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Research into data reduction techniques has gained popularity in recent years as storage ca-

pacity and performance become a growing concern. This survey paper provides an overview of

leveraging points found in high-performance computing (HPC) systems and suitable mechanisms

to reduce data volumes. We present the underlying theories and their application throughout the

HPC stack and also discuss related hardware acceleration and reduction approaches. After intro-

ducing relevant use-cases, an overview of modern lossless and lossy compression algorithms and

their respective usage at the application and file system layer is given. In anticipation of their

increasing relevance for adaptive and in situ approaches, dimensionality reduction techniques are

summarized with a focus on non-linear feature extraction. Adaptive approaches and in situ com-

pression algorithms and frameworks follow. The key stages and new opportunities to deduplication

are covered next. An unconventional but promising method is recomputation, which is proposed

at last. We conclude the survey with an outlook on future developments.

Keywords: data reduction, lossless compression, lossy compression, dimensionality reduction,

adaptive approaches, deduplication, in situ, recomputation, scientific data set.

Introduction

Breakthroughs in science are increasingly enabled by supercomputers and large scale data

collection operations. Applications span the spectrum of scientific domains from fluid-dynamics

in climate simulations and engineering, to particle simulations in astrophysics, quantum mechan-

ics and molecular dynamics, to high-throughput computing in biology for genome sequencing and

protein-folding. More recently, machine learning augments the capabilities of researchers to sift

through large amounts of data to find hidden patterns but also to filter unwanted information.

Unfortunately, the development of technologies for storage and network throughput and

capacity does not match data generation capabilities, ultimately making I/O a now widely an-

ticipated bottleneck. This is only in part a technical problem, as technologies to achieve arbitrary

aggregate throughput performance and capacity exist but cannot be deployed economically. Be-

sides being too expensive at the time, their energy consumption poses a challenge in exascale

systems adding to the operational cost [51]. As data centers are expected to become a major

contributor to global energy consumption [133], data reduction techniques are an important

building block for efficient data management.

Also, to capture as much data as possible as efficiently as possible, they are going to become

far more important in the future. Especially as multiple projections across scientific domains

estimate increasing data volumes for a variety of reasons: For one, Data generation capabilities

are on the rise, due to improving compute capabilities as supercomputers become more powerful

but also more broadly available. The increase in CPU performance encourages researchers to

increase model resolution, but also to consider more simulations for uncertainty quantification,
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both increasing the amount of generated data. Higher-resolution instrument and detector out-

puts, in addition to an exploding number of small scale measurement stations, are a second

factor leading to increased data ingest. This shows in particular in remote sensing for earth

observation and astronomy as well in detectors used in high-energy physics.

In many scientific contexts, data is stored in self-describing data formats such as NetCDF

and HDF5. Some subdomains like bioinformatics may also employ text-based (blast, fasta) for-

mats, that can be handled similarly with respect to compression. But to cope with the magnitude

of the data, established techniques such as compression on written data are not sufficient. One

alternative growing in popularity are in situ approaches, which bypass the storage systems for

many post-processing tasks. Often in situ lossy compression is applied as data is generated, but

more advanced in situ analysis relies on triggers preserving only records for essential events. In

some cases, data volumes are reduced by several orders of magnitude [60]. CERN, for example,

employs both combinatorial in situ and off situ techniques to filter and to track the particles

produced in the proton-proton collision [15]. Selecting only the interesting events worthy of of-

fline analysis means keeping 1/200000 events, which occur every second [60]. In situ processing

can also benefit data visualization. At the German Climate Computing Center (DKRZ), use

cases for in situ techniques include data reduction as well as feature detection, extraction, and

tracking, which are also used to steer simulation runs [123]. Uptake in situ methods makes image

data formats more relevant. Thus, our survey also covers data reduction for images.

Besides in place reduction at the application layer, optimization and data reduction op-

portunities can be found along the data path. A typical HPC stack spans multiple I/O layers

including parallel distributed files systems, the network, and node-local storage. Additional lever-

aging points can be found in the memory hierarchy, spanning caches, RAM, NVRAM, NVMe

down to HDDs and tape for long-term storage.

This survey covers a large variety of data reduction techniques. Mathematical backgrounds

are, therefore, not covered in-depth. Additional details about fundamental compression tech-

niques are discussed by Li et al. [82]. We extend their work by presenting additional frameworks,

tools, and algorithms for compression. Some of them emerged in the last two years. In addi-

tion, we evaluate a more extensive variety of data reduction techniques considering dimension

reduction, adaptive approaches, deduplication, in situ analysis, and recomputation.

The remainder of this paper is structured as follows: In section 1, an overview of lossless

as well as lossy compression algorithms is given. Section 2 introduces dimensionality reduction

techniques, forming the basis for the adaptive approaches described in section 3. In section 4,

deduplication is explained. Section 5 details the algorithms and frameworks for in situ analysis.

Recomputation approaches are collected in section 6. An outlook on future developments is

provided in section 7.

1. Compression

Compression reduces the size of a dataset by removing redundancies to maximize its entropy.

The ratio between the original and compressed data is denoted as the compression ratio (CR),

where a higher ratio is better. Lossless compression is used whenever the reconstruction has to

be byte-exact and has been widely explored in scientific domains. In general, the decompression

is faster than the compression, which often fits the typical HPC workflow: Data is calculated and

compressed once but read and decompressed several times [93]. Compression can be integrated

into different system layers, such as the application layer or the file system and block layer. While
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the user can decide whether to deal with lossy or lossless compression at the application layer,

transparent compression within the system out of the user’s control has to be always lossless.

Data like source codes or binaries must be compressed only lossless since their reconstruction

must be accurate.

(a) Before truncation (32-bit floating-point) (b) After truncation (8-bit integer)

Figure 1. Truncation reduces data size (conversion from 32-bit floats into 8-bit integers results

in a factor of 4) but also leads to a visible degredation of data quality

Lossless compression usually provides a poor CR for HPC applications due to their extensive

usage of floating-point data [77]. Relief can be achieved by using lossy compression since it allows

to trade in data quality for data size. Many techniques for lossy compression have been developed

with a focus on multimedia data such as audio or image data, but they can be reused for scientific

data too [82]. However, losing data quality is not acceptable for all users and limits possible use

cases. Figure 1 gives an example of a crude quantization: The original 32-bit floating-point data

is mapped to 8-bit integers. The file size reduction is about a factor of 4 and comes at the price

of a visible degradation of the data quality.

1.1. Lossless Compression

Lossless compression at the storage end is one of the obvious use cases in HPC systems,

which aims for more storage capacity. While some of the local file systems like btrfs [83], NTFS

or ZFS [154] provide compression services, the distributed parallel file systems used in the HPC

field are often limited concerning this service. Ceph and GlusterFS both run in user space and

offer server-side compression. Spectrum Scale (previously GPFS) by IBM also offers compres-

sion of cold data with zlib and recently introduced LZ4 for sequential read workload [13]. The

most popular HPC file system Lustre indirectly benefits from compression when using the ZFS

backend, which supports multiple compression algorithms. The data is then kept compressed

not only on disk, which saves storage space but also in ZFS’s own cache, which allows more

diskless I/O. Lately, ZFS also gained support for hardware compression [62].

Compression can also improve the relative network throughput, I/O completion time and

therefore speed up application runtimes. IOFSL is a project of Argonne National Laboratory

aiming to provide a software layer at the file system interface. It has been extended by compres-

sion services, which can increase network bandwidth [152]. Another improvement for network

throughput has been achieved by implementing an optimization of the two-phase collective I/O

technique for ROMIO, the most popular MPI-IO implementation [45]. By reducing the data

from group sources, Mellanox switches allow the collective operation processing to be offloaded

and therefore improve the network speed in-flight.

State of the Art and Future Trends in Data Reduction for High-Performance Computing

6 Supercomputing Frontiers and Innovations



Furthermore, hardware compression is used for better CPU utilization [21, 29]. Also, the

energy costs of running an HPC cluster can be reduced by compression [10, 72].

Another use case apart from I/O and persistent data is transparent compression of working

data within the application. zram is a kernel module that creates compressed block devices and

compresses the process memory without its knowledge [99]. It is commonly used for temporary

files or as a swap disk, while live data stays uncompressed. The CR is limited since only single

pages are compressed. As the benefit of transparent compression depends on the specific data,

it is not a universal approach. Additional studies have been done to reduce the performance gap

between processor and memory calls by introducing cache compression [9, 33]. A wide range of

scientific applications and tools already involves compression mechanisms for computation or

out-processing, like LAMMPS, HDF5 and MapReduce [40, 120].

There are different potential usages of lossless compression with different requirements on

the algorithms. The following sections describe the basics of entropy- and dictionary-based com-

pression and mention the most popular and useful lossless algorithms for the HPC field.

1.1.1. Entropy-based

Entropy-based encoding works by replacing unique symbols within the input data with a

unique and shorter prefix code. The more often a symbol occurs, the shorter the prefix should

be to ensure the best CR [94]. The most known techniques are arithmetic and Huffman codings.

Huffman coding replaces words in a way that no word is a prefix of any other word in the

system [111]. It creates a binary tree of nodes, which represents the symbols and their frequencies.

At first, the data has to be scanned and the frequencies must be calculated. The nodes are either

inserted into the binary tree or combined depending on the frequencies [20]. While Huffman

coding splits input data into components that are encoded separately, arithmetic coding encodes

the entire input into a number. This coding aims to compress close to the entropy limit while

Huffman coding performs badly when the probabilities do not equal fractions with powers of

two in their denominators [25]. Both codings are rarely used as stand-alone algorithms but can

be adapted and combined with more elaborated techniques, some of which follow.

1.1.2. Dictionary-based

Another popular method is based on dictionaries and aims for partitioning the original

input data to phrases (non-overlapping subsets of the original data) and the corresponding,

possibly shortest codewords. This encoding is also known as substitution and has two main

stages: dictionary construction (finding phrases and codewords) and parsing (replacing phrases

by codewords) [125]. The dictionary has to be available for both the compressor and the de-

compressor. Dictionary codes can be classified into static and dynamic (or sometimes adaptive)

constructs. Static dictionaries are created before the input processing and stay the same for the

complete run. In case of the dynamic method, the dictionary is updated during parsing and

the two stages (construction and parsing) mostly interleave. Byte pair encoding is a simple way

of compression where the most common symbols are replaced by a symbol, different from the

original alphabet [134]. The table of replacements is called dictionary.

LZ Family Lempel-Ziv is one of the most known dynamic dictionary compression methods.

LZ77 assumes and exploits that data is likely to be repeated. When repeated, a word can be
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replaced by a pointer to the last occurrence accompanied by the number of matched charac-

ters [132]. The dictionary is then a part of the previously encoded sequences. The input is

analyzed through a sliding window, that consists of search and look ahead buffers. LZ77 is

suffix-complete, which means any suffix of a phrase is a phrase itself. The performance is limited

by the number of comparisons needed for finding the matching pattern.

LZ77’s successor LZ78 constructs the dictionary differently. It begins with a single symbol

entry in the dictionary, which grows by concatenating the first symbol of the following input

after every parsing step. This algorithm uses greedy parsing, replacing the longest phrase with

a prefix match by a codeword. In opposite to LZ77, LZ78 is prefix-complete.

