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Scientific Big Data Visualization: a Coupled Tools Approach
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David Vicente1,5, Hadrien Calmet1,6, Guillermo Maŕın1,7, Guillaume
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We designed and implemented a parallel visualisation system for the analysis of large scale

time-dependent particle type data. The particular challenge we address is how to analyse a high

performance computation style dataset when a visual representation of the full set is not possible

or useful, and one is only interested in finding and inspecting smaller subsets that fulfil certain

complex criteria. We used Paraview as the user interface, which is a familiar tool for many HPC

users, runs in parallel, and can be conveniently extended. We distributed the data in a super-

computing environment using the Hadoop file system. On top of it, we run Hive or Impala, and

implemented a connection between Paraview and them that allows us to launch programmable

SQL queries in the database directly from within Paraview. The queries return a Paraview-native

VTK object that fits directly into the Paraview pipeline. We find good scalability and response

times. In the typical supercomputer environment (like the one we used for implementation) the

queue and management system make it difficult to keep local data in between sessions, which im-

poses a bottleneck in the data loading stage. This makes our system most useful when permanently

installed on a dedicated cluster.

Introduction

High performance computer simulations can now routinely reach the peta-scale, producing

up to tens or even hundreds of GB of data per single time step. The visualisation of such large

data poses many challenges: from the practical details (e.g. visualisation must be done on site

as the data is too large to move), to high level cognitive questions (e.g. how much and what part

of the data is enough to reach meaningful conclusions.)

By far, the most time consuming operation in a large scale visualisation application is I/O.

In a survey of visualisation performance on six supercomputers, Childs et. al. [1] showed that

I/O time can be up to two orders of magnitude larger than calculation and render time. Re-

cently, Mitchell, Ahrens and Wang [2] proposed a hybrid approach in which data was distributed

across an HPC cluster using the Hadoop Distributed File System (HDFS), and used Kit-Wares

ParaView as the user interface. The geometrical locality of data allowed to distribute the infor-

mation such that each ParaView server had local access (through Hadoop) to the data needed

for the distributed rendering. The performance increased linearly with the number of nodes

used, following the effective bandwidth available to ParaView. However, this approach would

have difficulty handling data that has time dependent geometry, or that requires parallel distri-

bution along more than one variable. The example that motivated us was particle-like data from
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biomechanical simulations, which move around during the simulation time, and that have phys-

ical properties relevant for the visualisation but that do not correlate with the fixed geometrical

information of the computational mesh.

We follow along the line of and propose a more flexible system, which allows to distribute the

dataset simultaneously across many different variables, and that permits to interactively extract

and visualise subsets that fulfil certain conditions. Specifically, we deploy the Apache Hive on

top of Hadoop, and implement a set of plugins for ParaView users to interact directly through

programmable actions. We have pre-programmed filters with typical questions like Where do the

particles that ended up in a given region come from?, or find all particles and their trajectories

that are of a given type and go through this region at a certain time. ParaView allows to configure

the query regions or domains through the GUI, and the user does not need to enter any code.

However, more complex questions can be configured only using the SQL-like language of Hive

and integrated seamlessly in ParaView.

By using HDFS we are able to handle huge numbers of particles and time steps, and the

coupling between ParaView and Hive allows us to interact, process, and visualise them in almost-

real time. A simple geometrical distribution criteria would invariably produce unbalanced loads

(e.g. at the initial time all particles are concentrated in the launch region). By not using HDFS

directly but through Hive, our system allows us to distribute particles using criteria like physical

properties or simply the number of particles. Another advantage of this setup is that the set of

nodes running HDFS/Hive need not be the same used for Paraview. In fact, in principle they do

not even need to be run on the same computer (although one can expect a latency cost in this

configuration), similar to what can be seen in information visualisation software like Tableau [3].

In this paper we focus on outlining the architecture of the system as we implemented it

for validation. We describe the separate tools we used, and what is required to couple them in

a supercomputing environment. The dataset we used for testing is a simulation of the airflow

through the human respiratory system performed by Alya [4] on the FERMI supercomputer,

Italy. Although the set of filters we developed and tested were geared towards this biomechanical

simulation, our system should be useful for all types of simulation that track particles moving

in fluids or vector fields (e.g. supernova explosions or agent based modelling).

1. Background: The tools

1.1. Paraview

ParaView [5] is an open-source, multi-platform data analysis and visualization application.

ParaView users can quickly build visualizations to analyze their data using qualitative and quan-

titative techniques. The data exploration can be done interactively in 3D or programmatically

using ParaView’s batch processing capabilities.

ParaView was developed to analyze extremely large datasets using distributed memory

computing resources. It can be run on supercomputers to analyze datasets of petscale size

as well as on laptops for smaller data. It has a client server architecture to facilitate remote

visualization of datasets, and generates level of detail (LOD) models to maintain interactive

frame rates for large datasets.

Paraview is developed in the C++ programming language, and it is possible to add new

functionality to it through an extensive plugin mechanism that allows to:

• Add new readers, writers, filters
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• Add custom GUI components such as toolbar buttons to perform common tasks

• Add new views in for display data

The plugins are based on the VTK library [6], an open-source system for 3D computer

graphics, image processing and visualization. VTK consists of a C++ class library and several

interpreted interface layers including Tcl/Tk, Java, and Python. With Paraview you can create

a VTK filter library and integrate its functionallity into the Paraview data analisys pipeline

with a custom GUI associated to this library.

1.2. Hadoop

Hadoop [7] is a complete open source software architecture designed to solve the problem

of retrieving and analyzing large data sets with deep and computationally intensive operations,

like clustering and targeting. Hadoop implements a distributed file system called HDFS (Hadoop

Distributed File System) that is designed to be installed in a computer cluster. Each computer

node on the cluster runs a Hadoop daemon (DataNode) that controls the local hard drives of

the node as a part of the HDFS. Hadoop also runs a control daemon (NameNode) on one of

the computer nodes, responsible for distributing and replicating files along the controlled hard

drive nodes.

Hadoop allow users to execute MapReduce [8] jobs with the data stored in the HDFS.

MapReduce is a functional-type programming model that allows to execute operations in parallel

on the DataNodes, mapping the operations out to all of the Hadoop nodes and then reducing

the results back into a single result set.

Figure 1. Example of MapReduce execution

1.3. Hive and other data warehouse software

Apache Hive [9] is an open source data warehouse infrastructure built on top of Hadoop for

providing data summarization, query, and analysis. Hive is a data base engine that transforms

SQL based queries [10] into MapReduce jobs for Hadoop clusters.

Scientific Big Data Visualization: a Coupled Tools Approach
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In general, complex database query problems are easier to solve writing them in SQL-like

notation than creating MapReduce jobs to solve them. Furthermore, connecting applications

with ODBC database drivers are easier than connecting to a Hadoop cluster, as Hive provides

an abstraction layer that facilitates using Hadoop as a data warehouse system.

Hive offers tools to improve the queries performance taking advantage of the Hadoop archi-

tecture:

• Partitioning: Tables are linked to directories on HDFS with files in them. Without par-

titioning, Hive reads all the data in the directory and applies the query filters on it. On

the other hand, with partitioning Hive stores the data in different directories and allows

to read a reduced number of directories when it applies a query.

• Bucketing: By organizing tables or partitions into buckets, one can decrease the response

time of join operations: A join of two tables that are bucketed on the same columns (which

include the join columns) can be efficiently implemented as a map-side join.

• Map-joins: Hive allows to load the entire table in memory to speed up the joins (this only

works for tables that are smaller than the computer main memory size).

• Parallel Execution: Hive is capable of parallelizing the execution of complex SQL queries

by default.

Impala [11] is another data base engine that works on top of Hadoop and in combination

with Hive. It has its own query solver that replaces the MapReduce jobs generated by Hive. The

Impala query solver works faster than Hive but requires more RAM memory in the nodes. We

have performed local tests (in a workstation) with Impala, showing a remarkable improvement

in the response times of the system compared to using only Hive. However, we have not been

yet able to adapt Impala to our supercomputer queue system. We plan to continue working to

adapt Impala to our infrastructure in a near future.

1.4. The physical problem

The physical problem that led us to develop our tools is the simulation of air flow through

the human respiratory system. Of particular medical interest is the simulation of Lagrangian

particles (transported by the fluid) that can represent medicine or pollutants in the air.

1.4.1. The Alya system

Alya is the BSC in-house HPC-based multi-physics simulation code. It is designed from

scratch to simulate highly complex problems seamlessly adapted to run efficiently onto high-end

parallel supercomputers. The target domain is engineering, with all its particular features: com-

plex geometries and unstructured meshes, coupled multi-physics with exotic coupling schemes

and Physical models, ill-posed problems, flexibility needs for rapidly including new models,

etc. Since its conception in 2004, Alya has shown scaling behaviour in an increasing number

of cores. Alya is one of the twelve codes of the PRACE unified European benchmark suite

(http://www.prace-ri.eu/ueabs), and therefore complies with the highest HPC European stan-

dards in terms of performance.

Two physical modules of Alya have been used to carry this work out. One the one hand,

the incompressible Navier-Stokes equations are solved in a sniff condition, using a mesh of 350M

elements. On the other hand, Lagrangian particles are transported by the fluid, by means of

drag law and Brownian motion. All the details concerning the algorithms used in this work can
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be found in [12–15]. The simulations were performed on the Blue Gene Q supercomputer Fermi

(CINECA, Italy), through a regular PRACE access call [16].

1.4.2. Numerical solution

The particular simulation output we worked with consists of a unique CSV file, with each

row specifying the properties for one particle: time step, position, velocity, type, family, etc. A

typical simulation generates a 300 Gb file. While the size can clearly be reduced by adopting

a binary format, the actual limitation was the previous software (in house developed) used to

analyze the data which could only handle a few thousand particles and time steps. For analysis

purposes, having a larger data set directly correlates with better statistics and finer results. In

fig. 2 we show a 3D representation of a typical simulation.

Figure 2. Example of the simulation results CSV file

Experts in fluid dynamics and nasal inspiratory flows were interviewed in order to make a

list of the most important questions they would like to see answered using the simulation results:

• What is the path followed by a certain particle? We want to view in the 3D environment

the path that followed a single (selectable) particle from the first to the last simulation

time step.

• How are particles mixed in a certain region? We have different particles types: oxygen,

co2, drugs, and we want to know how they are mixed in a certain region. We also need a

visual representation and a concentration percentage information.

• Where do particles in certain region come from? Smell is a directional sense, and we have

a delimited section inside our noses with sensors capable of smelling. The question aims

to answer where do the particles that we smell come from.

Scientific Big Data Visualization: a Coupled Tools Approach
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Figure 3. path followed by a certain particle

Figure 4. How are particles mixed in a certain region

Figure 5. Where do particles in certain region come from?

• What are the paths followed by particles that end up in a given region? We want to

analyze how the particles arrived to their final positions in the smell region of the nose.

With this analysis we can detect certain strange loops that happen in the particle paths,

and we can try to improve the performance of the medical devices that supply the drugs.

• How many particles go across a given section? We want to determine the throughput in

arbitrary nose regions.

• Show only the particles that have a particular velocity or other physical properties in a

certain direction.

• What are the particles deposited in certain nose parts? This analysis is for drug testing,

because drugs have effects only when deposited in certain parts of the nose.
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Figure 6. paths followed by the particles to a region

2. Requirements

The typical users of the application come from a biomedical background, are not experts in

computational physics or high performance computing or IT. The application needs to be easy

to use and avoid the complexity of the questions and its execution. Furthermore, it has to offer

the results in a 3D, easy to understand, visual way.

The application has to offer tools to select precise 3D regions in a very accurate way.

To carry out long analysis, the system has to answer the questions in real or almost real

time, so that the user can work interactively with the application.

When the data is too big to be rendered the application has to filter the results selecting

only a relevant number of particles.

Figure 7. Paraview user interface to analyze results

The application has to provide an easy and systematic way to add more pre-programmed

questions.

Our research center only provides supercomputer facilities [17] to execute tasks that need

large computer power. The supercomputers have the advantage of having a very low latency time

in the communication between the nodes at a very high transfer speed rate. Another advantage

is that they have multiple connection networks between each node. However, the supercomputer

also has two main requirements (which become constrains):

Scientific Big Data Visualization: a Coupled Tools Approach
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• Use of batch queue systems: Because all the executions, including the Hadoop daemons,

have to be launched through a queue job, no permanent Hadoop and Hive installation can

be deployed in the supercomputer.

• Only ssh connections are allowed: We can not use the ODBC protocol to connect the

user’s local computer with the Hadoop deployment on the supercomputer.

Due to this two restrictions, we must deploy the entire coupled tools and the full data set

in the supercomputer each time that we need to analyze a simulation. Notice however that our

system, as designed, can be easily installed in a permanent manner in a cluster without our

supercomputer’s restrictions. Therefore, we do not consider them a crucial disadvantage of the

architecture (it is a disadvantage of our available resources for implementation).

From the user’s point of view the steps to do the simulation analysis with our tools are:

• Load the geometric mesh, in our case the respiratory system, into Paraview.

• Add a box source to the pipeline.

• Scale and translate the box to the desired 3D region.

• Add a query plugin to the pipeline connected to the box.

• Select the desired query to execute from a list, for example: Obtain the particle’s paths

that are in the region and goes from outside to inside the nose.

• Click apply and obtain the results, in about 15 seconds depending on the query, on the

3D Paraview panel.

3. Architecture

3.1. Structure

In this section we describe how we coupled the different tools in order to solve the require-

ments described above.

As is shown in fig. 8, the main components of the structure are:

• Paraview: User interacts with Paraview to analyze the results

• NosePlugin: We have developed this Paraview plugin that allows users to query the sim-

ulation data.

• ODBC connector: Connects the NosePlugin with the data base.

• ETL NosePlugin: A script that loads all the simulations results into the database.

• Hive: The relational and distributed database engine in charge of executing SQL queries.

• Hadoop: The distributed file system used by Hive to execute the SQL questions in parallel

through map-reduce jobs.

• Cluster: Hadoop works on top of a computer cluster, it needs a minimum of two nodes in

order to run correctly.

3.2. Workflow

In this section we explain what are the steps required to solve a question about the simulation

results.

From the users’ point of view, they have to submit a job into the supercomputing queue sys-

tem, specifying the path to the simulation results, and the number of computer nodes required.

In our case the job is called infrastructureJob.
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Figure 8. Coupled tools structure

Notice that the following first two steps are special and must be repeated every time the

architecture is used only in a queue system that does not allow permament installations of

software. In a dedicated cluster setup they are executed once at deployment and are not a

crucial part of our system.

3.2.1. Deploy services

The first step is to deploy the Hadoop and Hive infrastructure in a subset of a supercomputer

nodes, see fig. 9. The infrastructureJob:

• Allocates the required nodes and gets their IP addresses.

• Creates the required Hadoop folders in each of the nodes local hard drives.

• Creates the Hadoop configuration files to run Hadoop correctly in the allocated nodes.

• Configures the ODBC driver with the correct IP address

• Starts the Hadoop and Hive daemons on the nodes

• Starts the ETL NosePlugin Python script.

The deployment step requires a minimum of two nodes in order to work properly and three

nodes to have data replication.

3.2.2. Load data

The ETL NosePlugin is a Python script that communicates with the data base thought

a Hive ODBC connector and executes DDL and DML SQL sentences to load the simulation

results into the data base.

Scientific Big Data Visualization: a Coupled Tools Approach
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The script executes these steps:

1. Prepare data: Checks the data file integrity and cleans unnecessary data.

2. Create database tables: Creates all the relational tables necessary to store the simulation

results(see fig. 10)

3. Iterates over the CSV simulation results file

(a) Gets next n lines from the file.

(b) Generates a temporal file with these n lines.

(c) Loads this temporal file data into a temporal relational table with the LOAD DATA

command.

(d) Loads the data into the final tables with a list of ”INSERT SELECT” SQL statements.

In order to load big data files to the system we have done these optimizations:

• Adjust the partitions number to the data size

• Adapt Hadoop mapred-site.xml configuration to the supercomputer.

• Check SQL exceptions and try one more time when errors happen.

• Partition the main CSV file in slices

• Open and close connection with the database each time.

Slave Hadoop
Paraview
NosePlugin
ODBC driver

User

Ssh connection

Slave Hadoop

Node 1 Node 2

Node 3

Slave Hadoop
NameNode Hadoop
Hive

Node 4

Slave Hadoop
JobTracker Hadoop

Figure 9. Coupled tools deployment in the Minotauro Supercomputer with 4 nodes

3.2.3. Start Paraview and NosePlugin

The last step of the noseInfrastructure job is to start Paraview with the NosePlugin loaded

in it. The Paraview application is deployed in the same supercomputer nodes as Hadoop and

Hive. We run the Paravier server in many nodes in parallel to have more rendering power when

we render the query results.
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3.2.4. Prepare Paraview to ask questions to the system

At this point the user can interact with the Paraview instance. The first step is to load the

geometric nose mesh into Paraview. This mesh has to be small (meaning that it can be stored

in the user’s local file system). The next step is to add and position a box into the pipeline.

Finally the user has to load the nosePlugin attached to the box.

3.3. Asking questions to the system

The user now can select a question from the nosePlugin GUI and click ”apply”. In that

moment:

1. the nosePlugin receives the box position thought a VTK object data and the question to be

asked to the data base in a string field.

2. The nosePlugin creates the SQL query and sends it to the data base through the ODBC

Connector.

3. The Hadoop and Hive cluster is in charge of solving the query in real time.

4. The nosePlugin receives from the data base the SQL fetched rows corresponding to the

answer.

5. The nosePlugin transforms the response into a VTK object and sends it to Paraview

4. Testing and validation

4.1. Validation

In order to do a basic test and validation we ran a small simulation that contains 2256

particles and 867 timesteps. This test case took only 184MB of disk storage. We installed the

entire infrastructure in a standalone laptop and we ran the entire workflow on this machine.

We asked the system for the particles list in a well known region and time step, and we

compared the obtained results with the expected response to validate the entire architecture.

4.2. Minotauro implementation

We deployed the architecture in the Minotauro supercomputer [18]. Minotauro has 126

compute nodes, each node has 12 cores, 24 GB of RAM memory, 12MB of cache memory and

250 GB flash local disk storage. Each also has two NVIDIA M2090 cards, each one with 512

CUDA Cores.

The HDFS was installed in the local flash disk of each node, the total available storage for

Hadoop is 178.83 GB per node.

We developed a bash script in order to deploy the architecture in Minotauro each time that

we needed to analyze results. The script is launched in the SLURM Minotauro queue system

and installs Hadoop and Hive dinamically depending on the resources requested by the user and

the nodes caught by the queue system.

4.3. Tests and scalability

Starting from the 184MB simulation response we have generated synthetic and controlled

results of different file sizes: 15GB, 60GB, 120GB, 240GB and 575GB in order to test the

scalability of the coupled tools.

Scientific Big Data Visualization: a Coupled Tools Approach
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4.3.1. Scalability test — number of nodes

The first scalability test consisted of:

1. Loading the 60GB file in 4, 8 and 16 nodes in Minotauro

2. Obtaining the particles that are inside a cube with the corresponding SQL query.

3. Measuring the time taken to resolve the query.

Figure 10. Tables database structure

Figure 11. Scalability for the 60GB results file

Table 1. Scalability results for 60GB

Nodes Response time Speed up Ideal

2 185.24 s 1 1

4 80.97 s 2.27 2

8 46.83 s 3.95 4

16 34.87 s 5.31 8

2.2878374314 3.9555077263 5.3116754452

The response times obtained in the 60GB scalability test are shown in fig. 11 and tab. 1.

The scalability results show that incrementing the number of nodes increases the speed up in

the response time: from 2 to 4 nodes the response time is better than the expected, however

for 16 nodes the scalability is below the ideal, maybe caused by the communication overhead

between the distributed Hadoop jobs.
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4.3.2. Scalability test — size of the dataset

The second scalability tests consisted of:

1. Loading the 60GB and 120GB files in 8 Minotauro nodes.

2. Obtaining the particles that are inside a cube with the corresponding SQL query for both

file sizes.

3. Measuring the time taken to resolve the query on each file.

The times we measured are:

Nodes 60GB file 120GB file

8 46.83 s 50.97 s

which suggests that our system scales well with the size of the dataset. The expected time for

120GB was 93.66 seconds, but we obtained 50.97 seconds. This confirms that the scalability

is better than the expected before reaching the ideal number of nodes. For example, with the

60GB file from 2 two 8 nodes the performances are better than the expected, but for 16 nodes

the response time is below ideal.

4.3.3. Optimization test

The optimization test is based on quantifying the speed-up obtained when we apply different

Hive optimizations to the queries:

• Star data base schema

• Hive map joins

• Hive partitioning in time dimension

• Hive partitioning in space dimensions

We loaded a 15GB results file into 4 Minotauro nodes, we obtained the particles that are

inside a cube with optimized and not-optimized queries respectively. The response time, in

seconds, for both queries:

Nodes not optimized optimized

4 430.19 s 78.81 s

With Hive optimizations we obtained a speed up of 5.4x in our queries, emphasizing the fact

that database optimization is a crucial aspect in all systems based on distributed technologies.

4.3.4. Impala test

In this test we compared the performance between Hive and Impala using a 184MB dataset.

Because we could not install Impala in our supercomputers, we used a Cloudera Virtual Machine

with Impala, Hive and Hadoop preinstalled on it. We obtained the particles that are inside a

cube with the corresponding SQL query for both systems: Impala and Hive. The response times

in seconds were:

Impala Hive

0.712 15.043

4.4. User feedback

Our system has been tested and put to use by the biomedical researchers in charge of the

physical simulation. From informal interviews and interactions with them, we have received
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positive feedback, in the sense that our tool has allowed them to improve their workflow con-

siderably and will allow them to refine their observations (by increasing the number of particles

they simulate). Users also point out the ease of designing new queries into the system, which

they feel as a natural extension of Paraview capabilitites. They have identified two problems:

the setting up stage is too long and inconvenient, and the response time, although short, is still

away from real-time.

5. Conclusions

We have designed and implemented a system for the visualization and analysis of particle-

type large sets of data using a coupled tools approach. Through testing we verified that the

efficiency of the system scales well with the amount of resources used (e.g. number of compute

nodes), meaning that it is a viable approach for larger (peta-scale) datasets where the tools

we used have already been tested. Our test implementation would not scale up to peta-sized

databases because of the constrains imposed by the supercomputer queue system (which would

require days just to load the data set), but in a normal cluster environment with a permanent

Hadoop and Hive installation this would not be a problem. Although the set of filters we devel-

oped and tested were geared towards our particular biomechanical simulation study case, our

system should be useful for all types of simulation that track particles moving in fluids or vector

fields (e.g. supernova explosions or agent based modelling). The problems detected by users will

be resolved in the near future with a production version of our system installed permanently in a

small cluster, where we will also be able to install and use Impala to improve the responsiveness

of the queries. In the future we will investigate the parametrization of the trajectories in the data

set into e.g. Bezier curves, thus moving the complexity of the data queries into computational

complexity.
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00067. We acknowledge PRACE for awarding us access to the resource FERMI based in Italy

at CINECA.
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The memory system is a fundamental performance and energy bottleneck in almost all com-

puting systems. Recent system design, application, and technology trends that require more ca-

pacity, bandwidth, efficiency, and predictability out of the memory system make it an even more

important system bottleneck. At the same time, DRAM technology is experiencing difficult tech-

nology scaling challenges that make the maintenance and enhancement of its capacity, energy-

efficiency, and reliability significantly more costly with conventional techniques.

