LAMMPS Code Simulation of the Defect Formation Induced by Ion Incidence in Carbon Nanotubes

Andrey A. Shemukhin, Anton V. Nazarov, Anton V. Stepanov


A molecular dynamic calculation of the multi-walled carbon nanotube thermal sputtering induced by ion irradiation is carried out. Sputtering results comparable to experimental data are obtained. There are two models of ion and thermal sputtering discussed in the paper. The simulation tested the model of thermal amorphization and revealed that the disordering of multi-walled carbon nanotubes structure occurs as a result of their heating under ion irradiation. Classical molecular dynamic simulation was performed using LAMMPS code. Simulation cell with 14 layers multi-walled carbon nanotube 12×12×30 nm size contains 285600 atoms. Multi-walled carbon nanotube was irradiated by 80 keV energy Ar+ ions in cumulative mode. Simulation was performed on the Lomonosov-1 supercomputer. About 24600 nodes-hours were spent on one simulation as a whole. The balancing of MPI ows for a spatial grid of counting nodes occurred according to the scheme 8×8×128 MPI-stream. LAMMPS code was built with Intel 12.0 compiler. This configuration allowed to speed up the calculation in comparison with the calculation on a single-processor Xeon CPU X5570 2.93 GHz machine by 60 times.

Full Text:



Collins, P.G.: Defects and disorder in carbon nanotubes, Oxford Handbook of Nanoscience and Technology, vol. 2, chap. Materials: Structures, Properties and Characterization Techniques. Oxford University Press (2017), DOI: 10.1093/oxfordhb/9780199533053.013.2

Dedkov, G.: Fullerene nanotubes can be used when transporting gamma-quanta, neutrons, ion beams and radiation from relativistic particles. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 143(4), 584–590 (1998), DOI: 10.1016/S0168-583X(98)00388-7

Elsehly, E.M., Chechenin, N., Makunin, A., Shemukhin, A., Motaweh, H.: Enhancement of cnt-based lters efficiency by ion beam irradiation. Radiation Physics and Chemistry 146, 19–25 (2018), DOI: 10.1016/j.radphyschem.2018.01.007

Elsehly, E.M., Chechenin, N.G., Makunin, A.V., Shemukhin, A.A., Motaweh, H.A.: He ion irradiation effects on multiwalled carbon nanotubes structure. The European Physical Journal D 71(4), 79 (2017), DOI: 10.1140/epjd/e2017-70658-0

Kim, D.H., Jang, H.S., Kim, C.D., Cho, D.S., Kang, H.D., Lee, H.R.: Enhancement of the field emission of carbon nanotubes straightened by application of argon ion irradiation. Chemical Physics Letters 378(3), 232–237 (2003), DOI: 10.1016/S0009-2614(03)01249-1

Krasheninnikov, A.V., Nordlund, K., Keinonen, J.: Production of defects in supported carbon nanotubes under ion irradiation. Phys. Rev. B 65, 165423 (2002), DOI: 10.1103/Phys-RevB.65.165423

Krasheninnikov, A.V., Nordlund, K., Lehtinen, P.O., Foster, A.S., Ayuela, A., Nieminen, R.M.: Adsorption and migration of carbon adatoms on carbon nanotubes: Density-functional ab initio and tight-binding studies. Phys. Rev. B 69, 073402 (2004), DOI: 10.1103/PhysRevB.69.073402

Krasheninnikov, A.V., Nordlund, K., Sirvio, M., Salonen, E., Keinonen, J.: Formation of ion-irradiation-induced atomic-scale defects on walls of carbon nanotubes. Phys. Rev. B 63, 245405 (2001), DOI: 10.1103/PhysRevB.63.245405

Krasheninnikov, A., Lehtinen, P., Foster, A., Nieminen, R.: Bending the rules: Contrasting vacancy energetics and migration in graphite and carbon nanotubes. Chemical Physics Letters 418(1), 132–136 (2006), DOI: 10.1016/j.cplett.2005.10.106

Kushkina, K., Shemukhin, A., Vorobyeva, E., Bukunov, K., Evseev, A., Tatarintsev, A., Maslakov, K., Chechenin, N., Chernysh, V.: Evolution of the multi-walled carbon nanotubes structure with increasing fluence of he ion irradiation. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 430, 11–17 (2018), DOI: 10.1016/j.nimb.2018.05.038

Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. Journal of Computational Physics 117(1), 1–19 (1995), DOI: 10.1006/jcph.1995.1039

Raghuveer, M.S., Ganesan, P.G., DArcy-Gall, J., Ramanath, G., Marshall, M., Petrov, I.: Nanomachining carbon nanotubes with ion beams. Applied Physics Letters 84(22), 4484–4486 (2004), DOI: 10.1063/1.1756191

Robinson, J.A., Snow, E.S., Bdescu, .C., Reinecke, T.L., Perkins, F.K.: Role of defects in single-walled carbon nanotube chemical sensors. Nano Letters 6(8), 1747–1751 (2006), DOI: 10.1021/nl0612289

Rochefort, A., Avouris, P.: Quantum size effects in carbon nanotube intramolecular junctions. Nano Letters 2(3), 253–256 (2002), DOI: 10.1021/nl015705t

Sadovnichy, V., Tikhonravov, A., Voevodin, Vl., Opanasenko, V.: "Lomonosov": Supercomputing at Moscow State University. In: Contemporary High Performance Computing: From Petascale toward Exascale. pp. 283–307. Chapman & Hall/CRC Computational Science, Boca Raton, United States, Boca Raton, United States (2013)

Scarselli, M., Camilli, L., Castrucci, P., Nanni, F., Gobbo, S.D., Gautron, E., Lefrant, S., Crescenzi, M.D.: In situ formation of noble metal nanoparticles on multiwalled carbon nanotubes and its implication in metalnanotube interactions. Carbon 50(3), 875–884 (2012), DOI: 10.1016/j.carbon.2011.09.048

Stepanov, A., Filippov, G.: Channeling of low energy atomic particles in carbon nanotubes with heterojunctions. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 402, 263–266 (2017), DOI: 10.1016/j.nimb.2017.03.134

Stuart, S.J., Tutein, A.B., Harrison, J.A.: A reactive potential for hydrocarbons with intermolecular interactions. The Journal of Chemical Physics 112(14), 6472–6486 (2000), DOI: 10.1063/1.481208

Ziegler, J.F., Biersack, J.P.: The stopping and range of ions in matter. In: Bromley, D.A. (ed.) Treatise on Heavy-Ion Science: Volume 6: Astrophysics, Chemistry, and Condensed Matter, pp. 93–129. Springer US, Boston, MA (1985), DOI: 10.1007/978-1-4615-8103-1_3

Publishing Center of South Ural State University (454080, Lenin prospekt, 76, Chelyabinsk, Russia)