Due to the explicit dictionary, the patterns are potentially held until the end of the input,

which results in ever-growing dictionary buffers. There are several approaches on how to limit

their sizes or optimize the dictionary building. These modifications of the general method and

the development of optimizations continue today. The development of variants to the original

method and respective optimizations continue today. All the modifications are very fast at

decompressing, just like their ancestors.

LZ77 Variants LZSS is an algorithm developed by Storer and Szymanski that improves the

look-ahead buffer by storing it in a circular queue and introduces a binary tree for the search

buffer. LZS is based on LZSS and uses Huffman encoding for the length-distance pair [126].

DEFLATE is based on LZSS but uses a chained hash table to find duplicated sequences. The

matched lengths and distances are compressed with two Huffman trees. There are hardware

implementations of a novel adaptive version of DEFLATE [141] and an FPGA approach [48].

The DEFLATE format is used in ZIP, gzip, Zopfli, zlib and many other algorithms, which also

have hardware implementations [1, 116]. LZJB is based on LZRW1, which uses hash tables

among other techniques. While LZRW1 could overrun buffers by either reading past the input

or writing past the output, LZJB does not. As a result, it is more suitable for file system

usage, e.g., in ZFS [155]. It also allows a larger match length with smaller look-behind buffer

and is, therefore, faster with less memory usage. LZMA is the default algorithm used in the 7z

compression software and is similar to DEFLATE but uses delta filtering with range, instead

of Huffman encoding [81]. MAFISC is an HDF5 compression filter based on LZMA. LZX uses

a history buffer up to 2 MiB and combines Huffman coding techniques with shorter codes. The

three most recent matches are then compressed with LZMA [100].

Snappy is developed by Google and was open-sourced in 2011. The input is cut into fix sized

(64 KiB) blocks and the encoder is byte-oriented. Work on an FPGA version of Snappy has been

done [118]. LZFSE is an Apple compressor with finite-state entropy, which combines a dictionary

compression scheme with a technique based on asymmetric numeral systems [137]. Brotli is the

Google approach to replace Zopfli and is not DEFLATE-compatible [8]. The compressed file is

represented by a collection of meta-blocks. These are composed of a data part, which is simply

compressed by LZ77 and a header describing how to decode the data part.

Bloclz is the default algorithm in Blosc, a high-performance compressor optimized for binary

data. It is based on FastLZ, which itself is inspired by LZV and LZF algorithms. They all favor

CPU efficiency over CR. LZO uses a quick hash table for lookups and has additional optimiza-

tions to output tokens [160]. The multi-core performance is explored in an additional work [69].

LZ4 is another LZ77 variant with a fixed, byte-oriented encoding with no other codings. It pro-

vides an extremely fast decompressor, which can reach up to half of the memcpy throughput.

State of the Art and Future Trends in Data Reduction for High-Performance Computing
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LZ4 has further variants. One is the fast mode that trades CR for compression speed and the

high compression (HC) mode. There are also modifications for real-time hardware as well as gen-

eral hardware implementations [80, 90]. Lizard, previously called LZ5, uses expansions to LZ4

and can optimally combine them with Huffman coding. It is also a part of the Blosc compres-

sor library. Zstd supports a large search window (eight times larger than zlib) and involves an

entropy coding stage, using fast Finite State Entropy or Huffman coding. The implementation

works well with modern processors and compilers and is multi-threaded [131, 140].

LZ78 Variants One of the modifications is LZW, introduced by the initial authors of LZ78

and Terry Welch [151]. A dictionary is initialized to all possible symbols and the input is then

processed symbol by symbol and concatenated to a string that is searched in the dictionary.

This process continues as long as matches are found and the dictionary is updated to the new

concatenation when the word was missing in the dictionary [130]. The GIF encoding is based on

LZW. There are also hardware-accelerated versions of LZW [127]. LZWL is an LZW extension

for working with syllables or complete words. Other variants of this encoding are LZMW, LZAP

and LZWL. LZMW does not reinitialize the full dictionary like LZW does, but removes the last

used phrase instead. Here, concatenation is not performed on one new symbol and the match

but on one match with another match [76]. LZAP is another modification of LZW, which adds

all the prefixes of the unknown word instead of a concatenation of one prefix with this word. It

allows for better CR with potentially faster dictionary growth and more frequent updates [142].

Other compression algorithms do not use dictionaries but smartly combine several tech-

niques, especially in order to achieve a high CR. One of such is bzip2, which compresses files

using the Burrows-Wheeler block-sorting compression algorithm [17], MTF (move to front),

RLE (run-length encoding) of MTF result, Huffman coding, Unary base-1 encoding of Huffman

table selection, Delta encoding of Huffman-code bit lengths and sparse bit arrays. Due to its low

performance, parallelization of bzip2 has been explored in [53].
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Figure 2. Qualitative comparison of some compression algorithms regarding the de-/compression

speed and ratio (the larger, the better) for different compression levels [140]

Intel’s QAT (QuickAssist Technology) provides hardware-based algorithms for cryptography

and compression. De-/compression is offloaded to the QAT module (available on chipset or

external PCIe cards). QAT can speed up different algorithms like DEFLATE, LZS and can

be extended for many other algorithms. The data has to be physically contiguous, which is a

hard requirement exceedingly few systems are able to fulfill without additional efforts. Hardware
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compression has the potential to be much faster, but due to limited buffers (mostly one kernel

page of 4 KiB), software solutions may still preferable [62].

1.1.3. Efficiency

Depending on the needs within the HPC systems, the most suitable algorithm varies. While

the application and network layer mostly require very fast algorithms, the storage backend can

afford slower throughput for a higher CR but greatly benefits from a fast decompressor for the

read performance. Figure 2 shows a few of the algorithms measured on a specific data set with

different compression levels. The results are extremely dependent on the input data but often

allow a qualitative insight into the performance nevertheless.

1.2. Lossy Compression

Data in HPC is mostly generated by numerical simulations of natural processes, which follow

the principle of locality so that adjacent data is likely to be highly correlated. Floating-point

data is hard to compress nonetheless since it often already features high entropy.

Applying lossless compression on large data sets does not always satisfy external require-

ments such as guaranteed I/O performance for live visualization or limited assigned storage, due

to long compression times or low CRs. If a controlled loss of data quality is an option, lossy com-

pression can be applied instead. Using lossy compression, CRs of over 400:1 are possible [41] –

even though a CR beyond 64:1 will degrade precision of reconstructed data [84]. Lossy compres-

sion does not always outperform lossless compression in case of constrained error margins [93].

Lossy compression is common in computer graphics [7, 16] and used by many visualizations

primarily meant to be interpreted by humans but are not fed back to numerical computations.

Unbiased compression methods which stay within the data’s noise or analysis’s error mar-

gin can be applied without degradating quality [40, 73]. More use cases for lossy compression

include the reduction of I/O time or the acceleration of checkpoint handling [30]. Lossy compres-

sion methods are usually used in a multilayer-compression approach, though specific algorithms

reduce the data size sufficiently on their own: First, lossy compression reduces the data diver-

sity so that the lossless compressors applied afterwards work more efficiently. There are different

approaches to combining these techniques as well as distinctions in their implementation.

Many file formats add native support for lossy compression like for example

NetCDF4/HDF5 [40], GRIB2, XTC/TNG [95], and Zarr.

1.2.1. Methods

Preprocessing These methods are easy to apply but lag behind regarding the CR or quality

of the reconstructed data. A naive lossy compression step is truncatation, which simply omits

the least significant bits. In the case of floating-points, these are the last bits of the mantissa.

More subtle approaches are Bit Shaving and Bit Grooming, which do not change the data

type itself but tamper with the bit representation of floating-point data. Similar to truncation,

Bit Shaving modifies the most insignificant bits by changing them to zero. It thereby induces

a bias as the new values always underestimate the original values. To correct this bias Bit

Grooming applies a bitmask, in which zeros and ones are alternating to balance the error [159].

For a given number of significant digits of a float to be preserved, Bit Grooming tends to spare too

State of the Art and Future Trends in Data Reduction for High-Performance Computing
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many bits from being changed. A potential remedy for this is Digit Rounding, which substitutes

the static bitmask of Bit Grooming with a dynamic and more granular bitmask [40].

Normalization can be used to save bits within floats, as values close to zero require fewer

bits in the mantissa while preserving range and precision.

Another method is quantization, where the values of the original data are first subdivided

into intervals and each point of an interval is then mapped onto the same representative. In

literature, the representatives are called codewords and the interval scheme codebook. The map-

ping can be done fore single values (scalar quantization) or a set of values (vector quantization).

Special attention should be paid to how the codebook is constructed because it is more compu-

tational intensive compared to the lookup.

A collection of algorithms to generate codebooks is presented in [63]. If the codebook gener-

ates intervals of varying length, the error bound cannot be guaranteed; to control the error the

intervals’ length must be uniform [143].

Linear packing uses quantization by mapping normalized 4-Byte floats onto 2-Byte integers.

Preserving the original dynamic range, a linear transformation between the original and modi-

fied data is stored in addition. While this introduces overhead, the data size is still about halved

in return. This approach can be further improved by Layer-packing, which applies linear packing

on slices of multi-dimensional data. The slicing is performed alongside the so-called thick dimen-

sion, i.e. the dimension with the highest range of values. For example, many variables of a 3D

atmospheric model undergo heavy changes along the vertical dimension but are comparatively

quite stagnant at the same height. In this case, the dataset would be split into horizontal slices.

The precision of the linear packed slices is improved at the cost of additional overhead [136].

Transform compression This kind of method relies on a frequency transformation of the

spatio-temporal original data signal into a new domain. The coefficients of the transformed

signal may then be classified regarding their significance. While no loss of precision is applied in

theory because transformations are invertible, transformations on floating-point data typically

lead to rounding errors. In literature those transformations are therefore also addressed as near-

lossless methods [82]. Transform compression becomes definitely lossy as soon as insignificant

small coefficients are eliminated. The most important transformation methods are variants of

discrete Fourier transforms (fast Fourier transform [FFT], discrete cosine transform [DCT],

modified discrete cosine transform [MDCT], discrete sine transform [DST], modified discrete

sine transform [MDST]) and wavelet transforms. An extensive overview of these transformation

methods can be found in [149].

Prediction A good derivation of a data predictor allows estimating the value of adjacent data.

To reproduce the original data, the predictor and the differences, also called residuals, need to

be stored, which are minimal if the predictor has been well fit. Those residuals feature less

entropy and, if they are small enough, they can be represented by smaller datatypes [114]. If

the residuals are preprocessed before their compression, this method becomes also irreversible.

Some relevant schemes to perform the prediction are linear predictors (e.g. Lorenzo pre-

dictor [64], mean-integrated Lorenzo predictor [84]), differential pulse-code modulation [32], and

motion compensation [139]. The latter one is of special interest for molecular dynamics since the

simulated particles move along trajectories or stand still and can, therefore, be approximated

by for example a low-polynomial function [114].
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1.2.2. Selection of lossy compressors

Even though lossy compression is not omnipresent in HPC yet, there are some compressors

available. Well-known are SZ and ZFP since they achieve a good performance [41], but we

will also discuss other compressors, which stand out in their field. The last four entries are

frameworks, which provide a collection of lossy compressors.