In this article, after describing the demands and challenges faced by the memory system, we

examine some promising research and design directions to overcome challenges posed by memory

scaling. Specifically, we describe three major new research challenges and solution directions: 1)

enabling new DRAM architectures, functions, interfaces, and better integration of the DRAM and

the rest of the system (an approach we call system-DRAM co-design), 2) designing a memory

system that employs emerging non-volatile memory technologies and takes advantage of multiple

different technologies (i.e., hybrid memory systems), 3) providing predictable performance and

QoS to applications sharing the memory system (i.e., QoS-aware memory systems). We also briefly

describe our ongoing related work in combating scaling challenges of NAND flash memory.

Keywords: memory systems, scaling, DRAM, flash, non-volatile memory, QoS, reliability.

Introduction

Main memory is a critical component of all computing systems, employed in server, em-

bedded, desktop, mobile and sensor environments. Memory capacity, energy, cost, performance,

and management algorithms must scale as we scale the size of the computing system in order to

maintain performance growth and enable new applications. Unfortunately, such scaling has be-

come difficult because recent trends in systems, applications, and technology greatly exacerbate

the memory system bottleneck.

1. Memory System Trends

In particular, on the systems/architecture front, energy and power consumption have become

key design limiters as the memory system continues to be responsible for a significant fraction

of overall system energy/power [112]. More and increasingly heterogeneous processing cores

and agents/clients are sharing the memory system [11, 36, 39, 60, 78, 79, 178, 181], leading to

increasing demand for memory capacity and bandwidth along with a relatively new demand for

predictable performance and quality of service (QoS) from the memory system [129, 137, 176].

On the applications front, important applications are usually very data intensive and are

becoming increasingly so [17], requiring both real-time and offline manipulation of great amounts

of data. For example, next-generation genome sequencing technologies produce massive amounts

of sequence data that overwhelms memory storage and bandwidth requirements of today’s high-

end desktop and laptop systems [9, 111, 186, 196, 197] yet researchers have the goal of enabling

low-cost personalized medicine, which requires even larger amounts of data and their effective

analyses. Creation of new killer applications and usage models for computers likely depends on

how well the memory system can support the efficient storage and manipulation of data in such
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data-intensive applications. In addition, there is an increasing trend towards consolidation of

applications on a chip to improve efficiency, which leads to the sharing of the memory system

across many heterogeneous applications with diverse performance requirements, exacerbating the

aforementioned need for predictable performance guarantees from the memory system [176, 182].

On the technology front, two major trends profoundly affect memory systems. First, there

is increasing difficulty scaling the well-established charge-based memory technologies, such as

DRAM [4, 10, 70, 90, 97, 102, 124] and flash memory [20, 21, 24, 98, 123], to smaller tech-

nology nodes. Such scaling has enabled memory systems with reasonable capacity and effi-

ciency; lack of it will make it difficult to achieve high capacity and efficiency at low cost.

Challenges with DRAM scaling were recently highlighted by a paper written by Samsung and

Intel [83]. Second, some emerging resistive memory technologies, such as phase change memory

(PCM) [102, 103, 159, 163, 192], spin-transfer torque magnetic memory (STT-MRAM) [31, 100]

or resistive RAM (RRAM) [193] appear more scalable, have latency and bandwidth character-

istics much closer to DRAM than flash memory and hard disks, and are non-volatile with little

idle power consumption. Such emerging technologies can enable new opportunities in system

design, including, for example, the unification of memory and storage subsystems [127]. They

have the potential to be employed as part of main memory, alongside or in place of less scalable

and leaky DRAM, but they also have various shortcomings depending on the technology (e.g.,

some have cell endurance problems, some have very high write latency/power, some have low

density) that need to be overcome or tolerated.

2. Memory System Requirements

System architects and users have always wanted more from the memory system: high per-

formance (ideally, zero latency and infinite bandwidth), infinite capacity, all at zero cost! The

aforementioned trends do not only exacerbate and morph the above requirements, but also

add some new requirements. We classify the requirements from the memory system into two

categories: exacerbated traditional requirements and (relatively) new requirements.

The traditional requirements of performance, capacity, and cost are greatly exacerbated

today due to increased pressure on the memory system, consolidation of multiple applica-

tions/agents sharing the memory system, and difficulties in DRAM technology and density

scaling. In terms of performance, two aspects have changed. First, today’s systems and ap-

plications not only require low latency and high bandwidth (as traditional memory systems

have been optimized for), but they also require new techniques to manage and control mem-

ory interference between different cores, agents, and applications that share the memory sys-

tem [40, 129, 137, 176, 182] in order to provide high system performance as well as predictable

performance (or quality of service) to different applications [176]. Second, there is a need

for increased memory bandwidth for many applications as the placement of more cores and

agents on chip make the memory pin bandwidth an increasingly precious resource that deter-

mines system performance [71], especially for memory-bandwidth-intensive workloads, such as

GPGPUs [80, 81, 146], heterogeneous systems [11], and consolidated workloads [73, 74, 137]. In

terms of capacity, the need for memory capacity is greatly increasing due to the placement of

multiple data-intensive applications on the same chip and continued increase in the data sets

of important applications. One recent work showed that given that the core count is increasing

at a faster rate than DRAM capacity, the expected memory capacity per core is to drop by

30% every two years [113], an alarming trend since much of today’s software innovations and
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features rely on increased memory capacity. In terms of cost, increasing difficulty in DRAM

technology scaling poses a difficult challenge to building higher density (and, as a result, lower

cost) main memory systems. Similarly, cost-effective options for providing high reliability and in-

creasing memory bandwidth are needed to scale the systems proportionately with the reliability

and data throughput needs of today’s data-intensive applications. Hence, the three traditional

requirements of performance, capacity, and cost have become exacerbated.

The relatively new requirements from the main memory system are threefold. First, tech-

nology scalability: there is a new need for finding a technology that is much more scalable than

DRAM in terms of capacity, energy, and cost, as described earlier. As DRAM continued to scale

well from the above-100-nm to 30-nm technology nodes, the need for finding a more scalable

technology was not a prevalent problem. Today, with the significant circuit and device scaling

challenges DRAM has been facing below the 30-nm node [83], it is. Second, there is a relatively

new need for providing performance predictability and QoS in the shared main memory system.

As single-core systems were dominant and memory bandwidth and capacity were much less of

a shared resource in the past, the need for predictable performance was much less apparent or

prevalent [129]. Today, with increasingly more cores/agents on chip sharing the memory sys-

tem and increasing amounts of workload consolidation, memory fairness, predictable memory

performance, and techniques to mitigate memory interference have become first-class design

constraints. Third, there is a great need for much higher energy/power/bandwidth efficiency in

the design of the main memory system. Higher efficiency in terms of energy, power, and band-

width enables the design of much more scalable systems where main memory is shared between

many agents, and can enable new applications in almost all domains where computers are used.

Arguably, this is not a new need today, but we believe it is another first-class design constraint

that has not been as traditional as performance, capacity, and cost.

3. Solution Directions and Research Opportunities

As a result of these systems, applications, and technology trends and the resulting require-

ments, it is our position that researchers and designers need to fundamentally rethink the way

we design memory systems today to 1) overcome scaling challenges with DRAM, 2) enable the

use of emerging memory technologies, 3) design memory systems that provide predictable per-

formance and quality of service to applications and users. The rest of this article describes our

solution ideas in these three relatively new research directions, with pointers to specific tech-

niques when possible.2 Since scaling challenges themselves arise due to difficulties in enhancing

memory components at solely one level of the computing stack (e.g., the device and/or circuit

levels in case of DRAM scaling), we believe effective solutions to the above challenges will re-

quire cooperation across different layers of the computing stack, from algorithms to software to

microarchitecture to devices, as well as between different components of the system, including

2Note that this paper is not meant or designed to be a survey of all recent works in the field of memory systems.

There are many such insightful works, but we do not have space in this paper to discuss them all. This paper is

meant to outline the challenges and research directions in memory systems as we see them. Therefore, many of the

solutions we discuss draw heavily upon our own past, current, and future research. We believe this will be useful

for the community as the directions we have pursued and are pursuing are hopefully fundamental challenges for

which other solutions and approaches would be greatly useful to develop. We look forward to similar papers from

other researchers describing their perspectives and solution directions/ideas.
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processors, memory controllers, memory chips, and the storage subsystem. As much as possible,

we will give examples of such cross-layer solutions and directions.

4. New Research Challenge 1: New DRAM Architectures

DRAM has been the choice technology for implementing main memory due to its relatively

low latency and low cost. DRAM process technology scaling has enabled lower cost per unit

area by enabling reductions in DRAM cell size for a long time. Unfortunately, further scaling of

DRAM cells has become costly [4, 10, 70, 83, 90, 102, 124] due to increased manufacturing com-

plexity/cost, reduced cell reliability, and potentially increased cell leakage leading to high refresh

rates. Recently, a paper by Samsung and Intel [83] has also discussed the key scaling challenges

of DRAM at the circuit level. They have identified three major challenges as impediments to

effective scaling of DRAM to smaller technology nodes: 1) the growing cost of refreshes [114],

2) increase in write latency, and 3) variation in the retention time of a cell over time [115]. In

light of such challenges, we believe there are at least the following key issues to tackle in order

to design new DRAM architectures that are much more scalable:

1) reducing the negative impact of refresh on energy, performance, QoS, and density scal-

ing [28, 83, 86, 114, 115],

2) improving reliability of DRAM at low cost [86, 97, 122, 145],

3) improving DRAM parallelism/bandwidth [28, 96], latency [109, 110], and energy effi-

ciency [96, 109, 114],

4) minimizing data movement between DRAM and processing elements, which causes high

latency, energy, and bandwidth consumption, by doing more operations on the DRAM and the

memory controllers [167],

5) reducing the significant amount of waste in today’s main memories in which much of the

fetched/stored data can be unused due to coarse-granularity management [126, 153–155, 187,

199].

Traditionally, DRAM devices have been separated from the rest of the system with a rigid

interface, and DRAM has been treated as a passive slave device that simply responds to the

commands given to it by the memory controller. We believe the above key issues can be solved

more easily if we rethink the DRAM architecture and functions, and redesign the interface

such that DRAM, controllers, and processors closely cooperate. We call this high-level solution

approach system-DRAM co-design. We believe key technology trends, e.g., the 3D stacking of

memory and logic [5, 119, 188] and increasing cost of scaling DRAM solely via circuit-level

approaches [70, 83, 90, 124], enable such a co-design to become increasingly more feasible. We

proceed to provide several examples from our recent research that tackle the problems of refresh

(and retention errors), parallelism, reliability, latency, energy efficiency, in-memory computation,

and capacity and bandwidth waste.

4.1. Reducing Refresh Impact

With higher DRAM capacity, more cells need to be refreshed at likely higher rates than

today. Our recent work [114] indicates that refresh rate limits DRAM density scaling: a hypo-

thetical 64Gb DRAM device would spend 46% of its time and 47% of all DRAM energy for

refreshing its rows, as opposed to typical 4Gb devices of today that spend 8% of the time and

15% of the DRAM energy on refresh (as shown in Figure 1). For instance, a modern supercom-
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puter may have 1PB of memory in total [6]. If we assume this memory is built from 8Gb DRAM

devices and a nominal refresh rate, 7.8kW of power would be expended, on average, just to re-

fresh the entire 1PB memory. This is quite a large number, just to ensure the memory correctly

keeps its contents! And, this power is always spent regardless of how much the supercomputer

is utilized.

Today’s DRAM devices refresh all rows at the same worst-case rate (e.g., every 64ms).

However, only a small number of weak rows require a high refresh rate [86, 91, 115] (e.g.,

only ∼1000 rows in 32GB DRAM require to be refreshed more frequently than every 256ms).

Retention-Aware Intelligent DRAM Refresh (RAIDR) [114] exploits this observation: it groups

DRAM rows into bins (implemented as Bloom filters [16] to minimize hardware overhead) based

on the retention time of the weakest cell within each row. Each row is refreshed at a rate

corresponding to its retention time bin. Since few rows need high refresh rate, one can use

very few bins to achieve large reductions in refresh counts: our results show that RAIDR with

three bins (1.25KB hardware cost) reduces refresh operations by ∼75%, leading to significant

improvements in system performance and energy efficiency as described by Liu et al. [114].
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Figure 1. Impact of refresh in current (DDR3) and projected DRAM devices. Reproduced

from [114]

Like RAIDR, other approaches have also been proposed to take advantage of the retention

time variation of cells across a DRAM chip. For example, some works proposed refreshing weak

rows more frequently at a per-row granularity, others proposed not using memory rows with low

retention times, and yet others suggested mapping critical data to cells with longer retention

times so that critical data is not lost [7, 72, 89, 118, 149, 190] – see [114, 115] for a discussion

of such techniques. Such approaches that exploit non-uniform retention times across DRAM

require accurate retention time profiling mechanisms. Understanding of retention time as well as

error behavior of DRAM devices is a critical research topic, which we believe can enable other

mechanisms to tolerate refresh impact and errors at low cost. Liu et al. [115] provide an experi-

mental characterization of retention times in modern DRAM devices to aid such understanding.

Our initial results in that work, obtained via the characterization of 248 modern commod-

ity DRAM chips from five different DRAM manufacturers, suggest that the retention time of

cells in a modern device is largely affected by two phenomena: 1) Data Pattern Dependence,

where the retention time of each DRAM cell is significantly affected by the data stored in other

DRAM cells, 2) Variable Retention Time, where the retention time of a DRAM cell changes

unpredictably over time. These two phenomena pose challenges against accurate and reliable

determination of the retention time of DRAM cells, online or offline. A promising area of future
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research is to devise techniques that can identify retention times of DRAM cells in the presence

of data pattern dependence and variable retention time. Khan et al.’s recent work [86] provides

more analysis of the effectiveness of conventional error mitigation mechanisms for DRAM reten-

tion failures and proposes online retention time profiling as a solution for identifying retention

times of DRAM cells as a potentially promising approach in future DRAM systems. We believe

developing such system-level techniques that can detect and exploit DRAM characteristics on-

line, during system operation, will be increasingly valuable as such characteristics will become

much more difficult to accurately determine and exploit by the manufacturers due to the scaling

of technology to smaller nodes.

4.2. Improving DRAM Reliability: Better DRAM Error Management

As DRAM technology scales to smaller node sizes, its reliability becomes more difficult to

maintain at the circuit and device levels. In fact, we already have evidence of the difficulty of

maintaining DRAM reliability from the DRAM chips operating in the field today. Our recent

research [97] showed that a majority of the DRAM chips manufactured between 2010-2014 by

three major DRAM vendors exhibit a particular failure mechanism called row hammer: by

activating a row enough times within a refresh interval, one can corrupt data in nearby DRAM

rows. The source code is available at [3]. This is an example of a disturbance error where the

access of a cell causes disturbance of the value stored in a nearby cell due to cell-to-cell coupling

(i.e., interference) effects, some of which are described by our recent works [97, 115]. Such

interference-induced failure mechanisms are well-known in any memory that pushes the limits of

technology, e.g., NAND flash memory (see Section 7). However, in case of DRAM, manufacturers

have been quite successful in containing such effects until recently. Clearly, the fact that such

failure mechanisms have become difficult to contain and that they have already slipped into

the field shows that failure/error management in DRAM has become a significant problem. We

believe this problem will become even more exacerbated as DRAM technology scales down to

smaller node sizes. Hence, it is important to research both the (new) failure mechanisms in

future DRAM designs as well as mechanisms to tolerate them. Towards this end, we believe

it is critical to gather insights from the field by 1) experimentally characterizing DRAM chips

using controlled testing infrastructures [86, 97, 110, 115], 2) analyzing large amounts of data

from the field on DRAM failures in large-scale systems [164, 172, 173], 3) developing models for

failures/errors based on these experimental characterizations, and 4) developing new mechanisms

at the system and architecture levels that can take advantage of such models to tolerate DRAM

errors.

Looking forward, we believe that increasing cooperation between the DRAM device and

the DRAM controller as well as other parts of the system, including system software, would be

greatly beneficial for identifying and tolerating DRAM errors. For example, such cooperation

can enable the communication of information about weak (or, unreliable) cells and the charac-

teristics of different rows or physical memory regions from the DRAM device to the system. The

system can then use this information to optimize data allocation and movement, refresh rate

management, and error tolerance mechanisms. Low-cost error tolerance mechanisms are likely

to be enabled more efficiently with such coordination between DRAM and the system. In fact,

as DRAM technology scales and error rates increase, it might become increasingly more difficult

to maintain the illusion that DRAM is a perfect, error-free storage device (the row hammer fail-

ure mechanism [97] already provides evidence for this). DRAM may start looking increasingly
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like flash memory, where the memory controller manages errors so that an acceptable specified

uncorrectable bit error rate is satisfied [20, 22]. We envision a DRAM Translation Layer (DTL),

not unlike the Flash Translation Layer (FTL) of today in spirit (which is decoupled from the

processor and performs a wide variety of management functions for flash memory, including er-

ror correction, garbage collection, read/write scheduling, data mapping, etc.), can enable better

scaling of DRAM memory into the future by not only enabling easier error management but

also opening up new opportunities to perform computation, mapping and metadata management

close to memory. This can become especially feasible in the presence of the trend of combining

the DRAM controller and DRAM via 3D stacking. What should the interface be to such a layer

and what should be performed in the DTL are promising areas of future research.

4.3. Improving DRAM Parallelism

A key limiter of DRAM parallelism is bank conflicts. Today, a bank is the finest-granularity

independently accessible memory unit in DRAM. If two accesses go to the same bank, one has

to completely wait for the other to finish before it can be started (see Figure 2). We have recently

developed mechanisms, called SALP (subarray level parallelism) [96], that exploit the internal

subarray structure of the DRAM bank (Figure 2) to mostly parallelize two requests that access

the same DRAM bank. The key idea is to reduce the hardware sharing between DRAM subarrays

so that accesses to the same bank but different subarrays can be initiated in a pipelined manner.

This mechanism requires the exposure of the internal subarray structure of a DRAM bank to

the controller and the design of the controller to take advantage of this structure. Our results

show significant improvements in performance and energy efficiency of main memory due to

parallelization of requests and improvement of row buffer hit rates (as row buffers of different

subarrays can be kept active) at a low DRAM area overhead of 0.15%. Exploiting SALP achieves

most of the benefits of increasing the number of banks at much lower area and power overhead.

Exposing the subarray structure of DRAM to other parts of the system, e.g., to system software

or memory allocators, can enable data placement and partitioning mechanisms that can improve

performance and efficiency even further.

Note that other approaches to improving DRAM parallelism especially in the presence of

refresh and long write latencies are also promising to be investigated. Chang et al. [28] discuss

mechanisms to improve the parallelism between refreshes and reads/write requests, and Kang

et al. [83] discuss the use of SALP as a promising method to tolerate long write latencies to

DRAM, which they identify as one of the three key scaling challenges for DRAM, in addition

to refresh and variable retention time. We refer the reader to these works for more information

about the proposed parallelization techniques.

4.4. Reducing DRAM Latency and Energy

The DRAM industry has so far been primarily driven by the cost-per-bit metric: provide

maximum capacity for a given cost. As shown in Figure 3, DRAM chip capacity has increased

by approximately 16x in 12 years while the DRAM latency reduced by only approximately 20%.

This is the result of a deliberate choice to maximize capacity of a DRAM chip while minimizing

its cost. We believe this choice needs to be revisited in the presence of at least two key trends.

First, DRAM latency is becoming more important especially for response-time critical workloads

that require QoS guarantees [45]. Second, DRAM capacity is becoming very hard to scale and as

O. Mutlu, L. Subramanian

2014, Vol. 1, No. 3 25



row

Bank
r
o
w
-d
e
c
o
d
e
r

row-buffer

3
2

k
 r

o
w

s

a) Logical abstraction of a DRAM

bank

local row-buffer

Subarray1

global row-buffer

local row-buffer

Subarray64

g
lo

b
a

l 
d

e
co

d
e

r 5
1

2
 

r
o
w
s

5
1

2
 

r
o
w
s

b) Implementation of a DRAM bank

Figure 2. DRAM Bank Organization. Reproduced from [96]

a result manufacturers likely need to provide new values for the DRAM chips, leading to more

incentives for the production of DRAMs that are optimized for objectives other than mainly

capacity maximization.

Figure 3. DRAM Capacity & Latency Over Time. Reproduced from [109]

To mitigate the high area overhead of DRAM sensing structures, commodity DRAMs (shown

in Figure 4a) connect many DRAM cells to each sense-amplifier through a wire called a bitline.

These bitlines have a high parasitic capacitance due to their long length, and this bitline ca-

pacitance is the dominant source of DRAM latency. Specialized low-latency DRAMs (shown in

Figure 4b) use shorter bitlines with fewer cells, but have a higher cost-per-bit due to greater

sense-amplifier area overhead. We have recently shown that we can architect a heterogeneous-

latency bitline DRAM, called Tiered-Latency DRAM (TL-DRAM) [109], shown in Figure 4c, by

dividing a long bitline into two shorter segments using an isolation transistor: a low-latency seg-

ment can be accessed with the latency and efficiency of a short-bitline DRAM (by turning off the

isolation transistor that separates the two segments) while the high-latency segment enables high

density, thereby reducing cost-per-bit. The additional area overhead of TL-DRAM is approxi-

mately 3% over commodity DRAM. Significant performance and energy improvements can be

achieved by exposing the two segments to the memory controller and system software such that

appropriate data is cached or allocated into the low-latency segment. We expect such approaches

that design and exploit heterogeneity to enable/achieve the best of multiple worlds [132] in the

memory system can lead to other novel mechanisms that can overcome difficult contradictory

tradeoffs in design.

A recent paper by Lee et al. [110] exploits the extra margin built into DRAM timing pa-

rameters to reliably reduce DRAM latency when such extra margin is really not necessary (e.g.,
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when the operating temperature is low). The standard DRAM timing constraints are designed

to ensure correct operation for the cell with the lowest retention time at the highest acceptable

operating temperature. Lee et al. [110] make the observation that a significant majority of DRAM

modules do not exhibit the worst case behavior and that most systems operate at a tempera-

ture much lower than the highest acceptable operating temperature, enabling the opportunity

to significantly reduce the timing constraints. They introduce Adaptive-Latency DRAM (AL-

DRAM), which dynamically measures the operating temperature of each DIMM and employs

timing constraints optimized for that DIMM at that temperature. Results of their profiling ex-

periments on 82 modern DRAM modules show that AL-DRAM can reduce the DRAM timing

constraints by an average of 43% and up to 58%. This reduction in latency translates to a 14%

average improvement in overall system performance across a wide variety of applications on the

evaluated real systems. We believe such approaches to reducing memory latency (and energy)

by exploiting common-case device characteristics and operating conditions are very promising:

instead of always incurring the worst-case latency and energy overheads due to homogeneous,

one-size-fits-all parameters, adapt the parameters dynamically to fit the common-case operating

conditions.

