Eppell, S., Smith, B., Kahn, H., Ballarini, R.: Nano measurements with micro-devices: mechanical properties of hydrated collagen fibrils. Journ. Roy. Soc. Int. 3(6), 117–121 (2006). DOI: 10.1098/rsif.2005.0100

Chand, S.: Review carbon fibers for composites. Journ. Mater. Sci. 35(6), 1303–1313 (2000). DOI: 10.1023/a:1004780301489

Yakobson, B., Brabec, C., Bernholc, J.: Nanomechanics of Carbon Tubes: Instabilities beyond Linear Response. Phys. Rev. Lett. 76(14), 2511 (1996). DOI: 10.1103/physrevlett.76.2511

Dumitrica, T., Hua, M., Yakobson, B.: Symmetry-, time-, and temperature-

dependent strength of carbon nanotubes. Proc. Natl. Acad. Sci. U.S.A. 103(16), 6105 (2006). DOI: 10.1073/pnas.0600945103

Zhang, D., Dumitrica, T.: Elasticity of ideal single-walled carbon nanotubes via symmetry-adapted tight-binding objective modeling. Appl. Phys. Lett. 93, 031919 (2008). DOI: 10.1063/1.2965465

Nikiforov, I., Zhang, D., James, R., Dumitrica, T.: Wavelike rippling in multiwalled carbon nanotubes under pure bending. Appl. Phys. Lett. 96, 123107 (2010). DOI: 10.1063/1.3368703

Buehler, M.: Mesoscale modeling of mechanics of carbon nanotubes: Self-assembly, self-folding and fracture. Journ. Mat. Res. 21(11), 2855 (2006). DOI: 10.1557/jmr.2006.0347

Cranford, S., Buehler, M.: In silico assembly and nanomechanical characterization of carbon nanotube buckypaper. Nanotechnology 21, 265706 (2010). DOI: 10.1088/0957-4484/21/26/265706

Mirzaeifar, R., Qin, Z., Buehler, M.: Mesoscale mechanics of twisting carbon nanotube yarns. Nanoscale 7(12), 5435 (2015). DOI: 10.1039/c4nr06669c

Anderson, T., Akatyeva, E., Nikiforov, I., Potyondy, D., Ballarini, R., Dumitrica, T.: Toward distinct element method simulations of carbon nanotube systems. Journ. Nanotech. Eng. Med. 1(4), 0410009 (2010). DOI: 10.1115/1.4002609

Ostanin, I., Ballarini, R., Potyondy, D., Dumitrica, T.: A distinct element method for large scale simulations of carbon nanotube assemblies. Mech. Phys. Sol. 61(3), 762–782 (2013). DOI: 10.1016/j.jmps.2012.10.016

Ostanin, I., Ballarini, R., Dumitrica, T.: Distinct element method modeling of carbon nanotube bundles with intertube sliding and dissipation. Appl. Mech. 81(6), 061004 (2014). DOI: 10.1115/1.4026484

Wang, Y., Gaidau, C., Ostanin, I., Dumitrica, T.: Ring windings from single-wall carbon nanotubes: A distinct element method study. Appl. Phys. Lett. 103 (18), 183902 (2013). DOI: 10.1063/1.4827337

Wang, Y., Semler, M., Ostanin, I., Hobbie, E., Dumitrica, T.: Rings and rackets from single-wall carbon nanotubes: manifestations of mesoscale mechanics. Soft Matter 10 (43), 8635–8640 (2014). DOI: 10.1038/354056a0

Ostanin, I., Ballarini, R., Dumitrica, T.: Rings and rackets from single-wall carbon nanotubes: manifestations of mesoscale mechanics. Journ. Mat. Res. 30(1), 19 (2015). DOI: 10.1039/c4sm00865k

Wang, Y., Ostanin, I., Gaidau, C., Dumitrica, T.: Twisting carbon nanotube ropes with the mesoscopic distinct element method: Geometry, packing, and nanomechanics. Langmuir 31(45), 12323 (2015). DOI: 10.1021/acs.langmuir.5b03208

Ostanin, I., Zhilyaev, P., Petrov, V., Dumitrica, T., Eibl, S., Ruede, U., Kuzkin, V.: Toward large scale modeling of carbon nanotube systems with the mesoscopic distinct element method. Mater. 8(3), 240–245 (2018). DOI: 10.22226/2410-3535-2018-3-240-245

Preclik, T., Ruede U.: Ultrascale simulations of non-smooth granular dynamics. Comp. Part. Mech., 2, 173 (2015). DOI: 10.1007/s40571-015-0047-6

Itasca Consulting Group Inc., 2015. PFC3D (Particle Flow Code in Three Dimensions). Version 5.0. Itasca Consulting Group Inc., Minneapolis

Kuzkin, V., Asonov, I.: Vector-based model of elastic bonds for simulation of granular solids. Phys. Rev. E, 86(5), 051301 (2012). DOI: 10.1103/physreve.86.051301

Kuzkin, V., Krivtsov, A.: Enhanced vector-based model for elastic bonds in solids. Lett. Mat. 7(4), 455 (2017). DOI: 10.22226/2410-3535-2017-4-455-458

MPI Forum. MPI: A message-passing interface standard. Technical report, Knoxville, TN, USA (1994)

Ericson, C.: Real-time collision detection. CRC Press (2004)

Zacharov, I., Arslanov, R., Gunin, M., Stefonshin, D., Pavlov, S., Panarin, O., Maliutin, A., Rykovanov., S.: "Zhores" : new PFlops supercomputer for data-driven modeling, machine learning and artificial intelligence installed in Skolkovo Institute of Science and Technology. Preprint arxiv 1902.07490 (2018)

Huang, C.K., Lou, W.M., Tsai, C.J., Wu, T.C., Lin, H.Y.: Mechanical properties of polymer thin film measured by the bulge test. Thin Sol. Films 515, 7222 (2007). DOI: 10.1016/j.tsf.2007.01.058




Publishing Center of South Ural State University (454080, Lenin prospekt, 76, Chelyabinsk, Russia)