SZ [41]: Three steps are performed on the original data. At first, a multidimensional pre-

diction model is applied, such as preceding neighbor fitting that assumes the current value to

equal the preceding value. There are also linear and quadratic polynomial fittings. Afterwards,

prediction points are quantized. Data, which cannot be fitted by the quantized predictors, is

normalized and then truncated. At last, further compression is performed by using DEFLATE.

ZFP [86]: The original 3D data is chunked into 4 × 4 × 4 blocks. All values in a block are

normalized to the maximum in this block so that the adjusted values are in the range of [−1,+1].

Since high-order floats are eliminated now, the values are transformed into a Q3.60 fixed-point

representation, which increases the numerical stability. Then, an orthogonal transform is applied

and the resulting coefficients are sorted. Because the transformation results in many insignificant

coefficients, they are well compressible.

FPZIP [87]: The data is at first approximated via a Lorenzo predictor and then truncated.

Intervals of predictions and residuals are then encoded. Most of the time, ZFP outperforms

FPZIP when the lossy compression is used [143].

ISABELA [77]: To smooth the data, it is first sorted and predicted afterwards using B-

splines. Since ISABELA does in situ processing, it is discussed in detail in section 5.1.2.

TTHRESH [19]: The Tucker decomposition, a higher-order singular value decomposition,

is performed. Then the decomposition core is flattened and the coefficients are compressed.

Ballester-Ripoll et al. showed that the degradation of data quality is managed well at high CRs

since high peak signal-to-noise ratios are preserved. However, their compression scheme suffers

from lower (de-)compression speed and disadvantageous random access times in return. Another

drawback is the insufficient support for 2D datasets [30].

NUMARCK [35]: Motion compensation (forward predictive coding) between checkpoints

is used and data is then approximated by utilizing machine learning. NUMARCK is therefore

discussed in detail in section 3.1.2.

SSEM [128]: This compressor uses a wavelet transform and vector quantization to speedup

the general checkpoint creation time of an HPC application.

FRaZ [148]: This framework includes SZ, ZFP and MGARD [3–5]. The lossy compressors

can be controlled by setting the upper bound of the absolute error. Some already feature a

fixed-rate mode, but usually, this mode comes with a catch, e.g. it neglects the absolute error

bound. FRaZ determines the correct setting of the absolute error for an indicated combination

of lossy compressor and a particular dataset with only limited overhead.

VAPOR [113]: VAPOR allows to explore and interact with large datasets stepwise. To make

this possible, it utilizes a progressive data model to divide the dataset into areas of interest

and apply lossy compression (wavelet transforms). Currently, VAPOR3 is being developed and

according to its roadmap, additional compressors shall be included [150].

Z-checker [144]: The primary goal of this framework is to allow users checking and un-

derstanding the data features and how lossy compression would affect the data quality. The

virtualization allows to quickly explore datasets and evaluate the impact of several lossy com-

pressors on specific data and compression properties.
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Deep neural network [119]: This approach uses a neural network to analyze dataset features

such as the hit ratio of prediction methods in order to estimate the CR for different lossy

compressors, currently SZ and ZFP. More details are presented in section 3.2.

2. Dimensionality Reduction

Scientific data such as simulation or detector output usually has a high dimensionality, often

requiring reduction for appropriate handling. Ideally, the result of dimensionality or dimension

reduction (DR) resembles the intrinsic dimensionality of the data, thus preserving those features

necessary for characterization [49]. Besides mitigating the curse of dimensionality [23], DR re-

duces the multi-collinearity, thereby improving the interpretation of parameters while decreasing

the computation time as well as the data size. Also, visualizing results is considerably simplified

with a smaller feature space. DR approaches can be separated into feature selection and feature

extraction (FE). The former focuses on selecting a characteristic subset while feature extrac-

tion, also referred to as feature projection, transforms the data into a representation of fewer

dimensions [31]. As neither the geometry of the data nor the intrinsic dimensionality is known,

DR is an ill-posed problem enforcing the assumption of certain data properties [98].

Following the taxonomy of DR techniques depicted in Fig. 3 by Maaten et al., FE approaches

are split into convex and non-convex techniques. The main difference being that non-convex

techniques can model the existence of multiple local optima, while convex approaches require

global and local optimum to coincide.

Figure 3. Taxonomy of dimensionality reduction techniques (FE) from [98]

2.1. Feature Selection

Feature selection approaches devide into wrappers, filters, and embedded methods [57].

Prominent wrappers are greedy search strategies, namely backward elimination and forward

selection. The first removes the least promising variables while the latter continuously incor-

porates variables into larger subsets. Filter methods often focus on features like variance or

correlation as they are easy to compute [57]. In contrast to wrappers, they are not adjusted

to a specific model and result in a more general selected set. Random forests have proven to

be useful for ranking feature importance [37]. Cliff et al. proposed an iterative random forest

implementation optimized for HPC. An embedded feature selector based on the linear depen-

dency of input and output is Least absolute shrinkage and selection operator (Lasso). Yamada
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et al. proposed Hilbert-Schmidt Independence Criterion Lasso (HSIC Lasso) considering also

non-linear dependencies [158]. The global optimum of HSIC Lasso can be efficiently determined,

making it a scalable technique suitable for very high-dimensional data where the dimensionality

is magnitudes higher than the sample size.

2.2. Linear Feature Extraction

Principal Component Analysis (PCA), also called classical scaling, finds a linear low-

dimensional projection maximizing the data variance, that is finding a low number of repre-

sentative linear combinations (principal components) [39]. PCA can either be performed by

using the covariance matrix to construct the eigenvectors or through singular value decomposi-

tion (SVD) of a normalized data matrix. The computational complexity of PCA, determined

by the number of datapoints n and their dimensionality D, is O(D3), when D < n. Therefore,

there is a number of proposed optimizations. One is to use the autocorrelation and the large

scale structure of data produced by climate science or a similar domain where the values do not

vary abruptly over time and neighboring fields are not completely independent [24]. Martel et

al. show how the iterative Jacobi method can be used to speed up the eigenvalue decomposition

of PCA on HPC systems using hardware acceleration [102].

Several approaches are based on PCA and SVD, such as factor analysis [98], Partial Least

Squares (PLS) or Maximum Covariance Analysis (MCA). PLS and MCA proofed valuable for

the analysis of multi-temporal datasets [24]. The Linear Discriminant Analysis (LDA) is closely

related to PCA but focuses on the discrimination between classes in contrast to PCA that

does not consider any underlying class structure of the data for the computation of the principal

components [103]. Opposed to LDA, the Generalized discriminant analysis (GDA) is a nonlinear

technique using kernel function operators [22]. Random Projection (RP) is based on the Johnson-

Lindenstrauss lemma stating it is possible to map vectors of high-dimensional space onto an

O(n log n) dimensional space while the pairwise distances are approximately preserved [157].

While RP can be computed efficiently, high distortions are possible. An interesting proposal to

counter this is to first increase the dimensionality to have a better feature representation and

then to reduce it with RP [96]. Non-negative Matrix Factorization (NMF) is an approach, often

used in domains as astronomy, that has good interpretability due to the non-negative entries in

the factorized matrices [31].

2.3. Non-Linear Convex Feature Extraction

Kernel PCA operates in a high-dimensional space constructed through a kernel function [98].

Therefore, the eigenvectors are based on the kernel matrix, not the covariance matrix. Isomap

improves classical scaling by using the geodesic distance instead of the Euclidean distance,

thereby considering the distribution of neighboring data points on a manifold [146]. When data

points lie on or near a curved manifold (Swiss roll dataset), the Euclidean distance may differ

considerably from their distance over the manifold. However, Isomap is topologically instable,

possibly constructing incorrect connections in the neighborhood graph [98]. Also, non-convex

manifolds can pose problems. Maximum Variance Unfolding (MVU) expands on Kernel PCA

by aiming at learning the kernel matrix through defining a neighborhood graph. MVU differs

from Isomap because it preserves the local geometry, ultimately trying to unfold the manifold.

Diffusion Maps (DM) use Markov random walks on the data graph to determine the diffusion
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distances in that it is more likely to walk to a point nearby [98]. As it integrates over all paths,

the diffusion distance is more robust to noise or short-circuiting than the geodesic distance.

The computational complexity is O(n3) for Kernel PCA, Isomap and DM, and O((nk)3) for

MVU with k nearest neighbors. Local Linear Embedding (LLE) and Laplacian Eigenmaps (LE)

are closely related to Kernel PCA and Isomap as they all solve an eigenproblem. Their crucial

difference lies in the type and scope of local property preservation. LE differs from Hessian

LLE only in the way the differential operator on the manifold is defined. These sparse spectral

methods can be computed in O(pn2), where p is the ratio of nonzero elements to the total

number of elements.

2.4. Non-Linear Non-Convex Feature Extraction

Sammon Mapping (SM) improves classical scaling by weighting each pair’s input to the

cost function so that the local structure is retained better. It has been successfully applied to

geospatial data [98]. Locally Linear Coordination (LLC) and Manifold Charting (MC) globally

align local linear models. T-distributed Stochastic Neighbor Embedding (t-SNE) is optimized

for the visualization of large high-dimensional datasets outperforming SM, LLC and MC [97].

This is accomplished by projecting each data point to a two- or three-dimensional map, such

that a high similarity leads to short distances. Uniform Manifold Approximation and Projec-

tion (UMAP) improves t-SNE by better preserving the global structure by using local Riemann

manifold approximations and representing it with a fuzzy topological structure [106]. Multilayer

Autoencoders (AE) are feed-forward neural networks that force the model to compress the data

due to their architecture. AEs consist of two networks, one encoder and one decoder reconstruct-

ing the data. Their number of hidden layers is odd and they share weights between the input

and output layer [98]. By pretraining, the network with Restricted Boltzmann Machines (RBM),

the existence of local optima in the objective function can be dealt with. AEs on their own do

not cope well with very high-dimensional data as the number of weights is too large. However,

by using PCA beforehand, this limitation can be overcome. A comparison of the respective ad-

vantages of AEs in contrast to PCA is given in [47]. The computational complexity depends on

the target dimensionality d, the number of iterations i and the number of weights in a neural

network w. It is O(in2) for SM, O(inw) for AE, O(imd3) for LLC and MC.

In conclusion, an extensive study by Maaten et al. shows that linear and non-linear tech-

niques need to be evaluated on both artificial and real-world datasets as non-linear FE ap-

proaches outperform linear ones for complex non-linear data while they perform poorly on nat-

ural datasets [98]. They outline future goals to include the development of objective functions

that are not impaired by trivial optimal solutions. Also, they suggest that prospective techniques

do not base their data representation on neighborhood graphs to model local properties, thereby

mitigating the curse of dimensionality. Chao et al. remark that further research has to be done

in terms of scalability as well as the ability to cope with missing input values [31]. Furthermore,

integrating heterogeneous data will continue to pose a considerable challenge.