Another promising approach to reduce DRAM energy is the use of dynamic voltage and

frequency scaling (DVFS) in main memory [44, 46]. David et al. [44] make the observation that

at low memory bandwidth utilization, lowering memory frequency/voltage does not significantly

alter memory access latency. Relatively recent works have shown that adjusting memory volt-

age and frequency based on predicted memory bandwidth utilization can provide significant

energy savings on both real [44] and simulated [46] systems. Going forward, memory DVFS can

enable dynamic heterogeneity in DRAM channels, leading to new customization and optimiza-

tion mechanisms. Also promising is the investigation of more fine-grained power management

methods within the DRAM rank and chips for both active and idle low power modes.

4.5. Exporting Bulk Data Operations to DRAM: Enabling In-Memory

Computation

Today’s systems waste significant amount of energy, DRAM bandwidth and time (as well

as valuable on-chip cache space) by sometimes unnecessarily moving data from main memory

to processor caches. One example of such wastage sometimes occurs for bulk data copy and
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initialization operations in which a page is copied to another or initialized to a value. If the

copied or initialized data is not immediately needed by the processor, performing such operations

within DRAM (with relatively small changes to DRAM) can save significant amounts of energy,

bandwidth, and time. We observe that a DRAM chip internally operates on bulk data at a row

granularity. Exploiting this internal structure of DRAM can enable page copy and initialization

to be performed entirely within DRAM without bringing any data off the DRAM chip, as we

have shown in recent work [167]. If the source and destination page reside within the same

DRAM subarray, our results show that a page copy can be accelerated by more than an order of

magnitude (∼11 times), leading to an energy reduction of ∼74 times and no wastage of DRAM

data bus bandwidth [167]. The key idea is to capture the contents of the source row in the sense

amplifiers by 1) activating the row, then 2) deactivating the source row (using a new command

which introduces very little hardware cost, amounting to less than 0.03% of DRAM chip area),

and 3) immediately activating the destination row, which causes the sense amplifiers to drive

their contents into the destination row, effectively accomplishing the page copy (shown at a high

level in fig. 5). Doing so reduces the latency of a 4KB page copy operation from ∼1000ns to

less than 100ns in an existing DRAM chip. Applications that have significant page copy and

initialization experience large system performance and energy efficiency improvements [167].

Future software can be designed in ways that can take advantage of such fast page copy and

initialization operations, leading to benefits that may not be apparent in today’s software that

tends to minimize such operations due to their current high cost.
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Going forward, we believe acceleration of other bulk data movement and computation op-

erations in or very close to DRAM, via similar low-cost architectural support mechanisms, can

enable promising savings in system energy, latency, and bandwidth. Given the trends and re-

quirements described in Section 1, it is time to re-examine the partitioning of computation

between processors and DRAM, treating memory as a first-class accelerator as an integral part

of a heterogeneous parallel computing system [132].

4.6. Minimizing Memory Capacity and Bandwidth Waste

Storing and transferring data at large granularities (e.g., pages, cache blocks) within

the memory system leads to large inefficiency when most of the large granularity is not

needed [82, 101, 125, 126, 157, 166, 187, 199, 200]. In addition, much of the data stored in

memory has significant redundancy [8, 13, 52, 59, 153–155, 198]. Two promising research di-

rections are to develop techniques that can 1) efficiently provide fine granularity access/storage

when enough and large granularity access/storage only when needed, 2) efficiently compress data

in main memory and caches without significantly increasing latency and system complexity. Our
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results with new low-cost, low-latency cache compression [153] and memory compression [154]

techniques and frameworks are promising, providing high compression ratios at low complexity

and latency. For example, the key idea of Base-Delta-Immediate compression [153] is that many

cache blocks have low dynamic range in the values they store, i.e., the differences between values

stored in the cache block are small. Such a cache block can be encoded using a base value and

an array of much smaller (in size) differences from that base value, which together occupy much

less space than storing the full values in the original cache block. This compression algorithm

has low decompression latency as the cache block can be reconstructed using a vector addition

(or potentially even vector concatenation). It reduces memory bandwidth requirements, better

utilizes memory/cache space, while minimally impacting the latency to access data. Granularity

management and data compression support can potentially be integrated into DRAM controllers

or partially provided within DRAM, and such mechanisms can be exposed to software, which can

enable higher energy savings and higher performance improvements. Management techniques for

compressed caches and memories (e.g., [155]) as well as flexible granularity memory system de-

signs, software techniques/designs to take better advantage of cache/memory compression and

flexible-granularity, and techniques to perform computations on compressed memory data are

quite promising directions for future research.

4.7. Co-Designing DRAM Controllers and Processor-Side Resources

Since memory bandwidth is a precious resource, coordinating the decisions made by

processor-side resources better with the decisions made by memory controllers to maximize

memory bandwidth utilization and memory locality is a promising area of more efficiently uti-

lizing DRAM. Lee et al. [106] and Stuecheli et al. [175] both show that orchestrating last-level

cache writebacks such that dirty cache lines to the same row are evicted together from the cache

improves DRAM row buffer locality of write accesses, thereby improving system performance.

Going forward, we believe such coordinated techniques between the processor-side resources

and memory controllers will become increasingly more effective as DRAM bandwidth becomes

even more precious. Mechanisms that predict and convey slack in memory requests [42, 43],

that orchestrate the on-chip scheduling of memory requests to improve memory bank paral-

lelism [108] and that reorganize cache metadata for more efficient bulk (DRAM row granularity)

tag lookups [168] can also enable more efficient memory bandwidth utilization.

5. New Research Challenge 2: Emerging Memory Technologies

While DRAM technology scaling is in jeopardy, some emerging technologies seem more

scalable. These include phase-change memory PCM, spin-transfer torque magnetoresistive RAM

(STT-MRAM) and resistive RAM (RRAM). These emerging technologies usually provide a

tradeoff, and seem unlikely to completely replace DRAM (evaluated in [102–104] for PCM and

in [100] for STT-MRAM), as they are not strictly superior to DRAM. For example, PCM is

advantageous over DRAM because it 1) has been demonstrated to scale to much smaller feature

sizes [102, 163, 192] and can store multiple bits per cell [202, 203], promising higher density, 2)

is non-volatile and as such requires no refresh (which is a key scaling challenge of DRAM as we

discussed in Section 4.1), and 3) has low idle power consumption. On the other hand, PCM has

significant shortcomings compared to DRAM, which include 1) higher read latency and read

energy, 2) much higher write latency and write energy, 3) limited endurance for a given PCM
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cell, a problem that does not exist (practically) for a DRAM cell, and 4) potentially difficult-to-

handle reliability issues, such as the problem of resistance drift [165]. As a result, an important

research challenge is how to utilize such emerging technologies at the system and architecture

levels so that they can augment or perhaps even replace DRAM.

Our initial experiments and analyses [102–104] that evaluated the complete replacement

of DRAM with PCM showed that one would require reorganization of peripheral circuitry of

PCM chips (with the goal of absorbing writes and reads before they update or access the PCM

cell array) to enable PCM to get close to DRAM performance and efficiency. These initial

results are reported in Lee et al. [102–104] and they show that the performance, energy, and

endurance of PCM chips can be greatly improved with the proposed techniques. We have also

reached a similar conclusion upon evaluation of the complete replacement of DRAM with STT-

MRAM [100]: reorganization of peripheral circuitry of STT-MRAM chips (with the goal of

minimizing the number of writes to the STT-MRAM cell array, as write operations are high-

latency and high-energy in STT-MRAM) enables an STT-MRAM based main memory to be

more energy-efficient than a DRAM-based main memory.

One can achieve more efficient designs of PCM (or STT-MRAM) chips by taking advantage

of the non-destructive nature of reads, which enables simpler and narrower row buffer organiza-

tions [125]. Unlike in DRAM, the entire memory row does not need to be buffered in a device

where reading a memory row does not destroy the data stored in the row. Meza et al. [125]

show that having narrow row buffers in emerging non-volatile devices can greatly reduce main

memory dynamic energy compared to a DRAM baseline with large row sizes, without greatly

affecting endurance, and for some NVM technologies, lead to improved performance. Going for-

ward, designing systems, memory controllers and memory chips taking advantage of the specific

property of non-volatility of emerging technologies seems promising.

We believe emerging technologies enable at least three major system-level opportunities

that can improve overall system efficiency: 1) hybrid main memory systems, 2) non-volatile

main memory, 3) merging of memory and storage. We briefly touch upon each.

5.1. Hybrid Main Memory

A hybrid main memory system [29, 47, 126, 156, 159, 162, 201] consists of multiple different

technologies or multiple different types of the same technology with differing characteristics,

e.g., performance, cost, energy, reliability, endurance. A key question is how to manage data

allocation and movement between the different technologies so that one can achieve the best

of (or close to the best of) the desired performance metrics. In other words, we would like to

exercise the advantages of each technology as much as possible while hiding the disadvantages of

any technology. Potential technologies include DRAM, 3D-stacked DRAM, embedded DRAM,

PCM, STT-MRAM, other resistive memories, flash memory, forms of DRAM that are optimized

for different metrics and purposes, etc. An example hybrid main memory system consisting of a

large amount of PCM as main memory and a small amount of DRAM as its cache is depicted

in Figure 6.

The design space of hybrid memory systems is large, and many potential questions exist.

For example, should all memories be part of main memory or should some of them be used

as a cache of main memory (or should there be configurability)? What technologies should be

software visible? What component of the system should manage data allocation and movement?

Should these tasks be done in hardware, software, or collaboratively? At what granularity should

Research Problems and Opportunities in Memory Systems

30 Supercomputing Frontiers and Innovations



...

Ctlr. Ctlr.

...

...

DRAM PCM

(High Capacity)

(Low Capacity)

Row BufferBankMemory Channel

CPU

PCM

DRAM Cache

Figure 6. An example hybrid main memory system organization using PCM and DRAM chips.

Reproduced from [201]

data be moved between different memory technologies? Some of these questions are tackled

in [29, 47, 126, 156, 159, 162, 201], among other works recently published in the computer

architecture community. For example, Yoon et al. [201] make the key observation that row

buffers are present in both DRAM and PCM (see fig. 6), and they have (or can be designed to

have) the same latency and bandwidth in both DRAM and PCM. Yet, row buffer misses are

much more costly in terms of latency, bandwidth, and energy in PCM than in DRAM. To exploit

this, they devise a policy that avoids accessing in PCM data that frequently causes row buffer

misses. Hardware or software can dynamically keep track of such data and allocate/cache it in

DRAM while keeping data that frequently hits in row buffers in PCM. PCM also has much higher

write latency/power than read latency/power: to take this into account, the allocation/caching

policy is biased such that pages that are written to more likely stay in DRAM [201].

Note that hybrid memory does not need to consist of completely different underlying tech-

nologies. A promising approach is to combine multiple different DRAM chips, optimized for

different purposes. For example, recent works proposed the use of low-latency and high-latency

DIMMs in separate memory channels and allocating performance-critical data to low-latency

DIMMs to improve performance and energy-efficiency at the same time [29], or the use of highly-

reliable DIMMs (protected with ECC) and unreliable DIMMs in separate memory channels and

allocating error-vulnerable data to highly-reliable DIMMs to maximize server availability while

minimizing server memory cost [122]. We believe these approaches are quite promising for scal-

ing the DRAM technology into the future by specializing DRAM chips for different purposes.

These approaches that exploit heterogeneity do increase system complexity but that complexity

may be warranted if it is lower than the complexity of scaling DRAM chips using the same

optimization techniques the DRAM industry has been using so far.
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5.2. Making Non-volatile Main Memory Reliable and Secure

Non-volatility of main memory opens up new opportunities that can be exploited by higher

levels of the system stack to improve performance and reliability/consistency (see, for exam-

ple, [38, 48]). Researching how to adapt applications and system software to utilize fast, byte-

addressable non-volatile main memory is an important research direction to pursue [127].

On the flip side, the same non-volatility can lead to potentially unforeseen security and

privacy issues: critical and private data can persist long after the system is powered down [33],

and an attacker can take advantage of this fact. Wearout issues of emerging technology can also

cause attacks that can intentionally degrade memory capacity in the system [158, 171]. Securing

non-volatile main memory is therefore an important systems challenge.

5.3. Merging of Memory and Storage

One promising opportunity fast, byte-addressable, non-volatile emerging memory technolo-

gies open up is the design of a system and applications that can manipulate persistent data

directly in memory instead of going through a slow storage interface. This can enable not only

much more efficient systems but also new and more robust applications. We discuss this oppor-

tunity in more detail below.

Traditional computer systems have a two-level storage model: they access and manipulate

1) volatile data in main memory (DRAM, today) with a fast load/store interface, 2) persistent

data in storage media (flash and hard disks, today) with a slower file system interface. Unfortu-

nately, such a decoupled memory/storage model managed via vastly different techniques (fast,

hardware-accelerated memory management units on one hand, and slow operating/file system

(OS/FS) software on the other) suffers from large inefficiencies in locating data, moving data,

and translating data between the different formats of these two levels of storage that are ac-

cessed via two vastly different interfaces, leading to potentially large amounts of wasted work

and energy [127, 170]. The two different interfaces arose largely due to the large discrepancy

in the access latencies of conventional technologies used to construct volatile memory (DRAM)

and persistent storage (hard disks and flash memory).

Today, new non-volatile memory technologies (NVM), e.g, PCM, STT-MRAM, RRAM,

show the promise of storage capacity and endurance similar to or better than flash memory at

latencies comparable to DRAM. This makes them prime candidates for providing applications a

persistent single-level store with a single load/store-like interface to access all system data (in-

cluding volatile and persistent data). In fact, if we keep the traditional two-level memory/storage

model in the presence of these fast NVM devices as part of storage, the operating system and file

system code for locating, moving, and translating persistent data from the non-volatile NVM de-

vices to volatile DRAM for manipulation purposes becomes a great bottleneck, causing most of

the memory energy consumption and degrading performance by an order of magnitude in some

data-intensive workloads, as we showed in recent work [127]. With energy as a key constraint,

and in light of modern high-density NVM devices, a promising research direction is to unify

and coordinate the management of volatile memory and persistent storage in a single level, to

eliminate wasted energy and performance, and to simplify the programming model at the same

time.

To this end, Meza et al. [127] describe the vision and research challenges of a persistent mem-

ory manager (PMM), a hardware acceleration unit that coordinates and unifies memory/storage
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management in a single address space that spans potentially multiple different memory tech-

nologies (DRAM, NVM, flash) via hardware/software cooperation. Figure 7 depicts an example

PMM, programmed using a load/store interface (with persistent objects) and managing an array

of heterogeneous devices.

2.2.1 Efficient Hardware and Software Support: We propose to investigate the efficient software and
hardware support needed for single-level stores. A single-level store system should provide an abstraction
that maps persistent user data to physical addresses in memory. A software interface for programs would
map a pointer to the actual persistent data. Programs would be able to access any part of the data using
normal load and store instructions. Figure 2 shows two examples of high-level abstractions which could
be provided to programs to access persistent data in a single-level store system. In it, a program creates
a persistent file (Figure 2 left) or object (Figure 2 right) using the handle “file.dat” and allocates an array
of integers in it. Later—perhaps after the application or system is restarted—when the program executes
the updateValue() function, the system retrieves the persistent data for the same handle, and the program
modifies its state. With such an abstraction, a single-level store can eliminate the OS system calls to transfer
data to and from disk. In addition, it eliminates the need for a file system to track physical file addresses
by traversing metadata (such as inodes) in the OS. In this way, single-level stores provide the opportunity to
design a simple and efficient persistent data lookup system in hardware. We plan to research efficient ways
to map files or objects to the virtual address space. In such a hardware-based design, the processor would
manage how data handles correspond to physical addresses. Note that, single-level stores can use alternative
design choices, such as segments, to provide the high-level abstraction instead of files or objects. Regardless,
segments, files, or objects will be mapped to physical addresses with hardware support. Prior works tried to
make file lookup and update efficient in software [27, 28] in the presence of persistent memory, and other
works proposed using complex and potentially inefficient hardware directory techniques (e.g., [15]). Our
goal is to design fast and efficient techniques that take into account the byte addressability of persistent
memory in a single-level store. To this end, we will research the following:
• The efficient use of hash table and B-tree indices for locating files in a single-level store.
• How techniques such as key-value stores can provide fast and efficient lookups in single-level stores.
• Policies for intelligently caching some entries of these indices in hardware to improve system perfor-

mance.
Every access in the single-level store needs to be translated from a virtual address used by a program to

a physical address used to access a device. We will investigate how to efficiently manage address translation
so that locating data is simple and fast. We intend to explore the following directions to solve this problem:
• We will design mechanisms to predict access patterns based on program behavior and pre-compute

virtual-to-physical address translations. We are interested in answering questions such as: What is the
pattern of data accesses to a single-level store, and how can prefetching techniques be redesigned with
single-level stores in mind to enable efficient address translation? How can simple application-level or
profile-based hints on access patterns be communicated to and used by hardware to make address translation
and prefetching efficient?
• We will design efficient translation lookaside buffer (TLB)-like structures which will cache the trans-

lation between virtual and physical addresses but for a much larger amount of physical memory than in
existing systems. In the presence of such a single-level store, many disparate data accesses could need a
large translation table to be serviced effectively. To reduce overhead of such hardware, we are interested in
exploring whether TLB-like structures should favor storing translations only for particular classes of data,
such as data with locality or data which is on the critical path of execution, which get the most benefit
out of the limited structure space. In addition, we will investigate centralized versus distributed translation
structures to design techniques that, for example, buffer private data translation entries near the processor,
while distributing shared entries across processors to minimize translation overheads. Such translation struc-

1 int main(void) {
2 // data in file.dat is persistent
3 FILE myData = "file.dat";
4 myData = new int[64];
5 }
6 void updateValue(int n, int value) {
7 FILE myData = "file.dat";
8 myData[n] = value; // value is persistent
9 }

1 int main(void) {
2 // data in file.dat is persistent
3 int *myData = new PersistentObject("file.dat");
4 myData = new int[64];
5 }
6 void updateValue(int n, int value) {
7 int *myData = PersistentObject.open("file.dat");
8 myData[n] = value; // value is persistent
9 }

Figure 2: Sample program with access to file-based (left) and object-based (right) persistent data.

5

Load Store

DRAM Flash HDDs NVM

Persistent Memory Manager
Hardware
Software

Data Layout, Persistence, Metadata, Security, ...

Figure 7. An example Persistent Memory Manager (PMM). Reproduced from [127]

The spirit of the PMM unit is much like the virtual memory management unit of a modern

virtual memory system used for managing working memory, but it is fundamentally different

in that it redesigns/rethinks the virtual memory and storage abstractions and unifies them

in a different interface supported by scalable hardware mechanisms. The PMM: 1) exposes a

load/store interface to access persistent data, 2) manages data placement, location, persistence

semantics, and protection (across multiple memory devices) using both dynamic access infor-

mation and hints from the application and system software, 3) manages metadata storage and

retrieval, needed to support efficient location and movement of persistent data, and 4) exposes

hooks and interfaces for applications and system software to enable intelligent data placement

and persistence management. Our preliminary evaluations show that the use of such a unit, if

scalable and efficient, can greatly reduce the energy inefficiency and performance overheads of

the two-level storage model, improving both performance and energy-efficiency of the overall

system, especially for data-intensive workloads [127].

We believe there are challenges to be overcome in the design, use, and adoption of such a

unit that unifies working memory and persistent storage. These challenges include:

1) How to devise efficient and scalable data mapping, placement, and location mechanisms

(which need to be hardware/software cooperative).

2) How to ensure that the consistency and protection requirements of different types of data are

adequately, correctly, and reliably satisfied (One example recent work tackled the problem

of providing storage consistency at high performance [121]). How to enable the reliable and

effective coexistence and manipulation of volatile and persistent data.
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3) How to redesign applications such that they can take advantage of the unified mem-

ory/storage interface and make the best use of it by providing appropriate hints for data

allocation and placement to the persistent memory manager.

4) How to provide efficient and high-performance backward compatibility mechanisms for en-

abling and enhancing existing memory and storage interfaces in a single-level store. These

techniques can seamlessly enable applications targeting traditional two-level storage systems

to take advantage of the performance and energy-efficiency benefits of systems employing

single-level stores. We believe such techniques are needed to ease the software transition to

a radically different storage interface.

5) How to design system resources such that they can concurrently handle applications/access-

patterns that manipulate persistent data as well as those that manipulate non-persistent

data. (One example recent work [204] tackled the problem of designing effective mem-

ory scheduling policies in the presence of these two different types of applications/access-

patterns.)

6. New Research Challenge 3: Predictable Performance

Since memory is a shared resource between multiple cores (or, agents, threads, or applica-

tions and virtual machines), as shown in Figure 8, different applications contend for bandwidth

and capacity at the different components of the memory system, such as memory controllers, in-

terconnects and caches. As such, memory contention, or memory interference, between different

cores critically affects both the overall system performance and each application’s performance.

Our past work (e.g., [129, 137, 138, 142]) showed that application-unaware design of memory

controllers, and in particular, memory scheduling algorithms, leads to uncontrolled interference

of applications in the memory system. Such uncontrolled interference can lead to denial of service

to some applications [129], low system performance [137, 138, 142], unfair and unpredictable ap-

plication slowdowns [53, 56, 137, 176]. For instance, Figure 9 shows the application slowdowns

when two applications are run together on a simulated two-core system where the two cores

share the main memory (including the memory controllers). The application leslie3d (from the

SPEC CPU2006 suite) slows down significantly due to interference from the co-running applica-

tion. Furthermore, leslie3d’s slowdown depends heavily on the co-running application. It slows

down by 2x when run with gcc, whereas it slows down by more than 5x when run with mcf, an

application that exercises the memory significantly. Our past works have shown that similarly

unpredictable and uncontrollable slowdowns happen in both existing systems (e.g., [88, 129])

and simulated systems (e.g., [53, 56, 137, 138, 142, 176]), across a wide variety of workloads

Building QoS and application awareness into the different components of the memory sys-

tem such as memory controllers, caches, interconnects is important to control interference at

these different components and mitigate/eliminate unfairness and unpredictability. Towards this

end, previous works have explored two different solution directions: 1) to mitigate interference,

thereby reducing application slowdowns and improving overall system performance, 2) to pre-

cisely quantify and control the impact of interference on application slowdowns, thereby pro-

viding performance guarantees to applications that need such guarantees. We discuss these two

different approaches and associated research problems next.
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Figure 8. A typical multicore system. Reproduced from [133]
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Figure 9. High and unpredictable application slowdowns

6.1. Mitigating Interference

In order to mitigate interference at the different components of memory system, two kinds

of approaches have been explored. The resources could be either smart (i.e., aware of threads’

or applications’ interference in memory) or dumb (i.e., unaware of threads’ or applications’

interference in memory) as we describe below.3

6.1.1. Smart Resources

The smart resources approach equips resources (such as memory controllers, intercon-

nects and caches) with the intelligence to 1) be aware of interference characteristics be-

tween applications and 2) prevent unfair application slowdowns and performance degrada-

tion. Several of our past works have taken the smart resources approach and designed QoS-

aware memory controllers [11, 54, 88, 93–95, 105, 130, 137, 138, 142, 176, 177] and inter-

3For the rest of this article, without loss of generality, we use the terms thread and application interchangeably.

From the point of view of a smart resource, the resource needs to be communicated at least the hardware context

identifier of the application/thread that is generating requests to be serviced.

O. Mutlu, L. Subramanian

2014, Vol. 1, No. 3 35



connects [27, 41–43, 64, 66, 67, 128, 147, 148]. Our and other previous works have explored

smart shared cache management policies that 1) allocate shared cache capacity to applications

in a manner that is aware of their cache utility [161, 195], 2) modify the cache replacement

and insertion policies to be aware of the data reuse and memory access behavior of applica-

tions [75, 76, 87, 160, 166, 169]. All these QoS-aware schemes enable resources (such as mem-

ory controllers, interconnects and caches) to detect interference between applications by means

of monitoring their access characteristics and allocate resources such as memory bandwidth,

interconnect link bandwidth and cache capacity to applications so that interference between

applications is mitigated.

We provide several brief examples of the smart resources approach by focusing on QoS-aware

memory controllers [11, 54, 88, 93–95, 105, 130, 137, 138, 142, 176, 177].

Mutlu and Moscibroda [129, 137] devised some of the first fair memory controllers. Their

memory scheduler dynamically estimates the slowdown of each application and prioritizes ap-

plications’ requests in a way that balances the slowdowns. In a later work, Mutlu and Mosci-

broda [138, 142] show that uncontrolled inter-thread interference in the memory controller can

destroy the memory-level parallelism (MLP) [35, 51, 63, 140, 141, 143, 144, 150] and serial-

ize requests of individual threads, leading to significant degradation in both single-thread and

system performance in multi-core/multi-threaded systems. Hence, many techniques devised by

computer architects to parallelize a thread’s memory requests to tolerate memory latency by ex-

ploiting MLP, such as out-of-order execution [151, 152, 185], non-blocking caches [99], runahead

execution [30, 35, 51, 136, 139–141, 143, 144] and other techniques [34, 160, 205], can become

ineffective if the memory controller is not aware of threads. To overcome this and ensure the

memory controller can serve each thread’s requests in parallel, they introduce the idea of thread

ranking, where a memory controller forms a rank order among threads and services threads in

that order. To provide high fairness and starvation freedom, their controller employs batching of

requests, where the memory controller groups oldest requests from each thread into a batch and

services that batch before all other requests. This work, and the associated memory scheduler

PAR-BS (Parallelism-Aware Batch Scheduler) has formed the basis of many future thread-aware

memory scheduling policies by providing relatively simple and effective mechanisms for both per-

formance and fairness in the memory controller.

Kim et al. [93] observe that applications that have received the least service from the memory

controllers in the past, would benefit from quick request service (in the future) and hence, seek to

prioritize such applications’ requests at the memory controller, with the goal of improving system

performance. They propose ATLAS [93], a QoS-aware memory controller design that monitors

and ranks applications based on the amount of service each application receives at the memory

controllers and prioritizes requests of applications with low attained memory service. ATLAS

provides significant performance improvement by prioritizing applications that can benefit the

most from memory service. In a later work, Kim et al. [94, 95], observe that prioritizing between

all applications solely based on one access characteristic, e.g., the attained memory service

in ATLAS, could unfairly slow down some applications: applications that are very memory

intensive can be slowed down disproportionately. To solve this problem, they propose the thread

cluster memory scheduler (TCM) [94, 95], which employs heterogeneous request scheduling

policies for different types of applications: latency-sensitive vs. bandwidth-sensitive, as shown in

Figure 10. TCM classifies applications into two clusters, the low- and high-memory-intensity (or,

latency-sensitive and bandwidth-sensitive) clusters, prioritizes the latency-sensitive cluster, and
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employs a different policy to rank and prioritize among applications within each cluster, with

the goal of optimizing for both performance and fairness. Results show that TCM can achieve

both high performance and fairness compared to the best schedulers of the time.
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Figure 10. Operation of Thread Cluster Memory Scheduler (TCM). Reproduced from [92]

Most recently, Subramanian et al. [177] propose the blacklisting memory scheduler (BLISS)

based on the observation that it is not necessary to employ a full ordered ranking across all

applications, like PAR-BS, ATLAS and TCM do, because of two key reasons. First, such a full

ordered ranking scheme incurs high hardware complexity. Second, a full ordered ranking of ap-

plications prioritizes some high-memory-intensity applications over other high-memory-intensity

applications, resulting in unfair application slowdowns. Hence, they propose to separate appli-

cations into only two groups (instead of employing a full ranking of threads), one containing

interference-causing applications and the other containing vulnerable-to-interference applica-

tions and prioritize the vulnerable-to-interference group over the interference-causing group.

These groups are formed by monitoring the number of consecutive requests from an appli-

cations and classifying applications that generate more than a certain number of consecutive

requests as interference-causing (this is called blacklisting). Such a scheme not only greatly re-

duces the hardware complexity and critical path latency of the memory scheduler (as it does

not require full ranking of all applications), but also prevents applications from slowing down

unfairly, thereby improving system performance.

It is worth noting that inter-thread interference in the memory controller among threads

of the same application can greatly reduce that application’s performance as well. Ebrahimi et

al. [54] quantify the performance loss due to such interference and propose a new memory con-

troller that dynamically estimates critical threads (or, limiter threads) in an application, which

limit performance, and prioritizes such threads over others. Such an approach that identifies the

most important threads, potentially using various other mechanisms [14, 18, 50, 78, 79, 178–181],

and prioritizes/accelerates them in not only the memory controllers but also other resources is

likely to be promising to improve parallel program performance and efficiency.

The design of memory controllers remains equally, if not more, important in the presence

of persistent memory systems that store and access persistent data through the memory inter-

face (as we discussed in Section 5.3). In fact, in such systems memory writes can become very

frequent as persistent data needs to be flushed to main memory in a strict order determined

by the storage consistency model employed in modern systems [204]. Zhao et al. [204] identified

this problem and showed that existing memory controllers cannot appropriately handle interfer-

ence between applications that access persistent data and applications that access volatile data
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because those that write to persistent data can greatly reduce system performance and fairness

due to scheduling policies that do not take into account write requests. They develop a new

memory scheduling algorithm that provides a solution to this problem by more fairly handling

read and write requests of different applications [204].

Finally, it is critically important to appropriately handle the interference caused by prefetch

requests generated by hardware and software prefetchers employed in almost all modern high

performance systems [69, 174, 183]. Lee et al. [105, 107, 108] show that making the memory

controller dynamically decide between providing equal or lower priority to prefetch requests

compared to demand requests, based on the accuracy of prefetches, can greatly improve sys-

tem performance and fairness. Ebrahimi et al. [55, 57, 58] showed that interference caused by

aggressive prefetchers, even if they are accurate, can cause slowdowns to applications and re-

duce performance. They devise mechanisms to appropriately throttle prefetchers to reduce the

negative effects of the interference caused.

All these past works on QoS-aware and interference-aware memory scheduling have shown

that significant performance and fairness gains are possible by designing the memory controller

to be aware of different threads/applications and different request/access characteristics and

appropriately prioritizing among them. We believe ample opportunity exists for future designs

that can effectively navigate the complex tradeoff space of performance, fairness, hardware

complexity/cost, scheduling latency and energy efficiency. Designs that optimize for three or

more of these metrics at the same time, e.g., in the spirit of BLISS [177], will especially be

desirable in the future and are a promising direction for future research.

A challenge with the smart resources approach is the coordination of resource allocation

decisions across different resources, such as main memory, interconnects and shared caches. To

provide QoS across the entire system, the actions of different resources need to be coordinated.

Several works examined such coordination mechanisms. One example of such a scheme is a

coordinated resource management scheme proposed by Bitirgen et al. [15] that employs machine

learning, specifically, an artificial neural network, to predict each application’s performance for

different possible resource allocations. Resources are then allocated appropriately to different

applications so that a global system performance metric is optimized. Another example of such

a scheme is a recent work by Wang and Martinez [191] that employs a market-dynamics-inspired

mechanism to coordinate allocation decisions across resources. Approaches to coordinate resource

allocation and scheduling decisions across multiple resources in the memory system, whether they

use machine learning, game theory, or feedback based control, are a promising research topic

that offers ample scope for future exploration.

6.1.2. Dumb Resources

The dumb resources approach, rather than modifying the resources themselves to be QoS-

and application-aware, controls the resources and their allocation at different points in the system

(e.g., at the cores/sources or at the system software) so that unfair slowdowns and performance

degradation are mitigated. For instance, Ebrahimi et al. propose Fairness via Source Throttling

(FST) [53, 55, 56], which throttles applications at the source (processor core) to regulate the

number of requests that are sent to the shared caches and main memory from the processor

core. Cheng et al. [32] propose to break down threads into compute and memory tasks and

restrict the number of concurrent memory tasks. Kayiran et al. [85] throttle the thread-level

parallelism of the GPU to mitigate memory contention related slowdowns in heterogeneous

Research Problems and Opportunities in Memory Systems

38 Supercomputing Frontiers and Innovations



architectures consisting of both CPUs and GPUs. Das et al. [40] propose to map applications

to cores (by modifying the application scheduler in the operating system) in a manner that

is aware of the applications’ interconnect and memory access characteristics. Muralidhara et

al. [131] propose to partition memory channels among applications such the data of applications

that interfere significantly with each other are mapped to different memory channels. Other

works [77, 88, 116, 194] build upon [131] and partition banks between applications at a fine-

grained level to prevent different applications’ request streams from interfering at the same

banks. Zhuravlev et al. [206] and Tang et al. [182] propose to mitigate interference by co-

scheduling threads that interact well and interfere less at the shared resources. Kaseridis et

al. [84] propose to interleave data across channels and banks such that threads benefit from

locality in the DRAM row-buffer, while not causing significant interference to each other.

On the interconnect side, there has been a growing body of work on source throttling mech-

anisms [12, 27, 61, 65, 147, 148, 184] that detect congestion or slowdowns within the network

and throttle the injection rates of applications in an application-aware manner to maximize both

system performance and fairness. In heterogeneous architectures consisting of CPUs and GPUs,

similar source throttling approaches can greatly reduce memory congestion and improve both

QoS provided to the CPUs and overall system performance [85]. Kayiran et al. [85] provide a

promising mechanism that can be configured to achieve multiple different performance goals in

such architectures by adapting the number of threads scheduled in the GPU based on memory

congestion and latency tolerance characteristics in the heterogeneous system.

One common characteristic among all these dumb resources approaches is that they regulate

the amount of contention at the caches, interconnects and main memory by controlling their

operation/allocation from a different agent such as the cores, the operating system, or the

memory allocator, while not modifying the resources themselves to be QoS- or application-

aware. This has the advantage of keeping the resources themselves simple, while also potentially

enabling better coordination of allocation decisions across multiple resources. On the other

hand, the disadvantages of the dumb resources approach are that 1) each resource may not

be best utilized to provide the highest performance because it cannot make interference-aware

decisions, 2) monitoring and control mechanisms to understand and decide how to best control

operation/allocation from a different agent than the resources themselves to achieve a particular

goal increase complexity.

6.1.3. Integrated Approaches to QoS and Resource Management

Even though both the smart resources and dumb resources approaches can greatly mitigate

interference and provide QoS in the memory system when employed individually, they each

have advantages and disadvantages that are unique, as we discussed above. Therefore, integrat-

ing the smart resources and dumb resources approaches can enable better interference mitigation

than employing either approach alone by exploiting the advantages of each approach. An early

example of such an integrated resource management approach is the Integrated Memory Parti-

tioning and Scheduling (IMPS) scheme [131], which combines memory channel partitioning in

the operating system (a dumb resource approach) along with simple application-aware memory

request scheduling in the memory controller (a smart resource approach), leading to higher per-

formance than when either approach is employed alone. The key idea of IMPS is to partition

memory channels to mitigate interference between memory-intensive applications while priori-

tizing compute-intensive applications in the memory scheduler. Subramanian et al. [131] show
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that this combined technique improves performance more than either memory channel parti-

tioning or application-aware memory scheduling alone. We believe such combined approaches

will become even more important in the future as memory interference becomes an even more

severe problem than today due to limited memory bandwidth and data-intensive workloads.

Combining different approaches to memory QoS and resource management, both smart and

dumb, with the goal of more effective interference mitigation is therefore a promising area for

future research and exploration.

6.2. Quantifying and Controlling Interference

While several previous works have focused on mitigating interference at the different com-

ponents of a memory system, with the goals of improving performance and preventing unfair

application slowdowns, few previous works have focused on precisely quantifying and controlling

the impact of interference on application slowdowns, with the goal of providing soft or hard

performance guarantees. An application’s susceptibility to interference and, consequently, its

performance, depends on which other applications it is sharing resources with: an application

can sometimes have very high performance and at other times very low performance on the

same system, solely depending on its co-runners (as we have already discussed in Section 6

and shown an example in Figure 9). Therfore a critical research challenge is how to design the

memory system (including all shared resources such as main memory, caches, and interconnects)

so that 1) the performance of each application is predictable and controllable, and performance

requirements of each application are satisfied, while 2) the performance and efficiency of the

entire system are as high as needed or possible.

A promising solution direction to address this predictable performance challenge is to devise

mechanisms that are effective and accurate at 1) estimating and predicting application perfor-

mance in the presence of inter-application interference in a dynamic system with continuously

incoming and outgoing applications, and 2) enforcing end-to-end performance guarantees within

the entire shared memory system. We discuss briefly several prior works that took some of the

first steps to achieve these goals and conclude with some promising future directions to pursue.

Stall Time Fair Memory Scheduling (STFM) [137] is one of the first works on estimating the

impact of inter-application memory interference on application performance. STFM estimates

the impact of memory interference at the main memory alone on application slowdowns. It

does so by estimating the impact of delaying every individual request of an application on its

slowdown. Fairness via Source Throttling (FST) [53, 56] and Per-Thread Cycle Accounting [49]

employ a scheme similar to STFM to estimate the impact of main memory interference, while also

taking into account interference at the shared caches. While these approaches are good starting

points towards addressing the challenge of estimating and predicting application slowdowns in

the presence of memory interference, our recent work [176] observed that the slowdown estimates

from STFM, FST and Per-Thread Cycle Accounting are relatively inaccurate since they estimate

interference at an individual request granularity. As a result, such schemes may not only be able

to provide strict performance guarantees but also become complex due to the hardware needed

to track interference on an individual request granularity.

We have recently designed a simple method, called MISE (Memory-interference Induced

Slowdown Estimation) [176], for estimating application slowdowns accurately in the presence of

main memory interference. We observe that an application’s aggregate memory request service

rate is a good proxy for its performance, as depicted in Figure 11, which shows the measured
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performance versus memory request service rate for three applications on a real system [176].

As such, an application’s slowdown can be accurately estimated by estimating its uninterfered

request service rate, which can be done by prioritizing that application’s requests in the memory

system during some execution intervals. Results show that average error in slowdown estimation

with this relatively simple technique is approximately 8% across a wide variety of workloads.

Figure 12 shows the actual versus predicted slowdowns over time, for astar, a representative

application from among the many applications examined, when it is run alongside three other

applications on a simulated 4-core system. As we can see, MISE’s slowdown estimates track the

actual measured slowdown closely.

We believe these works on accurately estimating application slowdowns and providing pre-

dictable performance in the presence of memory interference have just scratched the surface of

a critically important research direction. Designing predictable computing systems is a Grand

Research Challenge, as identified by the Computing Research Association [37]. Many future

ideas in this direction seem promising. We discuss some of them briefly. First, extending such

simple performance estimation techniques like MISE [176] to the entire memory and storage

system is a promising area of future research in both homogeneous and heterogeneous systems.

Second, estimating and bounding memory slowdowns for hard real-time performance guaran-

tees, as recently discussed by Kim et al. [88], is similarly promising. Third, devising memory

devices, architectures and interfaces that can support better predictability and QoS also ap-

pears promising. Some key exciting research questions include, but are by no means limited

to, the following: How sensitive are different applications to memory, interconnect and storage

bandwidth? How does this sensitivity vary with the memory/storage/interconnect technology?

How sensitive are applications to memory/cache/storage capacity? How do we take into ac-

count sensitivity to different resources such as cache/memory/storage capacity and bandwidth

in estimating application slowdowns? How can we estimate slowdowns in heterogeneous systems

consisting of CPUs, GPUs and hardware accelerators?
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Once accurate slowdown estimates are available, they can be leveraged in multiple possible

ways. One possible use case is to leverage them in the hardware to allocate just enough re-

sources to an application so that its performance requirements are met. We demonstrate such a

scheme for memory bandwidth allocation showing that applications’ performance/slowdown re-

quirements can be effectively met by leveraging slowdown estimates from the MISE model [176].

There are several other ways in which slowdown estimates can be leveraged in both the hard-

ware and the software to achieve various system-level goals. For instance, accurate slowdown
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estimates can be used to drive fair pricing schemes based on slowdowns, rather than just re-

source allocation, in a cloud computing setting [1, 2]. Slowdown estimates can also be used to

consolidate virtual machines onto physical hosts so that applications are not unfairly slowed

down, through virtual machine migration and admission control schemes [68, 117, 182]. These

and other potential schemes to leverage accurate slowdown estimates are promising directions

to explore.

7. Flash Memory Scaling Challenges

We discuss briefly the challenges of scaling the major component of the storage subsys-

tem, flash memory. Flash memory is arguably the most successful charge-based memory (like

DRAM) that has been employed as part of the storage system. Its benefits over hard disks are

clear: greatly lower latencies, greatly higher bandwidth and much higher reliability due to the

lack of mechanical components. These have lead to the successful adoption of flash memory

in modern systems across the board, to the point of replacing hard disk drives completely in

space-constrained environments, e.g., laptop computers.

Our discussion in this section will be limited to some key challenges in improving the reliabil-

ity and lifetime of flash memory, which we have been exploring in our recent research. Note that

many other challenges exist, including but not limited to the following: 1) making the storage

stack much higher performance to take advantage of the low latency and high parallelism of raw

flash devices [189] (similarly to what we discussed in Section 5.3 with respect to the Persistent

Memory Manager), 2) providing transactional support in the flash translation layer for better

system performance and flexibility [120], 3) taking advantage of application- and system-level

information to manage flash memory in a way that improves performance, efficiency, lifetime

and cost. These are great research directions to explore, but, for brevity, we will not discuss

them in further detail.

In part of our research, we aim to develop new techniques that overcome reliability and

endurance challenges of flash memory to enable its scaling beyond the 20nm technology genera-

tions. To this end, we experimentally measure, characterize, analyze, and model error patterns

that occur in existing flash chips, using an experimental flash memory testing and characteri-

zation platform [19]. Based on the understanding we develop from our experiments, we aim to

develop error management techniques that mitigate the fundamental types of errors that are

likely to increase as flash memory scales.

We have recently experimentally characterized complex flash errors that occur at 30-40nm

flash technologies [20], categorizing them into four types: retention errors, program interference

errors, read errors, and erase errors. Our characterization shows the relationship between various

types of errors and demonstrates empirically using real 3x-nm flash chips that retention errors

are the most dominant error type. Our results demonstrate that different flash errors have

distinct patterns: retention errors and program interference errors are program/erase-(P/E)-

cycle-dependent, memory-location-dependent, and data-value-dependent. Since the observed er-

ror patterns are due to fundamental circuit and device behavior inherent in flash memory, we

expect our observations and error patterns to also hold in flash memories beyond 30-nm tech-

nology.

Based on our experimental characterization results that show that the retention errors are

the most dominant errors, we have developed a suite of techniques to mitigate the effects of such

errors, called Flash Correct-and-Refresh (FCR) [21]. The key idea is to periodically read each
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page in flash memory, correct its errors using simple error correcting codes (ECC), and either

remap (copy/move) the page to a different location or reprogram it in its original location by

recharging the floating gates, before the page accumulates more errors than can be corrected

with simple ECC. Our simulation experiments using real I/O workload traces from a variety

of file system, database, and search applications show that FCR can provide 46x flash memory

lifetime improvement at only 1.5% energy overhead, with no additional hardware cost.

We have also experimentally investigated and characterized the threshold voltage distribu-

tion of different logical states in MLC NAND flash memory [24]. We have developed new models

that can predict the shifts in the threshold voltage distribution based on the number of P/E

cycles endured by flash memory cells. Our data shows that the threshold voltage distribution

of flash cells that store the same value can be approximated, with reasonable accuracy, as a

Gaussian distribution. The threshold voltage distribution of flash cells that store the same value

gets distorted as the number of P/E cycles increases, causing threshold voltages of cells storing

different values to overlap with each other, which can lead to the incorrect reading of values of

some cells as flash cells accumulate P/E cycles. We find that this distortion can be accurately

modeled and predicted as an exponential function of the P/E cycles, with more than 95% accu-

racy. Such predictive models can aid the design of more sophisticated error correction methods,

such as LDPC codes [62], which are likely needed for reliable operation of future flash memories.

We are currently investigating another increasingly significant obstacle to MLC NAND

flash scaling, which is the increasing cell-to-cell program interference due to increasing parasitic

capacitances between the cells’ floating gates. Accurate characterization and modeling of this

phenomenon are needed to find effective techniques to combat program interference. In recent

work [23], we leverage the read retry mechanism found in some flash designs to obtain measured

threshold voltage distributions from state-of-the-art 2Y-nm (i.e., 24-20 nm) MLC NAND flash

chips. These results are then used to characterize the cell-to-cell program interference under

various programming conditions. We show that program interference can be accurately modeled

as additive noise following Gaussian-mixture distributions, which can be predicted with 96.8%

accuracy using linear regression models. We use these models to develop and evaluate a read

reference voltage prediction technique that reduces the raw flash bit error rate by 64% and

increases the flash lifetime by 30%. More details can be found in Cai et al. [23].

To improve flash memory lifetime, we have developed a mechanism called Neighbor-Cell

Assisted Correction (NAC) [25], which uses the value information of cells in a neighboring page

to correct errors found on a page when reading. This mechanism takes advantage of the new

empirical observation that identifying the value stored in the immediate-neighbor cell makes it

easier to determine the data value stored in the cell that is being read. The key idea is to re-read

a flash memory page that fails error correction codes (ECC) with the set of read reference voltage

values corresponding to the conditional threshold voltage distribution assuming a neighbor cell

value and use the re-read values to correct the cells that have neighbors with that value. Our

simulations show that NAC effectively improves flash memory lifetime by 33% while having no

(at nominal lifetime) or very modest (less than 5% at extended lifetime) performance overhead.

Most recently, we have provided a rigorous characterization of retention errors in NAND flash

memory devices and new techniques to take advantage of this characterization to improve flash

memory lifetime [26]. We have extensively characterized how the threshold voltage distribution

of flash memory changes under different retention age, i.e., the length of time since a flash cell

is programmed. We observe from our characterization results that 1) the optimal read reference
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voltage of a flash cell, at which the data can be read with the lowest raw bit error rate (RBER),

systematically changes with the cell’s retention age and 2) different regions of flash memory can

have different retention ages, and hence different optimal read reference voltages. Based on these

observations, we propose a new technique to learn and apply the optimal read reference voltage

online (called retention optimized reading). Our evaluations show that our technique can extend

flash memory lifetime by 64% and reduce average error correction latency by 7% with only

a 768 KB storage overhead in flash memory for a 512 GB flash-based SSD. We also propose a

technique to recover data with uncorrectable errors by identifying and probabilistically correcting

flash cells with retention errors. Our evaluation shows that this technique can effectively recover

data from uncorrectable flash errors and reduce RBER by 50%. More detail can be found in Cai

et al. [26].