3. Adaptive Approaches

Adaptive approaches have the ability to change behavior depending on a specific problem

to achieve the best possible results. They may act fully automatic or require some degree of

manual intervention. In this section, we consider deep learning-based data reduction techniques
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and meta-compressors, whose behavior depend on data. The former learn from data on how

to achieve optimal data reduction strategy. The latter decide which is the best compression

algorithm for a particular data type.

3.1. Compression Based on Machine Learning

Machine learning based compression involves two key steps: modeling and coding. While

coding can be regarded as a solved problem, there is still no optimal solution for modeling.

The difficulty in modeling is building the most compact representation of data. A group of

compression algorithms applies various machine learning techniques to get closer to the optimum.

3.1.1. Media compression

In the last years, researchers did considerable progress in media compression with machine

learning. Some solutions have already impressive characteristics and may be used as alternatives

to traditional approaches. They cover lossy, lossless image and video compression.

Full resolution lossy image compression with recurrent neural networks (RNN) by

G. Toderici et al. supports variable compression rates [147]. In the experiments, compression

with RNNs (LSTM, associative LSTM) outperforms JPEG for most bit rates. End-to-end opti-

mized image compression in [18] is optimized for a better rate-distortion performance than the

standard JPEG and JPEG2000 compression. The evaluation shows a better visual image quality

at all bit rates. Real-time adaptive lossy image compression outperforms JPEG, JPEG2000 and

WebP [121]. CocoNet is a deep learning approach that learns and maps pixel coordinates to

colors [27]. A trained CocoNet-network is able to memorize one single picture and can be used

for advanced image processing. Altough, CocoNet is used for image representation, it has also

a high potential for image compression. A Learned Lossless Image Compression (L3C) outper-

forms PNG up to 1.4, WebP and JPEG2000 up to 1.08 in compression ratio [110]. The encoder

represents a compressed images as as a set of extracted features, which can be assembled again

to an image by a trained predictor. The parallel nature of the approach allows a performant

implementation on parallel computer architecture. Deep Learning Video Coding (DLVC) is a

deep learning approach, that achieves a CR of more than 2.5 compared to H.265/HEVC, at

the same quality level [85, 88]. Internally, DVLC uses a set of different deep learning-based, in

particular two CNN-based filters, and different non-learning-based coding techniques.

3.1.2. Data compression

There is also a number of data compressors that can be used as general purpose compres-

sors or are already adapted to HPC community needs. DeepZip uses the capability of neu-

ral networks to create arbitrary complex mappings [55]. Together with arithmetic encoders, it

works as a powerful lossless compression algorithm for sequential data, like text and genomic

datasets. In experiments, it outperforms GZip on real data and achieves near-optimal perfor-

mance on synthetic data. NUMARCK (Northwestern University Machine learning Algorithm for

Resiliency and ChecKpointing) exploits the fact that in many scientific applications, subsequent

checkpoints contain insignificant changes [35]. K-Means algorithms optimize forward predictive

coding, which codes a checkpoint with reference to a past checkpoint, resulting in lossy com-

pression. DeepSZ is a lossy neural network compressor [67]. It involved key steps, like network

pruning, error bound assessment, optimization for error bound configuration, and compressed
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model generation, featuring a high compression ratio and low encoding time. Compared with

other state-of-the-art methods, DeepSZ can improve the compression ratio by up to 1.43, the

DNN encoding performance by up to 4.0 (with four Nvidia Tesla V100 GPUs), and the decod-

ing performance by up to 6.2. Neural networks have also been used in [115] to compress data

gathered by Internet of Things devices in a lossy fashion.

Machine learning can also be used in ways that are not traditionally called compression.

For instance, in [70], machine learning was used to replace traditional data structures for B-

trees, hash maps and bloom filters by other types of models, including deep neural networks.

Benchmarks on real-world data show, that neural networks can be up to 70% faster and consume

order-of-magnitude less memory than B-trees.

3.2. Meta-Compressors

Meta-compressors are high-level data compressors with support of two or more compression

algorithms. Algorithm selection can be user-defined, selected according to user requirements

(semi-automatic), or can be fully transparent to users (automatic). In automatic and semi-

automatic meta-compressors, a decision unit performs usually two tasks. First, it executes a

compressibility check on digital data to decide, if compression will be beneficial. Secondly, it

selects the most suitable compression algorithm for this particular data set. The most frequently

used compressibility checkers are sample-based, but there is also a trend for more advanced deep-

learning-based solutions. Sample-based compressibility checkers perform compression tests on

sample data and choose an algorithm with the highest compression ratio. Deep-learning-based

solutions are more advanced and usually outperform sample-based compressibility checkers [42,

119]. To predict the compressibility, a supervised model is trained with example data of a

compression algorithm. A trained model is able to do a pre-analysis of data and check if it will

benefit from compression or not, without costly compression. Deep-learning-based decision units

can potentially be integrated into file systems with multi-algorithms support. Currently, there

is no support in major HPC file systems.

C-Blosc2 is a high-performance lossless meta-compressor optimized for binary data [11].

It supports BloscLz, LZ4, LZ4HC, Zstd, Lizard, and zlib compression algorithms. Aside from

achieving the best compression ratios, it is designed for fast data transmission to processor

cache and speed-up memory-bound computations. The support of a 64-bit address space allows

C-Blosc2 to access large sparse and sequential data, either in-memory or on-disk. Scientific

Compression Library (SCIL) supports lossy and lossless compression [74]. Users set high-level

instructions on how to handle data, e.g., they can define accuracy, absolute/relative tolerance,

significant digits/bits, or relative error for lossy compression. Adaptive Compression Scheme

(ACOMPS) is a relatively young research project [138]. It selects the best lossless (LZO, ZLIB,

BZIP2, FPC, ISOBAR) or lossy (ZFP, SZ, ISABELA) compression method independently for

each variable in a dataset. Another promising research on online selection of two popular lossy

compression algorithms, ZFP and SZ, was done in [145].

4. Deduplication

Strategies to reduce data can also extend to a higher-level perspective than byte streams, files

or objects. Especially, for large scale data management systems and data centers, opportunities

to discover large chunks of identical data exist [108, 156]. A common strategy often referred to

K. Duwe, J. Lüttgau, G. Mania, J. Squar, A. Fuchs, M. Kuhn, E. Betke, T. Ludwig

2020, Vol. 7, No. 1 17



as deduplication is therefore to hash and index data, and then only reference already existing

fragments instead of keeping duplicate copies.

In scientific computing and HPC, redundant or duplicate data can occur in a variety of

contexts [108]. Many scientific workflows utilize similar data. Input data is often downloaded by

individual users and kept in their project or user directories. Across a large user base, this can

amount to significant data volumes. Similar strategies are already employed by large email sys-

tems, where emails going to multiple inboxes are not stored multiple times on the server. Kaiser

et al. note potential savings across scientific domains ranging from 37% to 99%, with a partic-

ularly dominant factor being null regions [68]. Not limited to HPC are backups and database

snapshots, which effectively implement deduplication for incremental backups, although they

can also be coupled with lower-level strategies. Similarly, images of software environments, as

used with virtual machines (VMs) and containerization, typically can share identical system files

and directory structures [75]. When base system images are provided, it is possible to only store

one copy of the base image instead of keeping copies for each user. A related application comes

with software stacks outside of containerization. Here, tooling support for building software like

Spack provides the opportunity to offer flexibility to customize software environments, while

relying on a selection of maintained site-wide packages as much as possible [50].

Finally, deduplication is commonly used to speed up or avoid unnecessary data transmission.

As such wide area network (WAN) optimizations often include deduplication support [112]. In a

scientific context, this, for example, becomes relevant as data is replicated between sites through

national and international scientific networks.

Taking a closer look at how deduplication is typically implemented, Xia et al. identify five

key stages common across many approaches that still apply today [156]. Data is typically first

split up into smaller chunks to improve the chance of finding matches. The most important

factor here is the granularity of chunks, as such it is common to find both block-level as well

as file/object-level deduplication. In the next phase, actual data gets typically hashed to obtain

a fingerprint, which allows efficient comparison even across a network. A hash is defined as a

function that maps an arbitrary sequence of data to a fixed-size value. To minimize collisions,

and thus risking to loose data, cryptographic hash functions are typically being employed. The

fingerprints are then stored into index structures to allow efficient lookup. Finally, it is common

to store compressed variants of the chunks to leave no opportunity to save space unused. To

store and receive the (compressed) chunks, some data management on top of actual storage

media is required. There can also be operational benefits to deduplication, which can help with

the endurance of SSDs as unnecessary write cycles that damage the cells can be avoided.

Applying deduplication does introduce overheads for keeping index structures and to per-

form matching. ZFS deduplication, for example, requires additional memory to hold lookup

tables [154]. Different storage solutions employ both software-, hardware-based or hybrid ap-

proaches, in addition to inline and out-of-band deduplication. Software-based approaches used

to offer more flexibility at the cost of performance. Research into approaches using FPGAs such

as CIDR might allow hardware-accelerated deduplication without sacrificing flexibility [6].

There is a number of security and privacy considerations to be aware of when employing

deduplication. Deduplication can reduce data safety as the impact of data corruption increases.

Some cloud providers used deduplication, which allowed to feign ownership of a file by transmit-

ting a wrong hash, and this way extract sensible data. Research into proof of ownership methods

offers strategies to mitigate this [59]. Similarly, when dealing with encrypted data, deduplication
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cannot be applied across users as logically identical data would have different signatures. This

notion of local and global deduplication applies also to scientific data, as reductions can be

performed at the application, the node or the system level with different trade-offs [68].

5. In Situ Processing

Idle cycles are usually available on computing nodes due to the discrepancy between the

computing capabilities and the I/O transfer rates. A solution to address this inefficiency is to

use the available idle nodes for performing different computations on the data, which is already

in memory. This process is called in situ processing.

5.1. Algorithms and Techniques

In situ algorithms usually focus on data analysis and data reduction for different purposes

including logging, filtering, compression and visualization. Despite the fact that some of the

generic algorithms could potentially be applied in situ, the majority of them do not satisfy the

main restriction imposed by this context: use the available CPU(s) and available memory while

keeping the impact on the application’s performance at a negligible level. Therefore, specific

techniques were developed or adapted for this environment. This section will look into some of

them together with their applicabilities.

5.1.1. Data analysis

Efficient in situ data analysis techniques include feature extraction, feature tracking and

region growing techniques. These are particular to each application because they depend on the

data structure and data flow. Machine learning solutions for dimensionality reduction, clustering

or classification are gaining much traction in recent years. Using deep convolutional autoencoders

for in situ data reduction proves good results for feature extraction from large carbon particle

simulation datasets [89].

5.1.2. Data compression

Data is usually compressed for visualization and storage reduction. Due to a high level of

entropy, the simulated data is a difficult candidate for the majority of the general compression

algorithms presented in the previous sections. A study of state-of-the-art compression algo-

rithms and their efficiencies for in situ environments recommends lossy methods like FPZIP,

scalar quantization, Discrete Fourier and Wavelet Transforms and tailored in situ methods like

ISOBAR [129] and ISABELA [38, 78]. The last two approaches are briefly explained next.