These works, to our knowledge, are the first open-literature works that 1) characterize var-

ious aspects of real state-of-the-art flash memory chips, focusing on reliability and scaling chal-

lenges, and 2) exploit the insights developed from these characterizations to develop new mech-

anisms that can improve flash memory reliability and lifetime. We believe such an experimental-

and characterization-based approach (which we also employ for DRAM [86, 97, 110, 115], as we

discussed in Section 4) to developing novel techniques for both existing and emerging memory

technologies is critically important as it 1) provides a solid basis (i.e., real data from modern

devices) on which future analyses and new techniques can be based, 2) reveals new scaling trends

in modern devices, pointing to important challenges in the field, and 3) equips the research com-

munity with reliable models and analyses that can be openly used to innovate in areas where

experimental information is usually scarce in the open literature due to heavy competition within

industry, thereby enhancing research and investigation in areas that are previously deemed to

be difficult to research.

Going forward, we believe more accurate and detailed characterization of flash memory error

mechanisms is needed to devise models that can aid the design of even more efficient and effective

mechanisms to tolerate errors found in sub-20nm flash memories. A promising direction is the

design of predictive models that the system (e.g., the flash controller or system software) can

use to proactively estimate the occurrence of errors and take action to prevent the error before

it happens. Flash-correct-and-refresh [21], read reference voltage prediction [23], and retention

optimized reading [26] mechanisms, described earlier, are early forms of such predictive error

tolerance mechanisms. Methods for exploiting application and memory access characteristics

to optimize flash performance, energy, lifetime and cost are also very promising to explore.

We believe there is a bright future ahead for more aggressive and effective application- and

data-characteristic-aware management mechanisms for flash memory (just like for DRAM and

emerging memory technologies). Such techniques will likely aid effective scaling of flash memory

technology into the future.

8. Conclusion

We have described several research directions and ideas to enhance memory scaling via sys-

tem and architecture-level approaches. We believe there are three key fundamental principles

that are essential for memory scaling: 1) better cooperation between devices, system, and soft-

ware, i.e., the efficient exposure of richer information up and down the layers of the system stack

with the development of more flexible yet abstract interfaces that can scale well into the future ,

2) better-than-worst-case design, i.e., design of the memory system such that it is optimized for
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the common case instead of the worst case, 3) heterogeneity in design, i.e., the use of heterogene-

ity at all levels in memory system design to enable the optimization of multiple metrics at the

same time. We believe these three principles are related and sometimes coupled. For example, to

exploit heterogeneity in the memory system, we may need to enable better cooperation between

the devices and the system, e.g., as in the case of heterogeneous DRAM refresh rates [114],

tiered-latency DRAM [109], heterogeneous-reliability memory [122], locality-aware management

of hybrid memory systems [201] and the persistent memory manager for a heterogeneous array

of memory/storage devices [127], five of the many ideas we have discussed in this paper.

We have shown that a promising approach to designing scalable memory systems is the co-

design of memory and other system components to enable better system optimization. Enabling

better cooperation across multiple levels of the computing stack, including software, microar-

chitecture, and devices can help scale the memory system by exposing more of the memory

device characteristics to higher levels of the system stack such that the latter can tolerate and

exploit such characteristics. Finally, heterogeneity in the design of the memory system can help

overcome the memory scaling challenges at the device level by enabling better specialization of

the memory system and its dynamic adaptation to different demands of various applications.

We believe such system-level and integrated approaches will become increasingly important and

effective as the underlying memory technology nears its scaling limits at the physical level and

envision a near future full of innovation in main memory architecture, enabled by the co-design

of the system and main memory.
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We assess the problem of choosing optimal direct topology for InfiniBand networks in terms

of performance. Newest topologies like Dragonfly, Flattened butterfly and Slim Fly are considered,

as well as standard Tori and Hypercubes. We consider some reasonable extensions to InfiniBand

hardware which could be implemented by vendors easily and may allow reasonable routing algo-

rithms for such topologies. A number of routing algorithms are proposed and compared for various

traffic patterns. Mapping algorithms for Dragonfly and Flattened Butterfly are proposed. Based on

this research it has been decided to use Flattened Butterfly topology for system #22 in November

2014 Top 500 list.

Keywords: adaptive routing, InfiniBand, high-radix topology, network simulation.

Introduction

InfiniBand is a de facto industry standard in supercomputing with almost 45% entries on

the latest Top 500 list [1]. However, the largest systems on the list tend to have custom intercon-

nection networks, with only 2 of Top 10 systems built using InfiniBand. A possible explanation

of this fact is that large number of nodes drives the need for modern cost-effective topologies

such as Dragonfly and Flattened Butterfly that are not readily supported in current InfiniBand

infrastructure. Moreover, these topologies in turn require advanced routing algorithms, including

adaptive routing, that cannot be implemented within InfiniBand specification.

The purpose of this paper is to investigate possible performance of large InfiniBand networks

given that some extra features are added to the switches.

1. Topologies

We compare topologies and routing algorithm on the following reference configuration. Net-

work contains n = 2,048 switches with concentration C = 8, thus 16,384 nodes. Each switch

has d = 36 ports, 8 of those taken by nodes and 28 are available for inter-switch connections.

Hardware is assembled in 32 twin racks of 64 switches (512 nodes) each. Hence it is desirable to

exploit local connections in groups of 16, 32, or 64 switches to reduce cabling cost. Only direct

topologies are considered. Number of switches is fixed to maintain roughly the same cost for

different topologies.

Theoretical upper bound [16] on the relative bisection bandwidth β is d−2
2C + o(1) ≈ 162,5%.

Practically constructible graphs with greatest known bisection are Ramanujan graphs [22] with

lower bound on bisection d−2
√
d−1

2C for d = q + 1 where q is a prime power. For q = 25 this

yields a 100% relative bisection. However, such graphs are available in a very few sizes and have

intractable structure for designing routing algorithm on them. Therefore we assume that a 50%

relative bisection bandwidth obtained on several topologies is a reasonable value.

1T-Platforms, Moscow, Russia
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3Micron Technology, Inc., Boise, USA
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1.1. Tori

A torus is a Cartesian product of cycles. Up to 4D tori may be supported in InfiniBand. For

higher dimensions it is impossible to provide deadlock freedom of minimal routing. Torus-2QoS,

a routing engine for tori in the Open Subnet Manager (OpenSM), only supports 2D and 3D tori.

We shall use the following notation both for tori and for FlatFly later: N is the number of

dimensions; Kn is the size of dimension n; Ln is the width of links within dimension n.

The relative bisection of a torus is then β = min{4Ln/CKn} over n = 1, N , its degree is

d = C + 2
∑

n Ln. A combinatorial search yields the following two options with the greatest

possible bisection:

Dimension Size Link Widths Degree Diameter Bisection

3D 8× 16× 16 3, 5, 5 34 20 15,6%

4D 4× 8× 8× 8 2, 4, 4, 4 36 14 25,0%

Cayley graphs of commutative groups are a well known alternative of tori, having a similar

cabling structure and routing algorithms, but much smaller diameter and greater bisection

bandwidth. We do not consider such topologies explicitly, but e.g. a FlatFly is a Cayley graph

of a product of cyclic groups with appropriate generators; Dragonfly is a vertex-transitive graph

and thus has a structure similar to that of a Cayley graph of a non-commutative group.

1.2. FlatFly

Consider a Cartesian product of N full graphs. Historically, several names were used for this

topology:

• Generalized Hypercube [5] (this term implies single inter-switch links and one adapter per

switch);

• Flattened Butterfly [14] (implying single inter-switch links, and equals orders of full graphs

equal to concentration);

• HyperX [3] (subsumes both previous cases).

We shall refer to this topology as FlatFly (FF) and use the same notation as for tori: Kn

for orders of full graphs and Ln for link width in each of them, n = 1, N . According to [3],

the relative bisection bandwidth of the FlatFly network is β = min{KnLn}/2C. Diameter of a

FlatFly is equal to its dimension N , and degree is equal to C +
∑

n Ln(Kn − 1).

Parameters of optimal FlatFly network are determined by a combinatorial search procedure

outlined in [3]. For our setup this is a 4D FlatFly with dimensions 4× 8× 8× 8 and link widths

2, 1, 1, 1. It’s diameter is 4, radix is 35, and relative bisection is 50%.

Cabling of this network is relatively easy. A 8 × 8 part (3rd and 4th dimensions) occupies

a twin rack. Then each rack is connected to 3 racks in the first dimension with bundles of 128

cables, and to 7 racks in the second dimension with bundles of 64 cables.

FlatFly may serve as a building block for other topologies. For example, groups in Dragonfly

topology are usually connected as a full graph (which is a 1D FlatFly), or a 2D FlatFly [9].

1.3. Hypercube

A hypercube is a Cartesian product of 2-vertex complete graphs, and may be considered

a particular case of both torus and FlatFly. Unlike tori, dimension of hypercube built with
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InfiniBand is only limited by the number of nodes in subnet (which in practice means a maximum

of 14D). However, as a FlatFly it usually is not optimal in terms of bisection bandwidth and

diameter.

In our setup, hypercube is 11D with double links in each dimension. This gives diameter 11,

relative bisection 25%, and radix 30. The remaining 6 ports may be utilized to increase bisection

bandwidth within one rack to 37,5%.

1.4. Dragonfly

A Dragonfly [15] consists of groups connected as full graphs (with “local” links). These

groups, regarded as vertices, are again connected as a full graph (with “global” links).

Denote by K the size of a group, and by G the number of global links per switch. Then there

are KG groups containing K2G switches4. A typical shortest path crosses one “global” and two

“local” full graphs, hence the relative bisection is β = min{K/4C,G/2C}. Graph diameter is 3,

and degree is C +G+K − 1.

It is reasonable to choose K and G such that K/4C = G/2C, which gives K = 16 and

G = 8 for our setup. The radix is 30. Unlike other considered topologies, cabling of global links

in a Dragonfly is really messy.

1.5. Slim Fly

A Slim Fly [4] topology is built with McKay–Miller–Širáň (MMS) graphs [20] parameterized

by a prime power q. Its 2q2 vertices are elements of linear space Z2×Fq×Fq, where Fq is a field

of order q. Coordinates of vertices are denoted as (t, x, y). There are two kinds of edges:

1. y-edges: (t, x, y0) is connected with (t, x, y1) iff y1 − y0 ∈ Xt. For q = 2p, the sets Xt are

X0 = {1, ξ2, ξ4, . . . , ξq−2} and X1 = {ξ, ξ3, . . . , ξq−1}, where ξ is a primitive element of Fq.

2. t-edges: (0, x0, y0) is connected with (1, x1, y1) iff y0 = x0x1 + y1.

Diameter of a MMS graph is 2. For q = 2p its radix is C + 3Lq/2, and we hypothesize that

its relative bisection is β = Lq/2C. Here L is link width.

Unfortunately, an MMS graph with 2,048 switches corresponds to q = 32 and requires

switches of radix 56. Instead of that, we will consider Cartesian products of Slim Fly and

FlatFly. There are two options for our setup:

Slim Fly q L FlatFly Kn Ln Degree Diameter Bisection

SF×FF-1 4 2 8× 8 1, 1 34 4 50%

SF×FF-2 8 1 16 1 35 3 50%

SF×FF-1 replaces 4 × 8 dimensions of our FlatFly setup with a Slim Fly. This further

simplifies cabling: now each twin rack is connected to 6 other racks using bundles of 128 cables.

Also, it saves 1,024 optical cables.

SF×FF-2 has the same radix as FlatFly, but a lower diameter of 3, and groups of 16 switches

have relative bisection 100%.

4Actually there are KG + 1 groups and (KG + 1)K switches, but we allow for a small irregularity in topology

omitting one global link per group, for the total number of switches to be a power of 2.
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2. Mapping algorithms

Some routing algorithms assume that the structure of a subnet is given in advance, and that

all switches have their coordinates assigned. This may not be always the case in practice. For

example, in OpenSM a routing engine is given only a list of nodes and links, and has to recover

network structure on its own.

Here we present mapping algorithms for FlatFly and Dragonfly.

2.1. Mapping a FlatFly

To map a FlatFly, we construct an equivalence relation ε on the set of its links, using the

following rules.

1. Two uni-directional links e1 and e2 constituting one bi-directional link are equivalent: e1εe2.

2. Two parallel links e1 and e2 connecting the same two switches are equivalent: e1εe2.

3. Three links e1, e2, e3 forming a rectangle are equivalent: e1εe2, e2εe3.

4. If four links e1, . . . , e4 form a rectangle, then the opposite sides of this rectangle are equiv-

alent: e1εe3, e2εe4.

The total number of traversed edges here is at most nd2.

The rules above do not define the entire relation ε; we need to compute their transitive

closure. This may be done efficiently using the Union-Find algorithm from [25] with O(n lnn)

operations.

Each equivalence class Di of ε corresponds to a dimension of FlatFly, i = 1, N . Using ε, we

then assign coordinates to switches. Additional N equivalence relations εi are constructed using

the following rule. If edge e connects vertices v1 and v2, and e ∈ Di, then v1εjv2 for all j 6= i.

After calculating the transitive closure, each equivalence class Cij of εi corresponds to a single

value of i-th coordinate, j = 1,Ki.

The described algorithm can be applied to incomplete topologies. Experiments on our setup

have shown that FlatFly is still mapped correctly if 20% switches and 15% links are missing at

random. Hypercube is mapped correctly with 15% missing switches and 10% missing links.

2.2. Mapping a Dragonfly

For Dragonfly mapping, we construct the same equivalence relation ε as for FlatFly. Each

equivalence class of ε containing more than one edge represents local links of one Dragonfly

group. All other links are global links.

In our setup, incomplete Dragonfly is mapped correctly with 40% switches and 10% links

missing at random.

3. Routing

InfiniBand [2] fabric is a packet-switching network. Each network device is assigned a subnet

address called Local Identifier (LID). Each link has several Virtual Lanes (VL) used by the

routing engine to provide deadlock freedom and quality of service. The route of each packet from

source to destination is determined by two header fields set at the source node: Destination LID

(DLID) and Service Level (SL).
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LID is a 16-bit integer, but the actual address capacity is 48K since 16K addresses are used

for multicast groups. SL takes values from 0 to 15. There may be 1, 2, 4, 8, or 15 VLs per link;

a common value for modern hardware is 8 VLs.

There are four mechanisms constituting an InfiniBand routing function:

1. Each switch has a Linear Forwarding Table (LFT) that maps DLIDs into output ports.

2. After selecting the output port, switch consults an SL2VL Table to select output VL de-

pending on input port, output port and SL.

3. Before sending a packet, the source node requests a Path Record from the subnet manager,

to find out which SL should be used for these source and destination nodes.

4. LID Mask Control (LMC) feature allows assigning more than one LID per node. This results

in several paths between the same two nodes that may be used for load balancing or other

purposes.

In theory [8], one may consider routing functions in a very general form

(Source,Destination,Switch, In Port, In VC)→ (Out Port,Out VC).

InfiniBand factors this dependence into





(Source,Destination)→ (DLID,SL),

(Switch,DLID)→ Out Port,

(Switch,SL, In Port,Out Port)→ Out VL.

In particular, the VL chosen does not directly depend on the destination, which limits the choices

in the design of deadlock-free routing algorithms.

3.1. Adaptive routing

InfiniBand specification [2] does not support Adaptive Routing (AR). Moreover, a number of

measures has been taken to ensure that packets arrive in order. On the other hand, it is always

possible to find a traffic pattern on which a particular static routing will achieve only a small

portion of the available bisection bandwidth [11]. For example, in our setup if 8 nodes on one

switch communicate with 8 nodes on a neighbor switch using any minimal routing, they will

only get 12,5% bandwidth, even if relative bisection is 50,%.

A number of strategies have been proposed to implement AR in InfiniBand. Multipath

routing uses LMC and congestion notification mechanism to select a least-congested path at the

source [18]. A possible modification to switch hardware [19] would treat all LIDs assigned to the

same node interchangeably and dynamically choose output port from LFT entries corresponding

to them. Finally, Mellanox claims support of AR in its switches [21].

Here we assume that switch hardware is modified in such a way that for each destination

it is possible to specify a set of output ports instead of a single port. This allows implementing

a minimal adaptive routing. However, although it may perform better on some traffic patterns,

many other patterns will not benefit from adaptivity if only one shortest path is available between

a pair of nodes (which is exactly the case in our example with 8 collocated nodes talking to nodes

on a neighbor switch). Furthermore, a fully adaptive minimal routing will in general have credit

loops that cannot be eliminated using standard InfiniBand features.

The key problem in designing non-minimal adaptive routing algorithms for InfiniBand is

that no information is accumulated in packet header as a packet traverses the fabric. The only
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header field not covered by the Invariant CRC is VL. However, input VL does not influence

neither output port nor output VL. Thus, it is hard, if possible, for a non-minimal routing to

guarantee progress towards destination and to avoid livelocks.

Since VL is the only header field that can change from hop to hop, we assume the following

modifications to the switch hardware:

1. Output VL is selected using input VL: either it is simply incremented (so called VL hopping),

or input VL is used instead of SL in the SL2VL mechanism (so that it becomes VL2VL).

2. There is a separate forwarding table for each input VL5.

With these modifications, the routing function is now described as





(Source,Destination)→ (DLID,VL),

(Switch, In VL,DLID)→ {Out Port1, . . . ,Out Portk},
(Switch, In VL, In Port,Out Port)→ Out VL.

To reduce latency, it is beneficial to prefer shorter routes when possible. This is not part

of a routing, but of a selection function that chooses one port from a set based on congestion

information. In our simulation we assume that two priorities are available: high priority for

minimal paths and low priority for non-minimal. An exception is deflection routing requiring

three levels of priority.

We finally note that using AR also requires significant changes to software (including MPI)

to properly handle out-of- order packets. This is beyond the scope of this article.

3.2. Torus routing

A deadlock-free routing for tori usually uses two virtual channels to prevent cycles within a

dimension6: one for packets crossing a dateline in that dimension, another for all other packets.

To avoid cycles between dimensions, they are traversed in a fixed order, hence the name Direction

Order Routing (DOR).

It turns out that dateline crossing at each dimension should be determined at the source

node and stored in SL (because VL cannot be chosen per destination address). Since SL has 4

bits, the maximum dimension of InfiniBand tori is 4D.

Summing up, adaptive routing for tori can be only used to select one of the parallel output

links.

3.3. FlatFly routing

DOR routing can be applied to FlatFly. Unlike tori, there is no need to use two VLs since

a packet traverses at most one link in each dimension.

Adaptive DOR (ADOR) allows an additional hop in each dimension [9, 26]. This is imple-

mented by the following rules:

1. VL 0 is used when input port belongs to a host or to a different dimension than output

port.

2. VL 1 is used if input and output ports belong to the same dimension.

5Some routing algorithms require a separate forwarding table for each input VL and each input port.
6Limitations of InfiniBand routing preclude using other deadlock-avoidance schemes such as turn-based routing.

VL hopping is also not an option since the diameter of torus network is larger than the number of available VLs.
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3. Packet with input VL 0 is routed to all switches in current dimension, preferring the shortest

route.

4. Packet with input VL 1 is routed in current dimension along the shortest route.

DOR and ADOR do not use a large portion of crossbar (all transitions from higher to lower

dimensions). Mixed DOR uses the remaining two bits of VL to make possible several orderings

of dimensions.

1. At the source node, SL is set of d mod 4, where d is the index of the destination host within

the destination switch.

2. Based on SL, one of the four dimension orders are used7: (1, 2, 3, 4), (2, 4, 1, 3), (3, 1, 4, 2),

(4, 3, 2, 1).

Mixed ADOR combines Mixed DOR and ADOR and chooses VL as either 2SL (for hops in

dimension order) or 2SL+ 1 (for extra hops in the same dimension).

Another pitfall of (A)DOR is that all packets with the same source and destination switches

will meet at the intermediate switches. Twisted DOR solves this problem by making an oblig-

atory non-minimal hop at the beginning. Assume that we are at the switch with coordinates

(x1, . . . , xn) and d is the index of the destination host.

1. If a packet comes from a host8, route it to switch with coordinates (x1, . . . , d mod Kn)

using VL 1 (if d = xn mod Kn, do nothing).

2. After that, proceed with DOR using VL 0.

Twisted ADOR is a combination of Twisted DOR and ADOR, with the exception that no

additional hop is allowed in the last dimension (since it has been already made at the first step).

Finally, Twisted Mixed DOR combines Twisted and Mixed DORs, and the same goes for

Twisted Mixed ADOR.

3.4. Hypercube routing

As hypercube is a particular case of a FlatFly, we can apply the latter’s DOR and Mixed

DOR routing algorithms. With only two switches per dimension, ADOR is the same as DOR

here. Also, “Twisted” routings did not perform well on simulator, so we don’t use them either.

There are special AR algorithms for hypercubes, e.g. described in [10]. We have simulate

three of them:

1. Negative First : route adaptively in all negative dimensions (those where coordinate of source

is 1 and that of destination is 0), then route adaptively in all other dimensions.

2. All but one (ABO) Negative First : route adaptively in all negative dimensions except di-

mension 1, then route adaptively in all other dimensions.

3. All but one (ABO) Positive Last : route adaptively in all negative dimension and dimension

1, then route adaptively in all other dimensions.

3.5. Dragonfly routing

Although Dragonfly features low diameter and high relative bisection, advanced routing

techniques are required to achieve appropriate network throughput. Indeed, any two groups are

connected with only one link, and if all hosts in the first group happen to communicate with all

7These permutations where found using integer linear programming minimizing the maximum load on each part

of the crossbar.
8This algorithm requires selection of forwarding table depending on input port .
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hosts in the second one sharing the same link, the resulting throughput will be 1/KC, which is

less than 1% for our setup.

A popular Dragonfly routing UGAL is based on a scheme proposed by Valiant [27]: most

packets are first routed to a randomly chosen intermediate group, and only then to the desti-

nation. However, there is no hardware support for Valiant-type routings in InfiniBand, so it is

impossible to implement UGAL together with RDMA.

The basic Static routing for Dragonfly is9:

1. in source group, make a local hop to the node that has a link to the destination group;

2. make a global hop;

3. in destination group, make a local hop to the destination switch.

Here we use a family of adaptive routing algorithms that use only local congestion informa-

tion. They are coded by a combination of letters G, S, I, and D, each allowing extra non-minimal

hops of different kinds:

G: extra global hop is allowed (leading to an intermediate group);

S: extra local hop is allowed in the source group;

I: extra local hop is allowed in the intermediate group;

D: extra local hop is allowed in the destination group.

At most 8 total hops are possible. Up to 6 VLs are required: VLs 0 and 1 are used in the source

group, 2 and 3 in the intermediate group, 4 and 5 in the destination group. Higher priority is

assigned to minimal routes.

3.6. SlimFly and SF×FF routing

Here we describe the structure of the minimal routing in Slim Fly. Consider the following

cases when routing a packet from (ts, xs, ys) to (td, xd, yd).

1. ts = td = t, xs = xd = x. Then either ys − yd ∈ Xt, or there exists yi ∈ Fq such that

ys−yi ∈ Xt and yi−yd ∈ Xt (by construction of Xt). Depending on that, the shortest route

is either “y” or “yy” (encoded by the link types). Note that it cannot be one of “ty” or “yt”

since ts = td. Also it cannot be “tt” as will be seen below.

2. ts = td = t, xs 6= xd. Since y-links do not change x, the only possible option is the “tt”

route. Denote by (ti, xi, yi) the intermediate vertex, ti = 1− t. Then10 if t = 0,




ys = xsxi + yi;

yd = xdxi + yi
=⇒




xi = (ys − yd)/(xs − xd),

yi = ys − xsxi.
(1)

If t = 1, 


yi = xsxi + ys;

yi = xdxi + yd
=⇒




xi = −(ys − yd)/(xs − xd),

yi = ys + xsxi.
(2)

Note that these systems are not solvable if xs = xd. All arithmetic is in the field Fq. Relations

(1) and (2) may be unified as




xi = (−1)t(ys − yd)/(xs − xd),

yi = ys + (−1)txsxi.

9Note that this routing is not minimal, as some shortest paths consist of two global hops.
10All arithmetic here is in Fq.
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3. ts 6= td. If (td − ts)(ys − yd) = xsxd, then the shortest route is the corresponding t-link.

Otherwise it should be either “ty” or “yt”.

(a) “ty”. The intermediate node is (td, xd, yi), and then

ys − yi = (td − ts)xsxd =⇒ yi = ys − (td − ts)xsxd.

given that yi − yd ∈ Xtd .

(b) “yt”. The intermediate node is (ts, xs, yi), and then

yi − yd = (td − ts)xsxd =⇒ yi = yd + (td − ts)xsxd.

given that ys − yi ∈ Xts .

At least one of two cases should hold since the diameter of MMS graph is 2.

As seen from the minimal routing analysis, the number of shortest paths between (ts, xs, ys)

and (td, xd, yd) is

• 1 or 2 if ts 6= td (but the case of 1 is encountered more often);

• exactly one of ts = ts, xs 6= xd;

• usually multiple if ts = td, xs = xd.

Experiments show that most source-destination pairs only have 1 shortest path between them.

To avoid deadlocks, on two-hop paths VL 0 is used on the first hop and VL 1 on the second.

This may be implemented using standard SL2VL feature: if a packet comes from a host, select

VL 0, otherwise select VL 1.

DOR, ADOR and their Mixed and Twisted variants may be used for SF×FF products,

considering Slim Fly as a dimension of a Flat Fly.

3.7. Topology agnostic algorithms

There exists a number of static generic routing algorithms for InfiniBand: UpDn [17], DF-

SSSP [7], LASH [23]. Achieving deadlock freedom for an arbitrary topology is challenging, and

mentioned algorithms do not provide such a guarantee.

Under our assumptions, VL hopping may be used to provide deadlock freedom. Indeed, no

credit loops are possible if VLs are used in strictly increasing order. This works when maximum

path length does not exceed the number of available VLs. In our setup, we can use VL hopping

for FlatFly, Dragonfly and SF×FF.

We use a family of algorithms that we call Distance Based Routing. Its parameters are E –

the number of extra hops allowed, and F – the flag indicating whether deflection is permitted.

Suppose that shortest distance between source and destination switches is D > 0, and the

remaining distance at current switch is d > 0.

1. Source host assigns VL = D + E mod 8 to the packet.

2. On each hop, VL is decremented mod 8.

3. For each output port p leading to a switch, calculate distance from that switch to the

destination switch, dp.

(a) If d > dp, route to p with high priority (shortest path).

(b) If d = dp ≤ VLout, route to p with medium priority (routing sideways).

(c) If d < dp ≤ VLout and F is set, route to p with low priority (deflection).

In these terms, fully adaptive minimal routing corresponds to E = 0 and is called Distance

Based. Non-minimal routing (E > 0) without deflection is denoted as Distance Based + E.

Early Evaluation of Direct Large-Scale InfiniBand Networks with Adaptive Routing

64 Supercomputing Frontiers and Innovations



Finally, routing with deflection is denoted Deflection + E. In the latter case E ≥ 2, otherwise

enabling deflection makes no sense.

4. Simulation results

In this section, we compare performance of described topologies and routing algorithms. For

large-scale networks, we have developed a parallel event-driven simulator following methodology

described in [6]. It has been verified against BookSim and real-world data and produces consistent

results.

The following table contains relative saturation bandwidth [6] for each topology, routing

algorithm and traffic pattern. Since network size is a power of two, we use bit patterns for com-

parison: complement, reverse, rotation, shuffle, and transpose. There is also uniform (random

all-to-all) pattern.

Bit

Routing Uniform Cmpl Rvrs Rotn Shuf Trns

Torus

DOR 3D 26,5% 15,6% 7,6% 7,0% 7,6% 7,1%

DOR 4D 48,2% 25,0% 2,9% 17,0% 12,2% 2,9%

FlatFly

DOR 81,3% 11,7% 1,6% 12,5% 7,8% 2,3%

Mixed DOR 89,8% 11,7% 5,5% 7,8% 5,5% 2,3%

Twisted DOR 24,2% 11,7% 11,7% 11,7% 12,5% 5,5%

Twisted Mixed DOR 46,9% 12,5% 11,7% 9,0% 10,9% 2,3%

ADOR 52,3% 50,0% 3,1% 25,0% 24,2% 2,3%

Mixed ADOR 56,3% 50,0% 10,2% 24,2% 24,2% 5,5%

Twisted ADOR 24,2% 50,0% 21,1% 24,2% 24,2% 11,7%

Twisted Mixed ADOR 53,1% 28,1% 22,7% 24,2% 24,2% 5,5%

Distance Based 93,8% 11,7% 9,4% 11,7% 9,4% 10,2%

Distance Based +1 95,3% 11,7% 14,8% 24,2% 24,2% 24,2%

Distance Based +2 94,5% 24,2% 14,8% 24,2% 24,2% 24,2%

Distance Based +3 95,3% 24,2% 15,6% 39,8% 24,2% 24,2%

Distance Based +4 96,1% 50,8% 14,8% 39,8% 37,5% 37,5%

Deflection +2 96,1% 24,2% 24,2% 24,2% 24,2% 24,2%

Deflection +3 94,5% 24,2% 24,2% 50,0% 24,2% 24,2%

Deflection +4 94,5% 50,8% 24,2% 50,0% 24,2% 24,2%

Hypercube

DOR 24,2% 24,2% 0,8% 24,2% 11,7% 0,8%

Mixed DOR 24,2% 24,2% 2,3% 11,7% 11,7% 0,8%

Negative First 2,3% 0,0% 0,8% 0,8% 0,8% 0,8%

ABO Negative First 5,5% 0,0% 0,8% 0,8% 0,8% 0,8%

ABO Positive Last 5,5% 0,0% 0,8% 0,8% 0,8% 0,8%

Dragonfly

Static 24,2% 5,5% 5,5% 5,5% 5,5% 5,5%

S 64,8% 0,0% 11,7% 0,8% 0,8% 9,4%

D 68,8% 0,0% 11,7% 0,8% 0,8% 10,9%
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Bit

Routing Uniform Cmpl Rvrs Rotn Shuf Trns

SD 50,8% 0,0% 11,7% 0,8% 0,8% 11,7%

G 11,7% 5,5% 5,5% 5,5% 5,5% 5,5%

GS 11,7% 5,5% 11,7% 5,5% 5,5% 9,4%

GI 11,7% 11,7% 5,5% 10,9% 11,7% 5,5%

GD 11,7% 11,7% 5,5% 11,7% 21,9% 5,5%

GSI 22,7% 11,7% 5,5% 10,9% 11,7% 5,5%

GID 11,7% 46,9% 5,5% 24,2% 24,2% 5,5%

GSD 11,7% 11,7% 11,7% 11,7% 11,7% 10,9%

GSID 23,4% 24,2% 5,5% 24,2% 24,2% 5,5%

Distance Based 82,0% 0,0% 5,5% 0,8% 0,8% 5,5%

Distance Based +1 61,7% 0,8% 10,9% 0,8% 2,3% 11,7%

Distance Based +2 59,4% 0,8% 11,7% 2,3% 2,3% 9,4%

Distance Based +3 50,0% 0,8% 11,7% 2,3% 2,3% 10,9%

Distance Based +4 24,2% 2,3% 11,7% 2,3% 2,3% 10,9%

Deflection +2 57,0% 0,8% 5,5% 2,3% 2,3% 9,4%

Deflection +3 48,4% 2,3% 11,7% 2,3% 5,5% 11,7%

Deflection +4 24,2% 2,3% 11,7% 5,5% 5,5% 11,7%

SF×FF-1

Distance Based 80,5% 11,7% 11,7% 10,9% 5,5% 9,4%

Distance Based +1 80,5% 11,7% 39,1% 11,7% 14,8% 11,7%

Distance Based +2 80,5% 19,5% 30,5% 11,7% 11,7% 11,7%

Distance Based +3 80,5% 19,5% 30,5% 11,7% 11,7% 11,7%

Distance Based +4 80,5% 19,5% 30,5% 11,7% 11,7% 11,7%

Deflection +2 82,0% 11,7% 24,2% 23,4% 21,9% 24,2%

Deflection +3 81,2% 19,5% 24,2% 24,2% 24,2% 32,8%

Deflection +4 80,5% 21,9% 24,2% 24,2% 24,2% 32,8%

SF×FF-2

Distance Based 61,7% 5,5% 5,5% 5,5% 5,5% 5,5%

Distance Based +1 61,7% 11,7% 14,8% 7,0% 7,0% 7,0%

Distance Based +2 61,7% 11,7% 14,8% 7,0% 7,0% 8,6%

Distance Based +3 61,7% 11,7% 17,2% 7,0% 7,0% 8,6%

Distance Based +4 71,9% 11,7% 17,2% 7,0% 7,0% 7,0%

Deflection +2 61,7% 10,2% 11,7% 11,7% 10,9% 11,7%

Deflection +3 61,7% 11,7% 24,2% 11,7% 11,7% 23,4%

Deflection +4 74,2% 11,7% 18,8% 11,7% 10,9% 11,7%

As expected, tori and hypercube perform worse than other topologies on uniform traffic due

to lower relative bandwidth.

For FlatFly, the best routing is “Distance Based +4”. Comparing its results with “Distance

Based +3” and ADOR family, we conclude that the optimal number of extra hop is equal to di-

mension of FlatFly, and it’s critical that these hops are made without particular dimension order.

Deflection helps to achieve full bisection bandwidth on some patterns, but reduces bandwidth

for others.
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Hypercube shows low performance on bit reverse and bit transpose patterns. Turn model

routings (negative first/ positive last) perform really badly, as they create significant imbalance

in packet distribution across the network.

Results for Dragonfly are mixed, with GID and GSD routings showing best results for bit

traffic patterns and low performance on uniform traffic at the same time. Distance based and

deflection routings perform worse than our specialized algorithms.

Results for SF×FF-1 are better than for SF×FF-2. Deflection helps to break the 12,5%

barrier on three traffic patterns, with “Deflection +4” showing the best results for almost all

traffic patterns.

Comparing different topologies, FlatFly and SF×FF-1 seem to be the winners, according to

the following criteria

1. performance on uniform traffic;

2. performance of best routing on bit traffic patterns;

3. performance of “Distance Based” routing11;

5. Related work

A performance comparison of various types of interconnects is given in [13]. In [28, 29]

authors analyze and simulate adaptive routing in InbiniBand fat trees. Improving performance

of large-scale InfiniBand networks through optimized task placement is subject of [24]. DFSSSP

routing [7, 12] optimizes InfiniBand fabric performance by statically balancing network paths.

6. Conclusions

In this paper, we have analyzed possible topologies for large-scale InfiniBand systems (in-

cluding tori, hypercube, Dragonfly, Flattened Butterfly, Slim Fly). In most cases, adaptive rout-

ing is required in order to achieve theoretical bandwidth limits. We analyze standard InfiniBand

routing and list a minimum set of features that should be added in order to support adaptive

routing. We describe specialized adaptive routing algorithms for each topology, and a family of

topology-agnostic (distance-based) routings. Then we provide simulation results for considered

topologies and routing algorithms. Best performance results are shown by Flattened Butterfly

and a combination of Flattened Butterfly and Slim Fly.

This work has been partially supported by the Russian Ministry of Education and Science

(project # 14.579.21.0074).

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-

mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work

without further permission provided the original work is properly cited.

References

1. November 2014 TOP500 list (http://top500.org/lists/2014/11/).

2. InfiniBandTM Architecture Specification, volume 1. IBTA, 2007.

11Results for “Distance Based” routing give an upper bound for any static minimal routing. Similarly, results for

DOR and Mixed DOR give an upper bound for static DOR-based algorithms.

A. Daryin, A. Korzh

2014, Vol. 1, No. 3 67



3. J. H. Ahn, N. Binkert, A. Davis, M. McLaren, and R. S. Schreiber. HyperX: topology,

routing, and packaging of efficient large-scale networks. In Proceedings of SC’09. IEEE, Nov

2009.

4. M. Besta and T. Hoefler. Slim Fly: A cost effective low-diameter network topology. In

Proceedings of SC’14, pages 348–359. IEEE, Nov 2014.

5. L. N. Bhuyan and D. P. Agrawal. Generalized hypercube and hyperbus structures for a

computer network. IEEE Transactions on Computers, 33(4):323–333, Apr 1984.

6. W. J. Dally and B. P. Towles. Principles and Practices of Interconnection Networks. Elsevier

Science, 2003.

7. J. Domke, T. Hoefler, and W. E. Nagel. Deadlock-free oblivious routing for arbitrary topolo-

gies. In Proceedings of IPDPS-11, pages 616–627. IEEE, May 2011.

8. J. Duato, S. Yalamanchili, and L. Ni. Interconnection Networks. Elsevier Science, 2002.

9. G. Faanes, A. Bataineh, D. Roweth, T. Court, E. Froese, B. Alverson, T. Johnson, J. Kop-

nick, M. Higgins, and J. Reinhard. Cray Cascade: a scalable HPC system based on a

Dragonfly network. In Proceedings of SC’12, pages 1–9. IEEE, Nov 2012.

10. C. J. Glass and L. M. Ni. The turn model for adaptive routing. Journal of the ACM,

41(5):874–902, Sep 1994.

11. T. Hoefler, T. Schneider, and A. Lumsdaine. Multistage switches are not crossbars: Effects

of static routing in high-performance networks. In Proceedings of CLUSTER 2008, pages

116–125. IEEE, Sep 2008.

12. T. Hoefler, T. Schneider, and A. Lumsdaine. Optimized routing for large-scale infiniband

networks. In Proceedings of HOTI’09, pages 103–111, Aug 2009.

13. D. J. Kerbyson, K. J. Barker, A. Vishnu, and A. Hoisie. A performance comparison of

current HPC systems: Blue Gene/Q, Cray XE6 and InfiniBand systems. Future Generation

Computer Systems, 30:291–304, Jan 2014.

14. J. Kim, W. J. Dally, and D. Abts. Flattened butterfly: a cost-efficient topology for high-radix

networks. In Proceedings of ISCA’07, number 13, pages 126–137. ACM, May 2007.

15. J. Kim, W. J. Dally, S. L. Scott, and D. Abts. Cost-efficient Dragonfly topology for large-

scale systems. IEEE Micro, 29(1):33–40, 2008.

16. A. V. Kostochka and L. S. Melnikov. On bounds of the bisection width of cubic graphs. In

J. Nesetril and M. Fiedler, editors, Proceedings of the Fourth Czechoslovakian Symposium

on Combinatorics, Graphs and Complexity, volume 51 of Annals of Discrete Mathematics,

pages 151–154. Elsevier, 1992.

17. P. Lopez, J. Flich, and J. Duato. Deadlock-free routing in InfiniBandTM through destination

renaming. In Proceedings of ICPP-01, pages 427–434. IEEE, Sep 2001.

18. D. F. Lugones, D. Franco, and E. Luque. Dynamic routing balancing on infiniband network.

Journal of Computer Science & Technology, 8(2):104–110, Jul 2008.

Early Evaluation of Direct Large-Scale InfiniBand Networks with Adaptive Routing

68 Supercomputing Frontiers and Innovations



19. J. C. Martinez, J. Flich, A. Robles, P. Lopez, and J. Duato. Supporting fully adaptive

routing in InfiniBand networks. In Proceedings of IPDPS-03. IEEE, Apr 2003.
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The paper overviews the state of the art in design and implementation of data parallel scientific

applications on heterogeneous platforms. It covers both traditional approaches originally designed

for clusters of heterogeneous workstations and the most recent methods developed in the context

of modern multicore and multi-accelerator heterogeneous platforms.
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Introduction

High performance computing systems become increasingly heterogeneous and hierarchical.

A typical compute node integrates multiple (possibly heterogeneous) cores as well as hardware

accelerators such as Graphics Processing Units. The integration is often hierarchical. The mo-

tivation behind such complicated architecture is to make these systems more energy efficient.

The energy consideration is paramount as future large-scale cluster infrastructures will have to

have hundreds of thousands of compute nodes to solve Exascale problems and would not be

energy sustainable if nodes of traditional architecture were used. Future large-scale systems will

exhibit multiple forms of architectural and non-architectural heterogeneity as well as mean-time-

to-failure of minutes. How to develop parallel applications and software that efficiently utilize

highly heterogeneous and hierarchical computing and communication resources, while scaling

them towards Exascale, maintaining a sustainable energy footprint, and preserving correctness

are highly challenging and open questions.

Heterogeneous parallel computing is the area that emerged in 1990s to address the chal-

lenges posed by ever increasing heterogeneity and complexity of the HPC platforms. This paper

overviews the development of heterogeneous parallel computing technologies as they followed the

evolution of heterogeneous HPC platforms from simple single-switched heterogeneous clusters

of (uniprocessor) workstations to modern hierarchical clusters of heterogeneous hybrid nodes. It

mainly focuses on the design of fundamental data partitioning algorithms supporting the devel-

opment of data parallel applications able to automatically tune to the executing heterogeneous

platform achieving optimal performance (and energy) efficiency. Data parallel applications are

the main target of parallel computing technologies because they dominate the scientific and

engineering computing domain, as well as the emerging domain of large-scale (”Big”) data an-

alytics.

Optimization of data parallel applications on heterogeneous platforms is typically achieved

by balancing the load of the heterogeneous processors and minimizing the cost of moving data

between the processors. Data partitioning algorithms solve this problem by finding the optimal

distribution of data between the processors. They typically require a priori information about the

parallel application and platform. Data partitioning is not the only technique used for load bal-

ancing. Dynamic load balancing, such as task queue scheduling and work stealing [5, 9, 26, 39–41]

balance the load by moving fine-grained tasks between processors during the calculation. Dy-

namic algorithms do not require a priori information about execution but may incur significant

1University College Dublin, Dublin, Ireland
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communication overhead on distributed-memory platforms due to data migration. At the same

time, dynamic algorithms often use static data partitioning for their initial step to minimize

the amount of data redistributions needed. For example, in the state-of-the-art load balanc-

ing techniques for multi-node, multicore, and multi-GPU platforms, the performance gain is

mainly due to better initial data partitioning. It was shown that even the static distribution

based on simplistic performance models (single values specifying the maximum performance of

a dominant computational kernel on CPUs and GPUs) improves the performance of traditional

dynamic scheduling techniques by up to 250% [44]. In this overview we focus on parallel scien-

tific applications, where computational workload is directly proportional to the size of data, and

dedicated HPC platforms, where: (i) the performance of the application is stable in time and is

not affected by varying system load; (ii) there is a significant overhead associated with data mi-

gration between computing devices; (iii) optimized architecture-specific libraries implementing

the same kernels may be available for different computing devices. On these platforms, for most

scientific applications, static load balancing algorithms outperform dynamic ones because they

do not involve data migration. Therefore, for the type of applications and platforms we focus

on, data partitioning is the most appropriate optimization technique.

One very important aspect of optimization of parallel applications on distributed-memory

heterogeneous platforms – optimization of their communication cost, is not covered in this paper.

A recent analytical overview of methods for optimization of collective communication operations

in heterogeneous networks can be found in [21].

1. Optimization of parallel applications on heterogeneous

clusters of workstations

1.1. Data partitioning algorithms based on constant performance models

Since the late 1990s, when the first pioneering works in the field were published, the design of

heterogeneous parallel algorithms has made a significant progress. At that time, the main target

platform for the heterogeneous parallel algorithms being developed was a heterogeneous cluster

of workstations, and the simplest possible performance model of this platform was used in the al-

gorithm design. Namely, it was seen as a set of independent heterogeneous (uni)processors, each

characterized by a single positive number representing its speed. The speed of the processors

can be absolute or relative. The absolute speed of the processors is understood as the number

of computational units performed by the processor per one time unit. The relative speed of the

processor can be obtained by the normalization of its absolute speed. While this performance

model has no communication-related parameters, it still allows for optimization of the commu-

nication cost through the minimization of the amount of data moved between processors. This

model is also known as Constant Performance Model, or CPM.

Using the CPM, a fundamental problem of optimal distribution of independent equal units

of computation over a set of heterogeneous processors was formulated and solved in [7]. The

algorithm [7] solving this problem is of complexity O(p2) and only needs relative speeds. This

algorithm is a basic building block in many heterogeneous parallel and distributed algorithms.

This is typical in the design of heterogeneous parallel algorithms that the problem of dis-

tribution of computations in proportion to the speed of processors is reduced to the problem

of partitioning of some mathematical objects, such as sets, matrices, graphs, etc. Most of the

CPM-based algorithms designed so far have been aimed at numerical linear algebra. For exam-
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ple, the problem of LU factorization of a dense matrix A was reduced to the problem of optimal

mapping of its column panels a1, . . . , an to p heterogeneous processors, and the latter problem

was further reduced to the problem of partitioning of a well-ordered set (whose elements repre-

sent the column panels). Two efficient algorithms solving this partitioning problem have been

proposed — the Dynamic Programming (DP) algorithm [7, 10] and the Reverse algorithm [34].

The latter is more suitable for extension to more complex heterogeneous performance models.

Other algorithms of partitioning of well-ordered sets, e.g. [6], do not guarantee the return of an

optimal solution.

As matrices are probably the most widely used mathematical objects in scientific computing,

most of data-partitioning studies deal with them. Matrix partitioning problems occur during the

design of parallel linear algebra algorithms for heterogeneous platforms. A typical heterogeneous

linear-algebra algorithm is designed as a modification of its homogeneous prototype, and its

design is eventually reduced to the problem of optimally partitioning a matrix over heterogeneous

processors. From the partitioning point of view, a dense matrix is an integer-valued rectangular.

Therefore, if we are only interested in an asymptotically optimal solution (which is typically

the case), the problem of its partitioning can be reduced to a problem of the partitioning of a

real-valued rectangle.

In a general form, the related geometrical problem has been formulated as follows [8]: Given

a set of p processors P1, P2, ..., Pp, the relative speed of each of which is characterized by a

positive constant, si, partition a unit square into p rectangles so that:

• there is a one-to-one mapping between the rectangles and the processors;

• the area of the rectangle allocated to processor Pi is equal to si;

• the partitioning minimizes the sum of half-perimeters of the rectangles.