In Situ Orthogonal Byte Aggregate Reduction (ISOBAR) uses a preconditioner to enhance

the performance of a general lossless compressor. The main components of the ISOBAR pre-

conditioner are the analyzer, which evaluates the data compressibility at the byte level and

the partitioner, which splits the data into compressible bytes, incompressible bytes, and meta-

data. The compressible chunks are then compressed using a lossless compressor chosen by the

EUPA-selector based on an efficient linearization strategy and user’s preference for either a

high compression ratio or high compression throughput. In the end, the merger reassembles the

compressed bytes, the incompressible bytes and the metadata into the final output.
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In situ Sort-And-B-spline Error-bounded Lossy Abatement (ISABELA) obtains a higher

degree of data reduction than the lossless ISOBAR but at the price of accuracy. The method

splits the data into fixed-sized windows and applies a preconditioner to sort the data from each

window into a monotonically increasing curve. These curves are later approximated using cubic

B-splines, which can be easily modeled with a low number of coefficients.

Wavelet compression paired with state-of-the-art floating-point compressors, MPI and

OpenMP, provides a performant parallel and distributed solution for in situ compression [58].

Reallocating the I/O resources dynamically based on the coefficient magnitudes of the wavelet

method and Shannon entropy leads to a new method that displays good results for simulations

with imbalanced data complexity [101].

A more novel method employs Generative Adversarial Network to compress data from com-

putational fluid dynamics simulations [91]. The authors use the discriminative neural network to

compress the data on the compute nodes while the generative network handles the reconstruction

on the visualization nodes.

5.1.3. Data visualization

In situ data visualization is extremely important in large, complex applications because it

allows not only following the real-time simulation but also steering it if required. Kress describes

the in situ visualization technologies and surveys the most popular libraries and frameworks

with their advantages and disadvantages in [71]. The main technologies are briefly compared

next.

Table 1. The briefly comparison of the main technologies

Technology / Characteristic Tightly Coupled Loosely Coupled

Visualization and simulation share the CPU(s) yes no

Visualization and simulation share the memory yes no

Data duplication (double RAM usage) no yes

Visualization needs network access to retrieve the data no yes

Coordination between visualization and simulation minimal intensive

Computational steering capabilities yes limited

Visualization added costs RAM and CPU nodes and network

Scalable no yes

Fault tolerance no yes

There is a hybrid approach combining flexibility and computational steering support. The

choice which of the three technologies is more appropriate for a given use case is based on the

hardware architecture, the available resources and the particularities of the simulation data.

A comprehensive comparison between the two main visualization tools which set the ground

for the majority of the in situ frameworks – ParaView [2] and VisIt [36] is described in [122].

5.2. Frameworks and Infrastructure

While in situ processing is best performed at the application level of the software stack, mid-

dleware and toolkits can increase their performance by facilitating the data extraction. Examples

of such frameworks include EPIC [44] and Freeprocessing [46]. A solution based on I/O layer

components was proposed in [26]. Remote direct memory access (RDMA) can also contribute

by enabling zero-copy, high-throughput and low-latency networking for HPC clusters [38].
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Well-known frameworks focused on visualization include ParaView Catalyst [14], Straw-

man [79], VisIt LibSim [153] and Damaris/Viz [43]. Besides visualization capabilities, some

frameworks offer computational steering too. CUMULVS [52] and ISAAC [105] are just two of

them. Other in situ scenarios like clustering, covered by KeyBin2 [34] and compression, covered

by CubismZ [58] complete the list of functionalities offered by this environment.

6. Recomputation and Reproducibility

A rather unconventional approach for reducing the amount of data that has to be stored

is recomputation, that is, instead of storing experiment or simulation results within a storage

system, they are recomputed on demand. This technique can be combined with in situ methods.

To be able to recompute results, a hard prerequisite is reproducibility. Reproducing exper-

iments requires all necessary input data, software, scripts etc. to be archived and documented.

Popper is a convention for creating reproducible scientific publications and makes use of best

practices established open-source software development [66]. While Popper is tuned towards

scientific publications, this also includes all experiments that have been performed for such a

publication and can, therefore, be easily adapted for general experiments. Experiments may

either be deployed locally with Docker [61] or in the cloud with Ansible [104].

The ReScience initiative has launched a new peer-reviewed journal that tries to tackle repli-

cation problems by using a new publication approach [124]. The whole review and publication

process is hosted on GitHub and anyone with a GitHub account is able to comment on a sub-

mitted publication. Reviewers then try to replicate the submitted results. The authors define

reproducibility as the ability to arrive at the same results as a publication when using the same

code and data as used for the publication itself. Replication, however, means that new code can

be written for a computational model or method to obtain the same results.

The DataONE Data Package standard provides a specification for packaging together data,

software and visualizations as well as accompanying metadata [107]. In combination with the

WholeTale project, arbitrary computational results can be reproduced [28]. For instance, the

computing environment can be described with a Dockerfile that can be used by interested re-

searchers to rebuild the exact environment.

There are also domain-specific frameworks and toolkits. For instance, [65] introduces an

R-based framework called climate4R that aims to standardize the tools used for accessing, har-

monizing and post-processing climate data. It provides access to both local and remote data and

features built-in support for a wide range of remote data sources. SwarmRob is a toolkit for mak-

ing robotics research reproducible [117]. In addition to providing a toolkit, the authors propose

a new workflow that is separated into research and review phases. In the research phase, authors

specify needed services in a Container Definition File as well as the services’ configurations and

interactions in an Experiment Definition File. The experiment can then be performed by the

SwarmRob toolkit using these two files. In the review phase, reviewers are able use the same

infrastructure to reproduce the authors’ results. DUGONG is a preconfigured Docker container

for bioinformatics and computational biology research [109]. It packages over 3,000 dependen-

cies and applications, including Jupyter Notebook. By providing a common software base for

research, results can be reproduced more easily.

Scientific applications often have a multitude of dependencies that have to be provided in

specific configurations and versions that are not provided by operating system distributions.

Therefore, scientists often have to resort to installing dependencies from source manually. Their
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manual processes are problematic with regard to reproducibility. A convenient way to manage all

dependencies required by the actual application is package managers. EasyBuild helps manage

complex scientific software stacks by providing recipes for popular packages and additional fea-

tures [12]. Spack works in a similar way but specializes in supporting combinatorial builds such

that software can be used easily with a wide range of different configurations and versions [50].

Moreover, Spack computes hashes for each of its packages, further helping reproducibility.

Singularity is a container platform that allows running unprivileged users to run contain-

ers on typical HPC systems due to its integration with common batch schedulers such as

SLURM [54]. It has built-in support for signing and verification of containers as well as porta-

bility and reproducibility. Even though applications running within the containers are isolated

from the host environment, Singularity still allows access to host hardware such as GPUs and

InfiniBand for improved performance. The authors of [135] make use of Singularity and Spack

to provide an in situ software stack that can be moved between HPC machines easily. These

containers can then be run on systems that support executing containers. Such an approach may

also be used for reproducibility by providing the full container image to interested third parties.

In addition to containerizing application code, input and output data also needs to be

handled since it is typically read from or written to a traditional shared storage system. Data

Pallets are an approach for encapsulating output data within containers [92]. These Data Pallets

can be then be passed from one step of a workflow to the next. Unique container and dependency

IDs are used for provenance. Moreover, no application changes are necessary since the workflow

system can take care of managing Data Pallets.

To summarize, there are several approaches to improve the reproducibility of experiments.

However, to be able to recompute data, it is necessary to be able to regenerate bit-identical

results. This introduces additional requirements since even changes to the underlying hardware

architecture might cause minuscule changes in the output data. If bit-identical results are not

necessary, available reproducibility approaches can already be used to recompute data even

over longer periods of time. Care must be taken to ensure that applications stay executable by

updating the infrastructure and archived artifacts to the current state of the art. Therefore,

recomputation introduces additional overhead regarding software and data management.

Conclusion

As data volumes continue to grow, but the gap between computational throughput and I/O

bandwidth widens, data reduction techniques are becoming more important. Many established

technologies continue to remain highly relevant such as lossless/lossy compression or deduplica-

tion, which are routinely applied across different layers. In some areas, general-purpose solutions

seem unlikely to meet future requirements, which is why research increasingly explores special-

ized and adaptive approaches that find the most appropriate representation depending on the

data. As new systems and applications are designed with asynchronous processing pipelines

mind, in situ approaches are gaining momentum. Often, they allow reducing data volumes by

several orders of magnitude by filtering, aggregation or transformation at the edge or in transit.

This paradigm shift in programming and the promotion of reproducible research also allows

considering recomputation as a viable alternative for data that is accessed infrequently.

Many of the covered technologies do not exist in isolation but are combined. Compression

remains one of the most popular and obvious methods that can be employed throughout the

entire HPC stack in software and hardware. As a result, hardware acceleration is expected
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to considerably improve performance and help reduce overheads. The overall performance of

lossless compression algorithms often depends on the input, requiring research into adaptive

approaches. When applying lossy compression, scientists are often hesitating which information

can be safely discarded without interfering with the intentions of their workflow and without

hurting unanticipated use too much. Here, keeping provenance information is important, but

adoption is primarily hindered by a lack of guidance on the disadvantages and advantages of lossy

compression for users. To spare users from needing to evaluate which specialized approaches are

most suitable, frameworks to automate this decision are gaining popularity, but research into

adaptive data-aware solutions is needed.

Currently, adaptive approaches can be categorized into methods using heuristics to predict

and pick the best performing methods on the one hand and methods to transform data using

machine learning or dimensionality reduction on the other. Predictors achieve good performance

on specific data sets but are typically trained on a selection of training datasets, which intro-

duces a bias and thus limits generalization. This also extends to methods for adaptive data

transformation and dimensionality reduction, where most methods exploit specific structural

properties but overlook others. A promising exception are approaches based on autoencoders

which learn a compact representation without supervision. Specialized methods are useful, but

a dialog in the community to curate representative datasets for data reduction is needed too.

Even though great progress has been achieved in the last 10 years with respect to in situ

techniques, the disparity between computational throughput and I/O bandwidth has not been

solved yet. Firstly, efforts are still being done in increasing the compression rates for the lossless

algorithms and to bound the precision loss in lossy algorithms. Secondly, the HPC clusters

become more heterogeneous with the addition of GPUs. This forces the in situ algorithms to be

redesigned in order to efficiently use the new hardware which otherwise would not meet the low

CPU usage requirements. Last but not least, deep learning gets increasingly more attention due

to the very promising results obtained by the usage of the generative models. While continuing

the efforts to improve well-known data analysis and visualization mechanisms, new ideas like in

situ virtual reality are starting to emerge [56]. To enable further improvement, the development

of additional scientific benchmarks to evaluate data reduction techniques are necessary.
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12. Alvarez, D., Cais, A.Ó., Geimer, M., et al.: Scientific Software Management in Real Life:

Deployment of EasyBuild on a Large Scale System. In: 2016 Third International Workshop

on HPC User Support Tools, HUST@SC 2016, 13 Nov. 2016, Salt Lake City, UT, USA.

pp. 31–40. IEEE Computer Society (2016), DOI: 10.1109/HUST.2016.009

State of the Art and Future Trends in Data Reduction for High-Performance Computing

24 Supercomputing Frontiers and Innovations

http://dx.doi.org/10.1145/2664666.2664670
http://dx.doi.org/10.1016/b978-012387582-2/50038-1
http://dx.doi.org/10.1007/s00791-018-00303-9
http://dx.doi.org/10.1137/18M1166651
http://dx.doi.org/10.1137/18M1208885
http://dx.doi.org/10.1109/HPCA.2019.00025
http://dx.doi.org/10.1109/JPROC.2008.917719
http://dx.doi.org/10.1145/3231935
http://dx.doi.org/10.1109/ISCA.2004.1310776
http://dx.doi.org/10.1109/CAHPC.2018.8645921
https://blosc.org
http://dx.doi.org/10.1109/HUST.2016.009


13. Amlekar, S.: Compression support in Spectrum Scale 5.0.0. https://developer.ibm.com/

storage/2018/01/11/compression-support-spectrum-scale-5-0-0/ (2018), accessed:

2020-02-20

14. Ayachit, U., Bauer, A.C., Geveci, B., et al.: ParaView Catalyst: Enabling In Situ Data

Analysis and Visualization. In: Weber, G.H. (ed.) Proceedings of the First Workshop on

In Situ Infrastructures for Enabling Extreme-Scale Analysis and Visualization, ISAV 2015,

15-20 Nov. 2015, Austin, TX, USA. pp. 25–29. ACM (2015), DOI: 10.1145/2828612.2828624

15. Azzurri, P.: Track Reconstruction Performance in CMS. Nuclear Physics B - Proceedings

Supplements 197(1), 275–278 (2009), DOI: 10.1016/j.nuclphysbps.2009.10.084

16. Baker, A.H., Hammerling, D., Turton, T.L.: Evaluating image quality measures to assess

the impact of lossy data compression applied to climate simulation data. Comput. Graph.

Forum 38(3), 517–528 (2019), DOI: 10.1111/cgf.13707

17. Balkenhol, B., Kurtz, S.: Universal Data Compression Based on the Burrows-Wheeler

Transformation: Theory and Practice. IEEE Trans. Computers 49(10), 1043–1053 (2000),

DOI: 10.1109/12.888040
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Pipeline software that comprise tool and application chains for specific data processing have

found extensive utilization in the analysis of several data types, such as genome, in bioinformatics

research. Recent trends in genome analysis require use of pipeline software for optimum utiliza-

tion of computational resources, thereby facilitating efficient handling of large-scale biological data

accumulated on a daily basis. However, use of pipeline software in bioinformatics tends to be prob-

lematic owing to their large memory and storage capacity requirements, increasing number of job

submissions, and a wide range of software dependencies. This paper presents a massive parallel

genome/exome analysis pipeline software that addresses these difficulties. Additionally, it can be

executed on a large number of K computer nodes. The proposed pipeline incorporates workflow

management functionality that performs effectively when considering the task-dependency graph

of internal executions via extension of the dynamic task distribution framework. Performance

results pertaining to the core pipeline functionality, obtained via evaluation experiments per-

formed using an actual exome dataset, demonstrate good scalability when using over a thousand

nodes. Additionally, this study proposes several approaches to resolve performance bottlenecks of

a pipeline by considering the domain knowledge pertaining to internal pipeline executions as a

major challenge facing pipeline parallelization.

Keywords: pipeline software, software development, K computer, message passing interface,

genome analysis, exome analysis.

Introduction

The cost of analyzing the enormous amounts of life science data that accumulate on a daily

basis has become a major research bottleneck because the appearance of next-generation DNA

sequencers (NGS) has drastically improved the efficiency of sequencing. Today, pipeline software

that automates a series of analytic tasks on a computer and provides functions that utilize

computational resources effectively is indispensable for research work. In fact, data analysis using

pipeline software on parallel computers is being performed daily at various research sites [1–3].

The “K computer” [4], located at RIKEN Advanced Institute for Computational Science, is

representative of large-scale parallel computers in Japan and has a track record of winning the

9-th consecutive first place in the Graph500.org contest. Likewise, the K computer is expected

to achieve exceptional results when performing bioinformatics analysis. However, to date, results

obtained in this regard using the K computer are limited by several challenges that must be

overcome.

First, several large-scale genome analysis requires large memory and storage capacity; how-

ever, the specification of the K computer is that each computing node has a small memory

capacity. In addition, pipeline software tend to assume that a large number of jobs can be run

during internal execution. However, such an operation is not conducive for efficient functioning

of the K computer. The above-mentioned problems can be attributed to the architectural con-
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cept of the K computer aimed at realization of massive parallel processing through use of a large

number of lightweight nodes connected by a high-speed network.

Secondly, implementation of a general bioinformatics pipeline software on the K computer

requires different software that are coded in different programming languages and different li-

braries to be modified to suit the SPARC architecture of the K computer. For instance, pro-

gramming language environments, such as Java, are necessary to execute the software required

in certain pipelines, but the same may not be officially provided within the K computer system.

Therefore, the cost of developing an environment for bioinformatics analysis on the K computer

can be considered a major challenge.

Exome analysis, the focus of this study, is one of the bioinformatics analysis methods that

require a large-scale computing environment. In particular, exome analysis is a technique based

on genome sequence analysis and is designed to efficiently detect functionally important muta-

tions by analyzing only the “exon regions” in the whole human genome [5]. In exome sequencing,

because the exon sequencing cost per sample is lower than general whole genome sequencing, a

large number of samples is expected to be processed; thus, the computational resources are re-

quired to be more powerful. The acceleration of exome analysis to enable us to process hundreds

of samples urgently requires the development of an efficient analysis pipeline on a large-scale

computer system.

This motivated us to develop pipeline software that performs exome analysis on the K com-

puter and an extension of the task management framework for this research. We consider the

affinity of our task management system and job management system of the K computer to

enhance the pipeline performance.

To summarize, this study makes the following key contributions:

• We developed pipeline software that performs exome analysis on the K computer to satisfy

the demands of the vast amount of exome sequencing data.

• We developed an extension of the task management framework to enable effective execution

by considering the task dependencies, and to run on the K computer.

• We propose approaches to resolve the bottleneck of parallel performance of the pipeline

by re-arranging the internal process.

The remainder of this manuscript has been compiled as follows.

Section 1 discusses core implementations of the proposed pipeline software to be used on the

K computer. The section provides an overview of the K computer, design and implementation of

the proposed pipeline software. Additionally, performance results obtained for a core function –

i.e., mapping for reference genome – of the said software have been discussed.

Section 2 describes pipeline parallelization based on an execution profile, thereby demon-

strating means to improve pipelining performance. In this section, the authors propose several

approaches to resolve performance bottlenecks and discuss the effects of proposed approaches

through evaluation experiments.

Limitations of the pipeline and proposed approaches are presented in the Discussion section.

Lastly, the Conclusions section summarizes major learnings from this study as well as discusses

the scope for further research endeavors in this regard.
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1. Development of a Genome/Exome Pipeline by Extending

a Task Management Framework on the K computer

1.1. Overview of the K Computer

The K computer [4] is a large-scale parallel computer consisting of 88,128 nodes and 864 racks

in total. Each node is equipped with a Fujitsu general-purpose scalar processor SPARC64 VIIIfx,

in which eight processor cores, cache memory, and a memory controller are integrated into one

chip. These nodes constitute the six-dimensional mesh/torus network connected by the “Tofu”

interconnect [6] to ensure that the network achieves high throughput and high availability.

Table 1 shows the system specification of the K computer3, 4.

Table 1. System specification of K computer

# compute nodes 82,944

CPU SPARC64 VIIIfx [2.0 GHz] (8 cores)

Memory DDR3 SDRAM 16 [GB]

Interconnect Tofu interconnect [6]

Topology 6D mesh/torus

Operating System Linux (customized)

File system Lustre (Fujitsu Exabyte File System) [8, 9]

1.1.1. Two-layer file system model and staging process

Compute nodeLogin node

Global-FS Local-FS

User data

Application

User data

Application

Stage-out

Stage-in

Figure 1. Two-layer file system model on K computer

The K computer supports large-scale file access from tens of thousands of nodes by adopting

a two-layer file system model (Fig. 1). The first is a Local File System (Local-FS) that is used

as a high-speed temporary storage area dedicated to the jobs running on the compute nodes.

The second is a Global File System (Global-FS) that is used as a large-capacity shared storage

area widely accessed from login node and other related systems. Both of them use the Fujitsu

Exabyte File System [9] based on Lustre [8].

Users can access data stored in the large-capacity Global-FS from the login node, whereas

when executing a job, the files necessary for running jobs must be transferred to the Local-

FS. Specifically, by describing options such as the files path to the script at job submission,

the following “staging” process will be started: input target files are copied from Global-FS to

3The K computer was operated by RIKEN in Japan between June 2012 and September 2019.
4“Fugaku” – a successor system of the K computer equipped with ARM-based CPU (A64FX) – is currently under

development, and its operation is scheduled to begin in 2021 [7].
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Local-FS before the job execution (stage-in), and after the job completion, the output target

files are copied from Local-FS to Global-FS (stage-out).

All users must keep the staging process in mind when submitting a job to the K computer;

consequently, the pipeline we developed on this research is also designed to be compatible with

the two-layer file system model and to minimize data transfers in the staging process.

1.2. Genomon-exome: an Exome Analysis Pipeline Software

We selected “Genomon-exome” as a target for the proposed pipeline software developed

for the K computer. Genomon-exome is exome analysis pipeline software designed to run in a

general PC cluster environment. It provides various functions composed by using well-known

open source software (OSS) in the bioinformatics field, and its entire source code is available on

the web [3]. It also supports parallel execution of its pipeline internal processes by submitting

jobs into the PC cluster to utilize the computational resources comprehensively. Genomon-exome

has contributed to the exome sequencing data analysis in the biological field, and was extensively

used to process and analyze data in various studies [1, 2].

1.2.1. General genome/exome analysis pipeline software

SupercomputerDNA sequencer DNA sequence

Application A

Application B

Application C

Pipeline software

AGGTCGTTACGTACGCTAC

GACCTACATCAGTACATAG

GCATGACAAAGCTAGGTGT

Figure 2. Computational experiments in general genome analysis workflow

The computational processes of exome analysis and general genome analysis are almost the

same. Pipeline software is used to analyze the DNA sequencing data generated by the DNA

sequencers or obtained from public databases to achieve its various purposes. The software is

designed to perform in computing environments of various scales ranging from a small-scale PC

cluster to a large-scale supercomputer (Fig. 2).

In the case of exome analysis, DNA fragments in a sample corresponding to “exonic regions”

are specially hybridized and selected at the previous biological experiments, such that exome

data performs effectively in specific analysis processes with metadata of exonic regions and can

help to reduce the computational cost.

The following are general functions of a genome/exome analysis pipeline software.

Mapping (Alignment) Align the base sequences of several short DNA fragments (so-called

“reads”) with the positions of a similar sequence in a reference genome.

Mutation call Detect mutations by comparing the differences among the aligned sequences

from several types of samples.