This formulation is motivated by the SUMMA matrix multiplication algorithm [23] and

aimed at balancing the load of the processors and minimization of the total volume of data

communicated between the processors. Fig. 1 shows one iteration of the heterogeneous SUMMA

algorithm assuming that matrices A, B and C are identically partitioned into rectangular sub-

matrices. At each iteration of the main loop, pivot block column of matrix A and pivot block

row of matrix B are broadcast horizontally and vertically, then all processors update their own

parts of matrix C in parallel. The blocking factor b is a parameter used to adjust the granularity

of communications and computations [13], whose optimal value can be found experimentally.

Figure 1. Heterogeneous parallel matrix multiplication

This geometrical partitioning problem is NP-complete [8], but many restricted and prac-

tically important versions of this problem have been efficiently solved. The least restrictive is

probably the column-based problem looking for an optimal partitioning, the rectangles of which

make up columns as illustrated in Fig. 2. An algorithm of the complexity O(p3) was proposed

in [8]. More restricted forms of the column-based geometrical partitioning problem have also
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been addressed. The pioneering result in the field was a linear algorithm [27] additionally as-

suming that the number of columns c in the partitioning and the number of rectangles in each

column are given. A column-based partitioning with the same number of rectangles in each

column is known as a grid-based partitioning. An algorithm of the complexity O(p3/2) solving

the grid-based partitioning problem was proposed in [29].
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Figure 2. Column-based partitioning of the unit square into 12 rectangles. The rectangles of the

partitioning form three columns

A partitioning whose rectangles make both columns and rows is known as a Cartesian

partitioning. It is attractive from the implementation point of view because of its very simple and

scalable communication pattern. However, the related partitioning problems are very difficult

and very little has been achieved in addressing them so far [7].

More recent research [19, 20] challenged the optimality of the rectangular matrix parti-

tioning. Using a specially developed mathematical technique and five different parallel matrix

multiplication algorithms, it was proved that the optimal partition shape can be non-rectangular,

and the full list of optimal shapes for the cases of two and three processors was identified. Fig. 3

shows these for the case of three processors. The performance model used in this work combined

the CPM and the Hockney communication model [24]. These results have a potential to signif-

icantly improve the performance of matrix computations on platforms that can be modeled by

a small number of interconnected heterogeneous abstract processors, such as hybrid CPU/GPU

nodes and clusters of clusters.

Figure 3. The candidate partition shapes previously identified as potentially optimal three

processor shapes. Processors P,R, and S are in white, grey, and black, respectively. (1) Square

Corner (2) Rectangle Corner (3) Square Rectangle (4) Block 2D Rectangular (5) L Rectangular

(6) Traditional 1D Rectangular

Significant work has been done in partitioning algorithms for graphs, which are then ap-

plied to sparse matrices and meshes, the mathematical objects widely used in many scien-

tific applications, e.g. computational fluid dynamics. Algorithms implemented in ParMetis [28],
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SCOTCH [12], JOSTLE [45] reduce the number of edges between the target subdomains, aiming

to minimize the total communication cost of the parallel application. Algorithms implemented

in Zoltan [11], PaGrid [4] try to minimize the execution time of the application. All these graph

partitioning libraries use performance models combining the CPM and the Hockney model. The

models have to be provided by the users.

1.2. Data partitioning algorithms based on functional performance models

The CPM can be a sufficiently accurate approximation of the performance of heterogeneous

processors executing a data parallel application if: (i) the processors are general-purpose and

execute the same code, (ii) the local tasks are small enough to fit in the main memory but large

enough not to fully fit in the processor cache. However, if we consider essentially heterogeneous

processors using different code to solve the same task locally, or allow the tasks to span different

levels of memory hierarchy on different processors, then the relative speed of the processors

can significantly differ for different task sizes. In these situations, the CPM becomes inaccurate,

and its use can lead to highly imbalanced load distribution [16]. To address this challenge, a

functional performance model (FPM) [35, 37, 38] was proposed. The FPM represents the speed

of a processor by a function of problem size. It is built empirically and integrates many important

features characterizing the performance of both the architecture and the application. The speed

is defined as the number of computation units processed per second. The computation unit can

be defined differently for different applications. The important requirement is that its size (in

terms of arithmetic operations) should not vary during the execution of the application. One

FLOP is a simplest example of computation unit.

The fundamental problem of optimal distribution of n independent equal units of com-

putation between p heterogeneous processors represented by their speed functions was formu-

lated, and very efficient geometrical algorithms (of complexities O(p2 log2 n) and O(p log2 n))

solving this problem under different assumptions about the shape of the speed functions were

proposed [31, 35]. These algorithms are based on the following observation. Let the speed of

processor Pi be represented by continuous function si(d) = d
ti(d)

, where ti(d) is the execution

time for processing of d computation units on the processor Pi. Then the optimal solution of

this problem, which balances the load of the processors, will be achieved when all processors

execute their work within the same time: t1(d1) = ... = tp(dp). This can be expressed as:

d1
s1(d1)

= ... =
dp

sp(dp)
, where d1 + d2 + ... + dp = n (1)

The solution to these equations, d1, ..., dp, can be represented geometrically by intersection of

the speed functions with a line passing through the origin of the coordinate system as illustrated

in Fig. 4

The geometrical algorithms proceed as follows. As any line passing through the origin and

intersecting the speed functions represents an optimum distribution for a particular problem

size, the space of solutions of the problem (1) consists of all such lines. The two outer bounds

of the solution space are selected as the starting point of algorithm. The upper line represents

the optimal data distribution xu1 , ..., x
u
p for some problem size nu < n, nu = xu1 + ... + xup , while

the lower line gives the solution xl1, ..., x
l
p for nl > n, nl = xl1 + ... + xlp. The region between two

lines is iteratively bisected as shown in Fig. 5.
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Figure 4. Optimal distribution of computational units showing the geometric proportionality of

the number of computation units to the speeds of the processors

Figure 5. Geometrical data partitioning algorithm. Line 1 (the upper line) and line 2 (the lower

line) represent the two initial outer bounds of the solution space. Line 3 represents the first

bisection. Line 4 represents the second one. The dashed line represents the optimal solution

At the iteration k, the problem size corresponding to the new line intersecting the speed

functions at the points xk1, ..., x
k
p is calculated as nk = xk1 + ...+ xkp. Depending on whether nk is

less than or greater than n, this line becomes a new upper or lower bound. Making nk close to n,

this algorithm finds the optimal partition of the given problem x1, ..., xp: x1 + ... + xp = n. The

geometrical algorithms will always find a unique optimal solution if the speed functions satisfy

the following assumptions:

1. On the interval [0, X], the function is monotonically increasing and concave.

2. On the interval [X,∞], the function is monotonically decreasing.

Extensive experiments with many scientific kernels on different workstations have demon-

strated that, in general, processor speed can be approximated, within some acceptable degree

of accuracy, by a function satisfying these assumptions.

Another algorithm [43] significantly relaxes the restrictions on the shape of speed functions

but does not always guarantee the globally optimal solution. This algorithm assumes that the
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Akima spline interpolation [1] is used to approximate the speed function. Then it formulates the

problem of optimal data partitioning in the form of a system of non-linear equations and applies

multidimensional solvers to numerical solution of this system. The algorithm is iterative and

always converges in a finite number of iterations returning a solution that balances the load of

the processors. The number of iterations depends on the shape of the functions. In practice, the

number can be as little as 2 iterations for very smooth speed functions and up to 30 iterations

when partitioning in regions of rapidly changing speed functions. For illustration, Fig. 6 shows

speed function approximations used in the geometrical algorithms and in the algorithm based

on the multidimensional solvers.

 

Figure 6. Speed function for non-optimized Netlib BLAS: the piecewise approximation satisfying

the restriction of monotonicity (left), and the Akima spline interpolation (right)

These algorithms have been successfully employed in different data-parallel kernels and

applications and significantly outperformed their CPM-based counterparts [2, 15, 16, 18, 25, 34].

Algorithms that require full FPMs as input to find the optimal partitioning can be used

in applications developed for execution on the same stable platform multiple times. In this

case, the cost of building the FPMs for the full range of problem sizes will be insignificant

in comparison with the accumulated gains due to the optimal parallelization. However, these

algorithms cannot be employed in self-adaptable applications that are supposed to discover the

performance characteristics of the executing heterogeneous platform at run-time. To address

that type of application, a new class of partitioning algorithms was proposed [36]. They do not

need the FPMs as input. Instead, they run on the processors executing the application and

iteratively build partial approximations of their speed functions until they become sufficiently

accurate to partition the task of the given size with the required precision. For example, if

we want to distribute n units of computation between p heterogeneous processors using the

geometrical data partitioning, but the speed functions si(x) of the processors are not known a

priori, we will proceed as follows. The first approximations of the partial speed functions, s̄i(x),

are created as constants s̄i(x) = s0i = si(n/p) as illustrated in Fig. 7(a). At the iteration k,

the piecewise linear approximations s̄i(x) are improved by adding the points (dki , s
k
i ), Fig. 7(b).

Namely, let {(d(j)i , s
(j)
i )}mj=1, d

(1)
i < . . . < d

(m)
i , be the experimentally obtained points of s̄i(x)

used to build its current piecewise linear approximation, then

1. If dki < d
(1)
i , then the line segment (0, s

(1)
i )→ (d

(1)
i , s

(1)
i ) of the s̄i(x) approximation will be

replaced by two connected line segments (0, ski ))→ (dki , s
k
i ) and (dki , s

k
i )→ (d

(1)
i , s

(1)
i );

2. If dki > d
(m)
i , then the line (d

(m)
i , s

(m)
i ) → (∞, s

(m)
i ) of this approximation will be replaced

by the line segment (d
(m)
i , s

(m)
i )→ (dki , s

k
i ) and the line (dki , s

k
i )→ (∞, ski );
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3. If d
(j)
i < dki < d

(j+1)
i , the line segment (d

(j)
i , s

(j)
i )→ (d

(j+1)
i , s

(j+1)
i ) of s̄i(d) will be replaced

by two connected line segments (d
(j)
i , s

(j)
i )→ (dki , s

k
i ) and (dki , s

k
i )→ (d

(j+1)
i , s

(j+1)
i ).

(a) (b)
Figure 7. Construction of partial speed functions using linear interpolation.

After adding the new data point (dji , s
j
i ) to the partial speed function s̄i(x), we verify that

the shape of the resulting piecewise linear approximation satisfies the above assumptions, and

update the value of sji when required. Namely, to keep the partial speed function increasing and

convex on the interval [0, X], we ensure that sj−1
i ≤ sji ≤ sj+1

i and
sj−1
i −sj−2

i

dj−1
i −dj−2

i

≥ sji−sj−1
i

dj
i−dj−1

i

≥ sj+1
i −sji

dj+1
i −dj

i

.

The latter expression represents non-increasing tangent of the pieces, which is required for the

convex shape of the piecewise linear approximation. On the interval [X,∞], we ensure that

sj−1
i ≥ sji ≥ sj+1

i for monotonously decreasing speed function.

This approach has proved to be very efficient in practice, typically converging to the optimal

solution after a very few iterations [16].

While some other non-constant performance models of heterogeneous processors such as the

unit-step functional model [22], the functional model with limits on task size [32] and the band

model [30] have been proposed and used for the design of heterogeneous algorithms, they did

not go beyond some preliminary studies as they appeared to be not suitable for practical use in

high-performance heterogeneous scientific computing due to a variety of reasons.

1.3. Implementation of heterogeneous data partitioning algorithms

It is important to note that the effectiveness of the data partitioning algorithms presented

in this section strongly depends on how accurately the performance models employed in these

algorithms are reflecting the real performance of the data parallel applications on the executing

platforms. Unfortunately many algorithms, especially CPM–based, come without a method for

estimation of the employed performance model, leaving this task to the user. Therefore the use

of these algorithms as well as tools straightforwardly employing these algorithms is a challenging

task. The graph partitioning libraries [4, 11, 12, 28, 45] give us examples of such tools.

At the same time, some algorithm designers include the method of construction of the em-

ployed performance model in the definition of the algorithm. Such algorithms are easy to use and

compare. The estimation method helps to understand: (i) the meaning of the model parameters

leaving no room for interpretation, and (ii) the assumptions made about the application and

the target platform better. According to this approach, model-based algorithms will be different

even if they only differ in the method of model construction. Such algorithms can be found
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in [15, 16, 35, 43]. For example, [15] proposes a two-dimensional matrix partitioning algorithm

designed for heterogeneous SUMMA (see Fig. 1). The definition of this algorithm specifically

stipulates that the FPMs of the processors will be built using the computational kernel perform-

ing one update of the submatrix Ci with the portions of pivot block column Ai and pivot block

row Bi: Ci+ =Ai ×Bi as shown in Fig. 8.

Figure 8. The computational kernel

Moreover, it proposes to use one-dimensional FPMs by combining the height mi and width

ni parameters into one parameter, area di = mi × ni, measured in b× b blocks, and to only use

square areas in benchmarking, m = n =
√
d, for 0 < d ≤ M ×N . Then it is partitioned using

a one-dimensional FPM-based algorithm to determine the areas of the rectangles that should

be partitioned to each processor. The CPM-based algorithm [8] is then applied to calculate the

optimum shape and ordering of the rectangles so that the total volume of communication is

minimized.

The algorithm described above makes the assumption that a benchmark of a square area

will give an accurate prediction of computation time of any rectangle of the same area, namely

s(x, x) = s(x/c, c.x). However, in general this does not hold true for all c (Fig. 9(a)). Fortunately,

in order to minimise the total volume of communication the algorithm [8] arranges the rectangles

so that they are as square as possible. It has been verified experimentally [15] by partitioning

a medium sized square dense matrix using the new algorithm for 1 to 1000 nodes from the

Grid’5000 platform (incorporating 20 unique nodes), and plotted the frequency of the ratio

m : n in Fig. 9(c). Fig. 9(b), showing a detail of Fig. 9(a), illustrates that if the rectangle is

approximately square the assumption holds.

The efficiency of the FPM-based data-parallel applications strongly depends on the accuracy

of the evaluation of the speed function of each heterogeneous processor. It is a challenging

problem that requires: (i) carefully designed experiments to accurately and efficiently measure

the speed of the processor for each problem size; (ii) appropriate interpolation and approximation

methods which use the experimental points to construct an accurate speed function of the given

shape. A software tool, FuPerMod, helping the application programmer solve these problems has

been recently developed and released [17]. FuPerMod also provides a number of heterogeneous

data partitioning algorithms for sets, ordered sets and matrices, both CPM-based and FPM-

based. It does not provide graph-partitioning algorithms though. Graph-partitioning algorithms

are provided by a number of libraries such as ParMetis [28], SCOTCH [12], JOSTLE [45],

Zoltan [11], PaGrid [4]. While the partitioning algorithms implemented in these libraries use

performance models, the libraries provide no support for their construction.

2. Optimization of parallel applications on hybrid multicore

and multi-accelerator heterogeneous platforms

Thus, the traditional heterogeneous performance models and data partitioning algorithms

and applications are designed for platforms whose processing elements are independent of each
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Figure 9. Showing speed against the ratio of the sides of the partitioned rectangles. Lines connect

rectangles of equal area. The centerline at 1 : 1 represents square shape. In general speed is not

constant with area (a). However when the ratio is close to 1 : 1, speed is approximately constant

(b). (c) Shows the frequency distribution of the ratio of m : n using the new partitioning

algorithm for 1 to 1000 machines (incorporating 20 unique hardware configurations)

other. In modern heterogeneous multicore and multi-accelerator compute nodes, however, pro-

cessing elements are coupled and share system resources. In such platforms, the speed of one

processing element often depends on the load of others due to resource contention. Therefore,

they cannot be considered independent, and hence their associated performance models cannot

be considered and built independently. This makes the traditional models, methods of their

evaluation and algorithms no longer applicable to the new platforms.

This problem was recently addressed in [46] [47] [48]. In this work, the authors do not

study how to develop computational kernels for individual computing devices used in hybrid

heterogeneous platforms, such as multicore CPUs or GPUs. They assume that such kernels are

available for the use in parallel applications on these platforms. While being very challenging

and important, this problem has attracted significant attention of the HPC research community

and many important kernels have been ported to modern multicores and GPUs. Instead, they

focus on a wide open problem of optimal data distribution between kernels of the data-parallel

application assuming that the configuration of the application is fixed. Finding the optimal

configuration of the application is another challenge to be addressed, which is out of the scope of

this work. The authors however give few basic empirical rules that, they believe, lead to optimal

configurations. For example, never run a NUMA-unaware multi-threaded computational kernel

across multiple NUMA nodes. Use instead multiple instances of this kernel, one per NUMA

node.

A multicore and multi-GPU system, which the main target architecture in this work, is

modeled by a set of heterogeneous abstract processors determined by the configuration of the
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parallel application. Namely, a group of processing elements executing one computational kernel

of the application will make a combined processing unit and will be represented in the model by

one abstract processor. For example, if a single-threaded computational kernel is used, then each

CPU core executing this kernel will be represented in the model by a separate abstract processor.

If a multi-threaded computational kernel is used, then each group of CPU cores executing the

kernel will make a combined processing unit represented in the model by one abstract processor.

A GPU is usually controlled by a host process running on a dedicated CPU core. This process

instructs the GPU to perform computations and handles data transfers between the host and

device memory. In the case of a single-GPU computational kernel, the GPU and its dedicated

CPU core will make a combined processing unit represented by an abstract processor. If a multi-

GPU computational kernel is used in the application, the GPUs and their dedicated CPU core

will make a combined processing unit represented by one abstract processor.

Figure 10. Performance modeling on a GPU-accelerated multicore server of NUMA architecture:

single-threaded and single-GPU computational kernels executed

Figure 11. Performance modeling on a GPU-accelerated multicore server of NUMA architecture:

multi-threaded and multi-GPU computational kernels executed; two GPUs handled by a single

dedicated CPU core

Figures 10 and 11 illustrate this approach showing a GPU-accelerated multicore server of

NUMA architecture executing a parallel application in two different configurations. The config-

uration shown in Fig. 10 is based on the single-threaded and single-GPU computational kernels.

It consists of ten processes running the CPU kernels on ten cores of both NUMA nodes, and

two processes running the GPU kernels on accelerators and their dedicated cores on the second

NUMA node. The configuration in Fig. 11 is based on the multi-threaded and multi-GPU com-

putational kernels. It consists of one process running the 6-thread CPU kernel on one NUMA

node, one process running the 5-thread CPU kernel on another NUMA node, and one process

running the GPU kernel on the GPUs and their single dedicated core. All processing elements in

these diagrams are enumerated. Each number indicates the combined processing unit to which

Heterogeneous Parallel Computing: from Clusters of Workstations to Hierarchical...

80 Supercomputing Frontiers and Innovations



the processing element belongs. For example, in the first configuration, the cores in NUMA node

0 make six processing units, and each GPU with its dedicated CPU core in NUMA node 1 make

a combined processing unit.

In the first configuration, the cores in NUMA node 0 execute six identical processes and are

modeled by six abstract processors. These cores are tightly coupled and share memory, therefore,

they cannot be considered independent. On the other hand, this group of processing elements is

relatively independent of other processing elements of the server. Therefore, their performance

should be measured simultaneously in a group but can be measured separately from the others.

In the second configuration, these six cores execute one process and modeled as one combined

processing unit. Its performance can be measured separately from other processing elements of

the server.

Next steps are to build functional performance models of the abstract processors and perform

model-based data partitioning in order to balance the workload between the combined processing

units represented by these abstract processors.

In order to build the performance models of the abstract processors, the performance of the

processing units representing these processors has to be measured. To measure the performance

of the processing units accurately, they are grouped by the shared system resources, so that

the resources be shared within each group but not shared between groups. The performance of

processing units in a group is measured when all processing units in the group are executing

some workload simultaneously, thereby taking into account the influence of resource contention.

To prevent the operating system from migrating processes excessively, processes are bound to

CPU cores. Processes are synchronized to minimize the idle computational cycles, aiming at the

highest floating point rate for the application. Synchronization also ensures that the resources

will be shared between the maximum number of processes. To ensure the reliability of the results,

measurements are repeated multiple times, and average execution times are used.

One important empirical rule used in this work is that when looking for the optimal distri-

bution of the workload, only the solutions that evenly distribute the workload between identical

CPU processing units are considered. This simplification significantly reduces the complexity of

the data partitioning problem. It is based both on the authors’ extensive experiments that have

shown no evidence that uneven distribution between identical processing units could speed up

applications, and on the absence of such evidence in literature. Therefore, identical processing

units that share system resources will be always given the same amount of workload during

performance measurements.

To account for different configurations of the application, three types of functional perfor-

mance models for CPU cores are defined:

1. s(x) approximates the speed of a uniprocessor executing a single-threaded computational

kernel. The speed s(x) = x/t, where x is the number of computation units, and t is the

execution time.

2. sc(x) approximates the speed of one of c CPU cores all executing the same single-threaded

computational kernel simultaneously. The speed sc(x) = x/t, where x is the number of

computation units executed by each CPU core, and t is the execution time.

3. Sc(x) approximates the collective speed of c CPU cores executing a multi-threaded compu-

tational kernel. The speed Sc(x) = x/t, where x is the total number of computation units

executed by all c CPU cores, and t is the execution time. Sc(cx)/c is used to approximate

the average speed of a CPU core.

A.L. Lastovetsky

2014, Vol. 1, No. 3 81



10

11

12

13

14

15

16

0 400 800 1200 1600 2000
S

p
ee

d
(G

F
lo

p
s)

Problem size

s1(x)
s6(x)
s12(x)

S6(6x)/6
S12(12x)/12

Figure 12. Speed functions of a CPU core built in different configurations
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Figure 13. Speed functions of a GPU processing unit built in different configurations

Fig. 12 shows speed functions of a CPU core built in different configurations on a server,

consisting of eight NUMA nodes connected by AMD HyperTransport(HT) links, with 6 cores

and 16 GB local memory each. The server is equipped with a NVIDIA Tesla S2050 server, which

consists of two pairs of GPUs. Each pair is connected by a PCIe switch and linked to a separate

NUMA node by a PCIe bus.

Similarly, three types of functional performance models for GPUs are defined as follows:

1. g(x) approximates the speed of a combined processing unit made of a GPU and its dedicated

CPU core that execute a single-GPU computational kernel, exclusively using a PCIe link.

The speed g(x) = x/t, where x is the number of computation units, and t is the execution

time.

2. gd(x) approximates the speed of one of d combined processing units, each made of a GPU and

its dedicated CPU core. All processing units execute identical single-GPU computational

kernels simultaneously. The speed gd(x) = x/t, where x is the number of computation units

executed by each GPU processing unit, and t is the execution time.

3. Gd(x) approximates the speed of a combined processing unit made of d GPUs and their

dedicated CPU core that collectively execute a multi-GPU computational kernel. The speed

Gd(x) = x/t, where x is the total number of computation units processed by all d GPUs,

and t is the execution time. Gd(dx)/d is used to approximate the average speed of a GPU.
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Fig. 13 shows the speed functions of a combined GPU processing unit built in different

configurations on the same server.