Annotation Annotate each of the mutations to each of the known gene databases to examine

the relationship between mutations and genes in samples.
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1.2.2. Overview of mapping in Genomon-exome

・・・

・・・

・・・

・・・

・・・

・・・

i. split input

ii. alignment

iii. post-processing

iv. output

type1_R1_aaa type1_R2_aaa typeX_R1_xxx typeX_R2_xxx

type1/ga.sam typeX/ga.sam

type1/ga.bam typeX/ga.bam

FASTQ (type1, type2, … type𝑇)

type1_R1 type1_R2 typeX_R1 typeX_R2

type1_R1_aaa type1_R1_aab typeX_R2_xxxtypeX_R2_xxx

bwa_aln.sh

map_bwa.sh

split.sh split.sh

bwa_aln.sh bwa_aln.sh

bwa_sampe.sh

sam_join.sh

sam2orgbam.sh

checkLineSizeAlignmentBam.sh

my_mergeAlignmentBam.sh

bam2summary.sh

bwa_aln.sh

bwa_sampe.sh

sam_join.sh

sam2orgbam.sh

checkLineSizeAlignmentBam.sh

my_mergeAlignmentBam.sh

bam2summary.sh

split.sh split.sh

checkLineSizeAlignmentBam.sh

my_mergeAlignmentBam.sh

bam2summary.sh

Figure 3. Task-dependency graph in mapping

Here, we present an overview of the mapping function of the pipeline in Genomon-exome

(Fig. 3). Each task is defined as a shell-script that executes necessary binaries (or commands) to

process input data for each purpose. All tasks in the mapping function are executed in parallel,

to the extent possible, by submitting jobs to the scheduler.

i. split input Split input FASTQ format files based on parameters (split.sh), and submit

jobs in parallel (map bwa.sh).

ii. alignment Do alignment of all reads in files to reference genome using the Burrows-Wheeler

Aligner (BWA) [10] (bwa aln.sh), output the Sequence Alignment/Map (SAM) for-

mat [11] files as mapping results using the pair-end sequence (bwa sampe.sh).

iii. post-processing Merge separated SAM files into one file by each sample (sam join.sh).

Convert into a compressed format (BAM), sort the reads based on aligned position, remove

duplicated reads, and create an index of reads (sam2orgbam.sh) using SAMtools [12].

iv. output Check the consistency of output results (checkLineSizeAlignmentBam.sh).

Merge and create index again if other BAM files from the same sample also

exist (my mergeAlignmentBam.sh). Output a statistical summary of the map-

ping (bam2summary.sh).
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1.2.3. Other functions within Genomon-exome

The original Genomon-exome includes other functions such as mutation calling and gene

annotation. However, these functions do not necessarily perform efficiently in large-scale parallel

processing because their computational cost is much smaller than that of the mapping function.

Furthermore, on the K computer, the supported programming language environments in the

computing nodes do not meet the full requirements of the pipeline (Tab. 2); thus, it was difficult

to develop full functions of the pipeline.

Therefore, we assumed that the remaining functions in the pipeline are executed on the

“pre/post-processing node” – a general-purpose computing environment accessible from the

login node with support for ’R’ and ’Java’ languages. We focus on the mapping function and

its large-scale parallel performance on the computing node of the K computer in the following

sections. Moreover, we first focus on the alignment task on the mapping function (i. split and

ii. alignment in Fig. 3), because that task tends to be a dominant part of the entire mapping

function.

Table 2. Software requirements of original Genomon-exome and language support

in K computer

Software Purpose Language The K computer

BWA [10] Alignment for reference sequence C X
GATK [13] Realignment for mapping result Java

SAMtools [12] Utilities for SAM/BAM format C X
ANNOVAR [14] Annotation of result Perl X
Picard [15] Statistical output Java

cutadapt [16] Removing adapter sequences Python X
maq [17] Conversion for Solexa/Sanger format C/C++ X
bedtools [18] Utilities for BED format C/C++ X
bioconductor [19] Copy Number Variation (CNV) analysis R

1.3. Design and Implementation of Proposed Pipeline on K Computer

System

Two major difficulties need to be solved to develop a pipeline on the K computer: those

related to the pipeline task management and those related to the job management system of the

K computer. The first problem is the increasing staging time due to an increase in the number of

input jobs. The second problem is the increasing waiting time by unnecessary synchronization.

Problem 1: Increasing the staging time in job queuing

In the original Genomon-exome, one job was responsible for managing the entire workflow

and progress of the other jobs (map bwa.sh in Fig. 3). Once submitted by a user, a “management

job” submits each pipeline task as a child job to the scheduler. It additionally waits for the

synchronization of jobs of the same task, submits the next task as a job, and repeats it until the

workflow reaches completion.
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However, every job submission on the K computer incurs file transfer (staging) cost because

of the differences of the file systems between Local-FS and Global-FS. Thus, an increase in the

staging time of each job in a pipeline was a matter of pipeline development.

Here we present an example of the number of tasks used in the original Genomon-exome

to show the maximum concurrent tasks in the mapping function (Tab. 3). In Tab. 3, T is the

number of samples, ti is the i-th sample, Sti is the number of split files of the i-th sample.

During the mapping function, the alignment task (bwa aln.sh) can be performed effectively

in parallel by increasing the number of split files (Sti) because it directly increases the number

of running tasks simultaneously. However, increasing the number of job submissions also incurs

increased waiting time for resource allocation and the staging process, thus requiring the problem

to be resolved by appropriate task management on the K computer.

Table 3. Example of number of tasks in mapping function for pair-end

sequence

Task name Description Concurrent tasks

map bwa.sh Management job 1

split.sh Split input 2T

bwa aln.sh Alignment 2
∑

T Sti

bwa sampe.sh
∑

T Sti

sam join.sh Post-processing T

sam2orgbam.sh T

checkLineSizeAlignmentBam.sh Output results T

my mergeAlignmentBam.sh and statistics T

bam2summary.sh T

Problem 2: Increasing the waiting time by unnecessary synchronization

In the original pipeline, the “management job”, which controls the workflow, always syn-

chronized all jobs within a given task before proceeding to the next task. This required all tasks

to wait for completion of the task with the longest execution time, albeit target data were in-

dependent of those involved the other tasks. This suboptimum task balance led to performance

degradation. Therefore, it is important to resolve inter-task dependencies as well as determine

the necessity for task synchronization.

1.3.1. Introducing master–worker framework for task management

We introduce the MPIDP framework [20], a dynamic task-processing framework developed

by the authors, as an alternative to the “management job” role in the original pipeline. MPIDP

is based on the master-worker model using the MPI library, which dynamically distributes the

tasks in the given list with the point-to-point MPI communications. While it is processing tasks,

the master sends a new task to an available free worker, and workers execute the assigned task

or request the next task, until all tasks have been completed. The data exchanges between

processes are performed via the file system.

Introducing MPIDP enables one job to manage the entire task workflow and reduce the

number of jobs to resolve the problem of staging time related to the increasing number of jobs.
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Since then, the MapReduce framework [21], which performs well by utilizing the affinity

of file system access on the K computer, became available. However, it was not available at

the time of the beginning of this research, and its implementation design was developed with

reference to the source code of MPIDP. Therefore, in this research, we adopted MPIDP as a

task-processing framework for the pipeline on the K computer.

1.3.2. Developing extension to resolve task dependencies

We also developed a new extension of MPIDP to solve another problem of the original

pipeline related to unnecessary synchronization. The original MPIDP does not have the function

to resolve task dependencies because it was developed for the embarrassingly parallel data-

processing model. However, because each task in the pipeline depends on each target data that

are not independent, the original MPIDP cannot be applied straightforwardly.

To resolve this issue, we developed an extension that enables tasks to be executed by con-

sidering data dependencies. The extension provides a function that allows a task to wait only for

the task it directly depends on, and awards them executable status when the dependent tasks

are completed.

The extension is implemented by the simple wait queuing program to resolve the directed

acyclic graph (DAG) of the task-dependency graph. Users can simply use the extension by adding

the id field of dependent tasks to the line in the task list; consequently, the next task is executed

after waiting for the completion of dependent tasks without unnecessary synchronization.

1.3.3. Building a pipeline with task management on the K computer

Login node

Global-FS

Compute node

Local-FS

Task list

Application

Data

Application

Data

Task list

Stage-out

Stage-in
i. submit ii. resource allocation and stage-in

iv. output and stage-out

iii. task processing

Job script
TITLE=mapping

0           sh split.sh xxx.fastq …

1           sh split.sh xxx.fastq …

…

5   0      sh bwa_aln.sh xxx.fastq

6   1      sh bwa_aln.sh xxx.fastq

7   5,7   sh bwa_sampe.sh …

Master

Figure 4. Diagram of exome pipeline on K computer using extended MPIDP

Figure 4 diagrammatically presents the exome pipeline that uses extended MPIDP on the

K computer. The applications (e.g., BWA and SAMtools) and data (e.g., FASTQ files) required

in the pipeline are stored in the data partition of the Global-FS on the login node.

i. Submitting a job to the system The user submits a job script that includes computing

resources, staging information, a task list for the MPIDP framework, etc. to the job sched-

uler. That script is automatically generated after the user inputs the data and parameters.

Development of Computational Pipeline Software for Genome/Exome Analysis on the K...

44 Supercomputing Frontiers and Innovations



ii. Resource allocation and stage-in The job scheduler allocates computing resources, and

starts data transfer of the target files from the Global-FS to the Local-FS.

iii. Task processing using extended MPIDP The master process of MPIDP assigns the

tasks to workers, and workers start to process the tasks. Tasks are dynamically distributed

by MPI communications and performed by considering the task dependencies.

iv. Output results and stage-out After the job is completed, the results are transferred from

the Local-FS to the Global-FS.

1.4. Performance Evaluation

We present a performance experiment to evaluate the exome pipeline on the K computer.

The experiment shows the execution time and the scalability of the alignment task of the map-

ping function using our pipeline.

1.4.1. Experimental setup

The input data we used were data from a real exome project obtained from ERP001575 [22],

the lung cancer exome dataset (Tab. 4). We selected samples of normal data and samples con-

taining tumors, such that the number of samples in all experiments is two (T = 2).

System and software specifications used in the experiments are provided in Tab. 5. The

measured data were from elapsed time provided by the system stats, and internal task execu-

tion of MPIDP by the gettimeofday function. For configuration of the internal execution, the

number of threads was set as 8 in the alignment task using BWA [10], and the others were run

by using a single thread.

Table 4. Description of lung-cancer data (exome)

Run ERR160121 ERR166339

Type normal tumor

Length 100 [bp] 100 [bp]

Paired yes yes

Platform Illumina HiSeq 2000 Illumina HiSeq 2000

Total size 13.324 [GB]×2 (pair-end) 23.726 [GB]×2 (pair-end)

1.4.2. Experiment 1: alignment performance of mapping function

The execution time of the alignment task in the mapping function (map bwa.sh) is shown

in Fig. 5a, the scalability in strong scaling is shown in Fig. 5b.

First, it was confirmed that the output of the proposed pipeline was equivalent to the result

obtained using the original Genomon-exome environment on a regular PC cluster. This, in turn,

implies successful development of a genome/exome analysis pipeline software on the K computer

system.