From these experiments we can see that depending on the configuration of the application

the speed of individual cores and GPUs can vary significantly. Therefore, to achieve optimal dis-

tribution of computations it is very important to build and use speed functions which accurately

reflect their performance during the execution of the application. This work also reveals that the

speed of GPU can depend on the load of CPU cores, which should be also taken into account

during the partitioning step. Experiments with linear algebra kernels and a CFD application

validated the efficiency of the proposed approach.

At the same time, this work has demonstrated the importance of proper configuration

of the application. For example, Fig. 14 demonstrates the impact of NUMA mapping on the

performance of a GPU processing unit, comprised of a CPU core and a GPU of Tesla S2050

deployed in the experimental server. g1(x) is built by executing one single-GPU gemm kernel,

which uses exclusively the data link and the memory of a local or remote NUMA node. g2(x) is

built by executing two single-GPU kernels simultaneously on two GPU units that share the PCIe

link and the memory of the same NUMA node, local or remote. In the remote configuration,

the GPU units also share an extra HT link to the remote NUMA node. Speed function g2(x) is

also built in the configuration when two dedicated CPU cores are located on different NUMA

nodes, which is denoted as local + remote. In this case, the processing units share PCIe but do

not share memory.

The difference between speed functions g1(x) and g2(x) reflects the performance degradation

due to the contention for PCIe, HT and memory. Significant difference is observed for large

problem sizes when many data transfers are required. Communication overhead between NUMA

nodes can be estimated by the difference between g1(x) in local and remote configurations. The

combined effect of both phenomena is reflected by the g2(x) functions in different configurations.

Multilevel hierarchy in modern heterogeneous clusters represents another challenge to be

addressed in the design of data partitioning algorithms. One solution, a hierarchical matrix

partitioning algorithm based on realistic performance models at each level of hierarchy, was

recently proposed in [14]. To minimize the total execution time of the application it iteratively

partitions a matrix between nodes and partitions these sub-matrices between the devices in a

node. This is a self-adaptive algorithm that dynamically builds the performance models at run-

time and it employs an algorithm to minimize the total volume of communication. This algorithm
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Figure 14. Speed functions of a GPU processing unit built in different configurations
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allows scientific applications to perform load balanced matrix operations with nested parallelism

on hierarchical heterogeneous platforms. Large scale experiments on a heterogeneous multi-

cluster site incorporating multicore CPUs and GPU nodes have shown that this hierarchical

algorithm outperforms all other state–of–the–art approaches and successfully load balance very

large problems.

3. Programming tools

In the past, the main platform used for non-trivial heterogeneous parallel computing (as op-

posed to volunteer computing, such as the seti@home project) has been a heterogeneous cluster of

workstations. MPI is a standard programming model for this platform. However, the implemen-

tation of real-world heterogeneous parallel algorithms in an efficient and portable form requires

much more than just the code implementing the algorithm for each legal combination of its input

parameters. Extra code should be written to find optimal values of some parameters (say, the

number of processes and their arrangement in a multi-dimensional shape) or to accurately esti-

mate the others (such as relative speeds of the processors). This extra code may account for at

least 95% of all code in common cases. Therefore, for the implementation of heterogeneous par-

allel algorithms on this platform, a small number of programming tools was developed. mpC [3]

is the first programming language designed for heterogeneous parallel computing. It facilitates

the implementation of heterogeneous parallel algorithms by automating the development of the

routine code, which comes in two forms: (i) application specific code generated by a compiler

from the specification of the implemented algorithm provided by the application programmer;

(ii) universal code in the form of run-time support system and libraries. HeteroMPI [33] is an

extension of MPI inspired by mpC. It allows the programmer to re-use the available MPI code

when developing applications for heterogeneous clusters of workstations. Both mpC and Het-

eroMPI have been used for development of a wide range of real-life applications. HeteroMPI was

also the instrumental tool for implementation of Heterogeneous ScaLAPACK [42], a version of

ScaLAPACK optimized for heterogeneous clusters of workstations.

Modern and future heterogeneous HPC systems necessitate the synthesis of multiple pro-

gramming models in the same code. This will be a result of the use of multiple heterogeneous

many-core devices for accelerating code, as well as the use of both shared- and distributed-

address spaces in the same code to cope with heterogeneous memory hierarchies and forms of

communication. Synthesizing multiple programming models in the same code in a way that

would provide a good balance of performance, portability and programmability, is far from

trivial. Despite long-standing efforts to program parallel applications with hybrid programming

models (e.g. MPI/OpenMP) and some recent developments in programming models for hybrid

architectures (e.g. OpenCL), it is still a long way towards solutions that would satisfy the HPC

community.
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Co-design of Parallel Numerical Methods for Plasma Physics

and Astrophysics
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Physically meaningful simulations in plasma physics and astrophysics need powerful hybrid

supercomputers equipped with computation accelerators. The development of parallel numerical

codes for such supercomputers is a complex scientific problem. In order to solve it the concept of co-

design is employed. The co-design is defined as considering the architecture of the supercomputer

at all stages of the development of the code. The use of co-design is shown by the example of

two physical problems: the interaction of an electron beam with plasma and the collision of

galaxies. The efficiency is 92 % with 500 Tesla GPUs at the Lomonosov supercomputer. The test

computation involved 160 million of model particles.

Keywords: Co-design, hybrid supercomputers, Particle-In-Cell method, Godunov method,

GPU.

Introduction

The main question in plasma simulation is the correct computation of the interaction of

plasma particles with the waves in plasma. The waves are the basis of plasma instabilities. The

correct simulation of plasma instabilities requires at least 16 grid nodes at the Debye length.

The number of model particles cannot be small (less than 100 per cell). The simulations with

small number of particles lead to poor quality results in well-known physical situations and to

the lack of understanding in the new physical problems [1]. Moreover, the simulation of plasma

instabilities is essentially a 3D probem.

The particular physical problem is the simulation of Langmuir waves excitation by the

relativistic electron beam with plasma. One must notice that the simulation of the beam-plasma

interaction is important for a lot of other plasma physics problems.

Beam-plasma interaction plays an important role in various physical phenomena, such as

the transport of relativistic electrons in fast ignition scheme within inertial fusion, the gamma-

bursts, solar radio bursts of II and III type, also in formation of collisionless shock waves in

space plasma (see review [2] and references therein). Moreover, the collective processes in the

beam-plasma system derermine the efficiency of turbulent plasma heating [3, 4] and also of

electromagnetic radiation generation [5–8] in mirror traps.

The movement of galaxies in dense clusters turns the collisions of galaxies into an important

evolutionary factor, because during the Hubble time an ordinary galaxy may suffer up to 10

collisions with the galaxies of its cluster. Observational and theoretical study of interacting

galaxies is an indispensable method for studying their properties and evolution.

One of the most important computational problems within the study of galaxies is the ratio

of the characteristics lengths. The size of a galaxy is 104 parsec, and the size of a star is about

10−7 parsec. Thus the solution of such problems requires the supercomputers from the top part

of the Top500 list. Two of the first three (five of the first ten) supercomputers are equipped
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3Novosibirsk State Technical University, Novosibirsk, Russia
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with computation accelerators (either Nvidia GPUs of Intel Xeon Phi) in the most recent (June

2014) Top500 list.

The first Exaflops supercomputer will be most likely built on the basis of some computation

accelerators. At present there are already codes for plasma physics adopted for both GPUs and

Intel Xeon Phi accelerators [10, 11]. Still, the design of the codes for the hybrid supercomputers

(i.e. the supercomputers equipped with accelerators) is not just a technical question. On the

contrary, it is a complex scientific problem. The problem requires co-design of the algorithms

at all stages of the solution of the problem from the physical statement of the problem to the

software development tools. Within the numerical simulation context co-design is the design of

physical and mathematical model, of the numerical method, of the parallel algorithm and of the

implementation using the architecure of the hybrid supercomputer efficiently.

The need for top supercomputers in plasma physics exist because of the recent trend of

using more precise models instead of simplified ones such as hydrodynamical. The more precise

models are based on the Vlasov equation. The Vlasov equation is solved either by the explicit

numerical methods in the 6D space of by the Particle-In-Cell (PIC) method [12]. If the PIC

method is used then the quantitatively correct physical result may be obtained only with the

large number of model particles(from 1 to 10 thousands per cell).

The simulations were conducted of the relativistic electron beam interacting with plasma

[32]. These simulations resulted in the correct value of the two-stream instability increment. In

order to obtain the correct value the number of model particles was increased up to 1000 per

cell. The number of grid nodes is 120× 4× 4, domain size is 1.2 (in non-dimensional units). The

solution time is about 3 days with 256 Intel Xeon cores (64 4-core Intel Xeon processors). The full

3D simulation will need at least 100 nodes in both transverse dimensions and several times more

nodes in the longitudinal dimension keeping the number of model particles per cell, resulting

in hundreds of millions of model particles as a whole. It means the increase of computational

workload in several thousand times. Let us use 5000. Thus, in order to keep the wallclock time

of the simulation (3 days) one has to use 256 × 5000=1.2 million cores!!! It is the size of the

IBM BlueGene/Q, the present number 3. But since it is just one single simulation of at least 10

usually needed to solve a physical problem, it is strongly necessary to do such simulations with

lower number of processors and less electric power. That is why using hybrid supercomputers

for plasma simulation is inevitable. This requires co-design of the parallel algorithms.

In recent two decades two approaches are being mainly used for the solution of non-

stationary 3D astrophysical problems. First, it is the Lagrangian approach mainly represented

by SPH method [13, 14] (Smoothed Particle Hydrodynamics) and Eulerian approach with adap-

tive meshes, or AMR [15] (Adaptive Mesh Refinement). Within the Lagrangian approach the

following codes were developed: Hydra [16], Gasoline [17], GrapeSPH [18], GADGET [19] on

the basis on SPH method. Within Eulerian approach the following codes were developed: NIR-

VANA [20], FLASH [21], ZEUS [22], ENZO [15], RAMSES [23], ART [24], Athena [25], Pencil

Code [26], Heracles [27], Orion [28], Pluto [29], CASTRO [30], GAMER [31].

The statement of the problem for the galactic objects dynamics is the solution of the equation

of the gravitational magnetic gas dynamics for the gas component considering magnetic field

and self-gravity and also the solution of the N-body problem for the collisionless component. It is

well-known that the N-body problem is hard to solve with supercomputers especially with hybrid

architecture. Thus it is necessary to find a method to describe the collisionless component, the

method being suitable for efficient parallel implementation. In [33] such a model was developed
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on the basis of the first moment of the Boltzmann equation. Such an approach makes it possible

to use the same numerical algorithm [34] for the solution of magnetic gas dynamics equations,

and also for the solution of the first moments of the Boltzmann equation [35]. This approach

was efficiently implemented for two types of hybrid supercomputers: for the supercomputer with

GPUs [35], and the supercomputer with Intel Xeon Phi accelerators [11].

1. Co-design of parallel numerical methods

The essence of co-design is the analysis of the efficiency of the parallel implementation at

all stages of the development of the algorithm. The stages are the following:

• Physical consideration of the model

• Mathematical statement of the problem: differential equations

• Numerical method

• Parallel algorithm

• Architecture of the supercomputer

• Parallel programming tools

1.1. Co-design of parallel numerical methods for plasma physics

In the present case co-design begins at the stage of the physical consideration of the problem.

It is known from experiment that the plasma density modulation cannot exceed 300 %. It means

that the number of model particles cannot be increased without a limit. Thus there is no need

for dynamic load balancing, and the absence of dynamic balancing improves the reliability and

efficiency of the parallel implementation.

At the stage of the numerical method design the field evaluation method was chosen that is

built on the basis of Faraday and Ampere laws. In such a way there is no need to solve Poisson

equation. Instead, the equations that represent the Faraday and Ampere laws in the numerical

form are solved by the Langdon-Lasinski scheme. This results in the field solver with virtually

unlimited scalability.

At the stage of supercomputer architecture selection the PIC method details are taken into

account. In order to evaluate the new values of position and impulse of a particle it is necessary

to know the values of electric and magnetic fields at the present position of the particle. Each

of the three components of both electric and magnetic field is stored in a separate 3D array. In

such a way six 3D arrays are accessed at each time step for each particle. Since the particles are

situated randomly in the domain, the access to the arrays is also unordered. It means that the use

of the cache memory can not reduce the computation time. If a part of the field array was fetched

to the cache in the process of computation of the particle movement, it would be impossible to

use this part of the field array for the computation with the next particle, because it is (most

likely) situated in a completely different part of the subdomain. Since the cache memory can

not store all the six arrays for fields, one has to access the RAM (Random Access Memory) for

computation of the particle movement. And since the performance of the processor is usually

limited by the memory bandwidth, it is the memory bandwidth that determines the speed of

the computation with particles and the performance of the program as a whole (particles take

from 60 % to 90 % of the total time ). This fact determines the transition to the supercomputers

equipped with GPUs because CUDA has a lot of tools to accelerate memory use for the PIC

method.

Co-design of Parallel Numerical Methods for Plasma Physics and Astrophysics
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At the stage selection of software design tools is the folowing. For the PIC method with a very

big number of independently processed elements (the model particles) the use of CUDA tech-

nology is very efficient. Other parallel technologies for hybrid supercomputers such as OpenCL,

OpenMP, OpenACC could be also used but it is CUDA that gives the possibility to use the

highest number of parallel processes and to get the highest performance.

The last stage of co-design is the adoptation of the algorithm to the GPU architecture.

The traditional PIC method implementation (all the particles stored in one very big array) is

unacceptable for GPUs because it prevents the use of the advantages of GPU memory. Thus

the particles are distributed between the cells and the computation is conducted as follows: one

block of threads for one cell.

1.2. Co-design of parallel numerical methods for astrophysics

In the design of astrophysics models we shall follow the idea of co-design that means the

design of parallel numerical technologies considering all the aspects of parallelism. For example,

in [33] a new approach was proposed for the simulation of the collisionless component of the

galaxies. The approach is based on the first moments of the collisionless Boltzmann equation.

This approach has some limitations if it is necessary to trace a single particle and not a group of

particles (for example, in the study of planet formation). But for the simulation of interacting

galaxies this approach was successfully tested [35]. As it was already said in the introduction,

the statement of the problem for the galactic objects dynamics is the solution of the equation

of the gravitational magnetic gas dynamics for the gas component considering magnetic field

and self-gravity and also the solution of the equations for the first moments of the collisionless

Boltzmann equations. During the last two decades for the solution of non-stationary 3D problems

Figure 1. Domain decomposition for GPU-based supercomputers

two approaches are mostly used from the wide range of gas dynamics methods. This is the

Lagrangian approach mostly represented by the SPH method and Eulerian approach with the

use of adaptive meshes or AMR. The main weak point of SPH is the bad simulation of high

gradients and discontinuities, suppression of instabilities, difficult choice of the smoothing kernel

and the need for artificial viscosity. A large standalone problem is the local entropy decrease in

the SPH method. The main weak point of the mesh-based methods is the non-invariance with

respect to rotation, or Galilean non-invariance. This invariance appears because of the mesh.

But this problem can be solved by means of the various approaches to the design of numerical

schemes [9]. One of the common weak points of both Lagragian and Eulerian approaches is

the lack of scalability. In recent time the mixed Lagrangian-Eulerian methods are employed

for the solution of astrophysical problems. These methods combine the advantages of both

Lagrangian and Eulerian approaches. For a number of years the authors have been developing
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the Lagrangian-Eulerian approach on the basis of the combination of the Fluid-In-Cells method

and Godunov method [9, 11, 34, 35]. The system of gas dynamics equations is solved in two

stages. During the first, Eulerian stage, the system is solved without the advection terms. During

the second, Lagrangian stage, the advection is taken into account. The separation into two stages

facilitates the elimination of the Galilean non-invariance. The use of Godunov method at the

Eulerian stage enables the correct simulation of discontinuos solutions.

Figure 2. Domain decomposition for Xeon Phi-based supercomputers

The use of uniform Cartesian grids makes it possible to choose an arbitrary Cartesian

domain decomposition. In fig. 1 and fig. 2 the two ways of the domain decomposition for hybrid

supercomputers are given: for the GPU-based supercomputer (fig. 1) and for the supercomputer

equipped with Intel Xeon Phi (fig. 2).

2. Speedup and efficiency

2.1. Co-design for astrophysics: the codes GPUPEGAS and AstroPhi

Figure 3. Speedup of the GPUPEGAS code within a single GPU

The use of such domain decomposition enables the most efficient use of the computational

accelerators. In fig. 3 and fig. 4 the speedup is given with the single GPU (fig. 3) and a single

Intel Xeon Phi accelerator (fig. 4) in the different modes.

With the use of 60 GPUs and 32 Intel Xeon Phi accelerators the parallel efficiency exceeded

95 %. The wallclock time for the AstroPhi code is the following: 1 Xeon core 10,664 sec., 1 Xeon

Phi core in offload mode 81,708 sec. (same as native mode), 60 Xeon Phi cores in offload mode

2,960 sec. (28 times speedup), 60 Xeon Phi cores in native mode 1,547 sec. (53 times speedup).

For the GPUPEGAS code 1 Xeon core 10,664 sec., 1 GPU core 14,575 sec., 256 GPU cores

0,265 sec. ( 55 times speedup).
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Figure 4. Speedup of the AstroPhi code within a single Intel Xeon Phi

2.2. Co-design for plasma physics: the code for beam-plasma interaction

simulation

The use of co-design for the development of the PIC code for plasma simulation resulted

in the 42 times speedup with Nvidia Kepler. Speedup here is given with respect to 4-core Intel

Xeon processor (all 4 cores employed). The efficiency of the program measured with MVS-100K

is over 60 % with up to 2048 Intel Xeon cores (in the figure they are called processors since here

each core acts as a stanalone processor, from the MPI point of view). It is shown in fig. 5.

Figure 5. Parallelization efficiency measured with cluster named MVS-100K, Joint Supercom-

puter Centre of the RAS. The grid size along Y and Z is 64 nodes, grid size along X is equal to

the number of processors, 150 particles per cell for all the cases.

The parallel program was developed primarily for the simulation of beam interaction with

plasma on large computational grids and with large numbers of particles. It is interesting to

know, what will the worktime be for a larger problem. For example, if there is a small problem

solved with a small computer in some time, is it possible to solve a larger problem with a larger

computer in the same time? Or will the time be larger? How much? That is why parallelization

efficiency was computed in the following way.

k =
T2

T1
× 100% (1)

here T1 - is the computation time with N1 processors, T2 is the computation time with N2

processors. Here the workload of a single processor is constant. This definition of efficiency is

inversely proportional to the standard weak scale efficiency, but the above efficiency definition is

better since it clearly shows how the things get worse with a lot of processors (with weak scale

efficiency one notices that the plot stops growing, but the values are still high, so it seems to be
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good, though it is not). In the ideal case the computation time must remain the same (the ideal

k = 100%).

Figure 6. Computation time for the cluster with Kepler K40 GPUs. Here the size of the solved

problem is constant and the workload of a single GPU (the number of particles per one GPU)

is decreased with the increase of the number of GPUs

Also the speedup was measured for two clusters equipped with GPUs: first cluster with

Tesla M2090 and the second with Kepler K40. A single timestep is computed in 34 ms with

one Kepler K40 and 17.5 ms with 12 Kepler K40 GPUs (same grid size, model particles are

distributed between GPUs), the speedup is shown in fig. 6. Parallel efficiency is over 90 %.

2.2.1. Efficiency for large number of GPUs

The behaviour of the code with large number of GPUs is of special interest. Due to this

reason the special perfomance tests were conducted with the hybrid part of the Lomonosov

supercomputer. First, the speedup was measured fig. 7. The speedup is relatively small because

of the small number of model particles, still one can see that the plot has not reached saturation

and is growing. It means that the problems of bigger size will be accelerated more effectively,

with higher speedup. At the Lomonosov supercomputer with one Tesla GPU a single timestep

Figure 7. Speedup measured with the Lomonosov supercomputer.Here the size of the solved

problem is constant and the workload of a single GPU (the number of particles per one GPU)

is decreased with the increase of the number of GPUs

is computed (without communications) in 109 ms.
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Now let us turn to the efficiency for the large number of GPUs (that is, up to 500), fig. 8.

Here the number of model particles per one GPU (the workload of a GPU) is constant. It means

that the size of the whole problem is growing with the number of GPUs. The sense of the test

is to show what is the communication overhead for computations with large number of GPUs.

Here, is there is no overhead at all and with 100 GPUs a 100 times bigger problem is solved in

exactly the same time, the efficiency is 100 %. If the overhead is big, and with large number of

GPUs most time is spent for communications then the efficiency will be low.

The efficiency in fig. 8 means that the time spent for a timestep does not change significantly

with the number of GPUs. The preparation times such as initialization time, the time for copying

the data to GPUs is not considered here. This is because in the real computation which lasts

tens of thousands of timesteps all the preparation times will play no role, they will be very low

in comparison with total time.

Let us remind that the workload of a single GPU (number of model particles) here is con-

stant. The only communication between the GPUs is just the summation of currents: every GPU

evaluates the current in the whole domain only with the particles residing on the GPU, after

that one has to sum all the partial currents through all the GPUs. Thus only one MPI Allreduce

operation is performed per timestep and nothing more. Such a small number of MPI opera-

tions is because of co-design of the parallel algorithm.One must also notice that the average

MPI Allreduce time measured with Intel Trace Analyzer & Collector does not change signifi-

cantly with the number of GPUs (at least up to 500): for 10 GPUs the MPI Allreduce time was

29 ms and for 500 just 41 ms. And this is not because of co-design but because of the Lomonosov

hardware and MPI installation.

This result is important not only as a performance test. Each GPU computed the motion of

320000 model particles, it means 160 million model particles as a whole. In such a way the code

is really capable of doing physically meaningful simulations (as mentioned in the Introduction)

with the Lomonosov supercomputer.

Figure 8. Parallelization efficiency measured with the Lomonosov supercomputer.

3. Simulation results

Finally let us consider the results of the two computational experiments in fig. 9 showing

the simlation of the collision of two galaxies according to the described two-phase model. The

details of the problem statement and simulation results can be found in [35].
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Figure 9. The runaway of galaxies after the central collision

4. Conclusion

The development of the efficient software for the hybrid supercomputers is a standalone

complex scientific problem that requires the use of co-design at all stages from the physical

statement of the problem to the software development tools. Within the numerical simulation

context co-design is the design of physical and mathematical model, of the numerical method,

of the parallel algorithm and of the implementation using the architecure of the hybrid super-

computer efficiently.

The use of co-design for the code for beam-plasma interaction simulation gives hope that

the full 3D computations will be feasible. If one looks at the efficiency for 2048 processor el-

ements (60 %) and the computation time for a single Kepler K40 GPU (34 ms), then, using

about one thousand Kepler GPUs in a computational experiment one might obtain the necesary

computational power for a full 3D simulation.

The co-design of the parallel numerical technology of the solution of the astrophysics prob-

lems resulted in 55 times speedup within a single GPU and 96% efficiency when using 60 GPUs,

and also 27 times speedup in offload mode and 53 times speedup in native mode within a single

Intel Xeon Phi and 94 % efficiency when using 32 MICs. Such an efficient use of the accelerators

enable to conduct simulations with the grid size 10243 in acceptable time and to model ”fine”

effects in the collision of galaxies.
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