In view of the acceleration of the alignment task in the mapping function, our pipeline

provided excellent scalability until the number of nodes was increased to 64 nodes, and also
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Table 5. System and software settings pertaining to the K computer

(Dec. 2014)

# compute nodes 82,944

CPU SPARC64 VIIIfx [2.0 GHz] (8 cores)

Memory DDR3 SDRAM 16 [GB]

Operating System Linux ver. 2.6.32

C/C++ Fujitsu C Compiler ver. 1.2.0

Python Python ver. 2.6.2

Java N/A

Perl Perl ver. 5.10

MPI FUJITSU MPI Library (OpenMPI ver. 1.4.3)
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Figure 5. Alignment performance of mapping function (map bwa.sh)

performed well but that gradually slowed down. Finally, its speed-up was ×16.05 at 1024 nodes

(based on 16 nodes) on the K computer.

On the other hand, because of the issue of total memory capacity of the compute node, our

pipeline could not run with less than 16 nodes. It is because the BWA, which is software mainly

used in the alignment task, consumes a large amount of memory, thereby causing an internal

error in the program.

2. Further Challenges Facing Whole-Pipeline Parallelization

on K Computer

In this study, we successfully developed an exome pipeline on the K computer. The said

pipeline can dynamically distribute tasks within a given job whilst efficiently eliminating un-

necessary synchronizations (Sec. 1.3). In this section, to improve the performance of the entire

pipeline, we extend the proposed pipeline parallelization to latter parts of the mapping function

with the objective of improving performance based on an execution profile.

To this end, this section first demonstrates the execution profile of the proposed pipeline

followed by revelation of performance bottlenecks (Sec. 2.1). Subsequently, the handling of each

task has been described (Sec. 2.2). Next, the authors propose several approaches to resolve

identified pipeline bottlenecks (Sec. 2.3). Lastly, effects of proposed approaches on pipeline

performance have been examined (Sec. 2.4).
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2.1. Performance Analysis of the Mapping Function

To clearly demonstrate the performance bottleneck of the pipeline, we obtained an execution

profile of the pipeline for real exome data and estimated the total amount of execution time for

each task. Table 6 lists the total execution time of each task of the mapping function. The result

in each line is the summation of the execution time of 16 computing nodes. The table data

include an amount to correct the measured overhead to compensate for the duplicated file I/O

overhead.

Table 6. Execution time of each task and its ratio

Task name Description Elapsed time [sec] ratio

map bwa.sh Management Job - -

split.sh Split input 683 0.005

bwa aln.sh Alignment 59,876 0.448

bwa sampe.sh 29,555 0.221

sam join.sh Post-processing 1,920 0.014

sam2orgbam.sh 39,419 0.295

checkLineSizeAlignmentBam.sh Output results 3,081 0.023

my mergeAlignmentBam.sh and statistics 125 0.001

bam2summary.sh - -

TOTAL 127,094 1.00

The results show, as we expected, the most dominant task of the mapping function

was bwa aln.sh (44.8%) as the main task of alignment. However, the second most time-

consuming task was sam2orgbam.sh (29.5%) which is the post-processing of alignment. The

task sam2orgbam.sh, called to perform post-process alignment, shared approximately 30% of all

execution time but the degree of concurrency is not as high as that of other tasks. This suggests

that only a number of samples are running simultaneously, i.e., two (T = 2) in this case.

Consequently, attempts to improve the performance and increase the number of nodes would

be affected by this parallel bottleneck, which would detrimentally affect the parallel performance

of the pipeline. Thus, we propose several approaches to solve this problem and improve the

parallel performance of the pipeline.

2.2. Overview of the Alignment-post-process

bwa_sampe.sh

bwa_sampe.sh

bwa_sampe.sh

sam_join.sh

Merge

sam2orgbam.sh

type1_aaa.sam

type1_aab.sam

type1_xxx.sam

type1/ga.sam

type1/ga.bam

type1/ga.bai

Sort

Convert

Remove Dup.

Index

i. generate SAM files ii. merge each sample iii. create BAM and index

Figure 6. Diagram of the alignment-post-process

K. Aoyama, M. Kakuta, Y. Matsuzaki, T. Ishida, M. Ohue, Y. Akiyama

2020, Vol. 7, No. 1 47



The alignment-post-process is composed of several tasks such as that of merging the align-

ment result files for each sample, and converting them into a compressed format (Fig. 6).

First, split SAM format [11] files are generated as the alignment result using “pair-end”

information. Next, all SAM files are merged into a single SAM file for each sample. After that,

each merged SAM file is converted into compressed BAM format [11], sorted based on the result

of the alignment position, the duplicated reads in a file removed, and finally a BAM index

created.

The Sequence Alignment/Map (SAM) format stores the result of mapping, including align-

ment information of reads described in human-readable text. The BAM (binary SAM) format

is a compressed SAM file intended to reduce the file size, and is compressed by BGZF (Blocked

GNU Zip Format) of GZIP. These two formats are compatible and they can be converted to

each other by various tools without information loss.

2.3. Proposed Approaches to Improve the Performance

of the Alignment-post-process

Timeline

Parallel Proc.

Approach A Convert Sort Remove Dup. IndexMerge

Approach B Convert Merge Sort IndexRemove Dup.

Baseline SortConvert Remove Dup. IndexMerge

Approach C Convert Remove Dup.SortSplit SAM IndexBAM concat

Serial Proc.

Figure 7. Overview of the proposed approaches

We propose 3+1 approaches to improve the parallel performance of the alignment-post-

process. The first three approaches are mutually exclusive, but the last approach can be used

with other approaches. No approach results in information loss, and results obtained were found

to be compatible to those obtained using the baseline approach. Figure 7 shows an overview of

the first three approaches.

Approach A) Rearrangement of processing order

In the alignment-post-process, the conversion of separated SAM format to BAM format can

be executed independently from each other, and apart from this, the separated BAM files can

be merged into one BAM file if they are sorted. Accordingly, it is possible to execute both the

conversion and sorting processes in parallel prior to merging files. Subsequently, all sorted BAM

files can be merged into a single BAM file (Approach A in Fig. 7).

By contrast, the “remove duplicates” process cannot be performed properly in parallel by

using this approach. This is because the possibility of the existence of “duplicated reads” over

other files would not allow the process to exclude the duplicates between files.

Approach B) Introduction of parallel merge sort

Next, we propose the introduction of a parallel sorting algorithm for the sorting and merging

process of approach A. We can obtain one sorted and merged BAM file by O(log2N) steps by
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using two-way merge sort (Approach B in Fig. 7), where N is the number of separated files. If

the sorting process dominates the execution time of alignment-post-process, it is expected to be

accelerated using parallel merge sort.

Approach C) Processing individual chromosomes in parallel

Here we propose a method to parallelize the “remove duplicate” process. Once a read oper-

ation is aligned to a chromosome it cannot be aligned to another chromosome; thus, by dividing

the input SAM files among each of the chromosomes, the process of removing the duplicates

from each file can be executed independently from each other.

First, the script parses the read operation of the aligned chromosome and splits it into tiny

SAM files. Second, the script gathers and merges these tiny SAM files with each of the SAM

files aligned to the same chromosome. Then, the processes of converting, sorting, and removing

duplicates can be performed in parallel (Approach C in Fig. 7).

Moreover, if all regions are sorted by each chromosome, it is possible to simplify the con-

catenation in the last merge process without internal sorting.

Additional) Tuning of BAM compression level

The file size of BAM format can be tuned by changing its “compression level” — similarly

to gzip [23] compression level setting — and a trade-off exists between the file size and compres-

sion/decompression time. Note that, if the compression level is configured as high, the execution

time of processes using BAM format increases because its internal program includes converting

processes from BAM to SAM, and inverse.

Therefore, we configured the compression level to zero, which implies no compression of the

internal output of the pipeline, to optimize performance for all proposed approaches. Finally,

it set to the default value at the terminal output, to reduce the size of output file. There are

still internal conversion processes of SAM/BAM format but the performance is expected to be

improved.

2.4. Performance Evaluation

We present a performance experiment to evaluate the effectiveness of our proposals from the

viewpoint of resolving the bottleneck of parallel performance. We apply each proposed approach

to the pipeline and measure the execution time of the entire mapping process for each approach.

2.4.1. Experimental setup

The computational environment that was used is the same as in the previous experiment.

2.4.2. Experiment 2: performance of the entire mapping function by applying the

proposed approaches

The execution time of the entire mapping function when applying the proposed approaches

(Sec. 2.3) is shown in Fig. 8. The label baseline (vanilla) shows the naive implementation

of the pipeline we developed in the previous section (Sec. 1.3). The label baseline (tuned)
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Figure 8. Execution time of the entire mapping function by applying the proposed approaches

shows the result of tuning the BAM compression level. The other labels of approach A, B, C

show the result of applying each of the proposed approaches to the baseline (tuned).

First, we confirmed that the result of tuning the BAM compression level is effective in all

cases with an acceptable trade-off. Importantly, it reduces the bottleneck of internal format

conversions in the alignment-post-process; therefore, we assumed that the tuning would also be

effective in the other approaches.

Our experiments confirmed that approach C, with parallelizing for each chromosome, deliv-

ers the most effective performance improvement of all. approach C, in which almost all processes

of the alignment-post-process are performed in parallel, yielded good results, and simple BAM

concatenation also performed well because it reduces the time for internal BAM conversion.

The other approaches also outperformed the baseline (tuned). That is, approach A, B also

showed good results but they were not comparable with the result obtained with approach C.

However, no results were obtained in cases of executions involving a small number of nodes

(N = 16). This was attributed to occurrence of the segmentation-fault error during the alignment

process when generating the result of alignment from using “pair-end” information. Investigation

of what led to occurrence of the said error yielded no concrete results.

3. Discussion

In the last experiment, we confirmed our proposed approaches performed effective to reduce

the execution time; however, even when we used the most effective of all the proposed approaches,

the scalability was not as good as we expected.

Limitation of the parallelization of chromosomes

First, the problem directly related to the proposed method (approach C) is suggested to be

the limitation by the number of types of human chromosomes. The number of types of human

chromosomes is 22 + 2 at maximum; hence, the maximum parallelism that can be achieved

is limited by this number. Consequently, the use of more than T × 24 nodes does not result

in optimal performance during the alignment-post-process in approach C. To overcome the
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problem, we consider splitting the SAM files into a larger number of small regions, rather than

depending on the number of chromosomes to improve the performance.

Task load balancing between worker nodes

Additionally, to confirm the stats of load balancing, we calculated the average idle time in

experiment 2 (Fig. 9). The average idle time increases with the number of nodes and approxi-

mately 56.5% of the execution time is also included in the idle time even for the most satisfactory

case at 32 nodes on approach C. Therefore, our proposed approaches show certain improvements

in parallel performance; however, they remain problematic with respect to concurrency.
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Figure 9. Average idle time ratio of each node during the mapping function

4. Related Work

Container-based virtualization that generates less performance overhead, such as the con-

tainer systems Docker, Singularity [24], is spreading into the cloud and HPC environments.

Benchmarks and system reports of container technology have been increasing in bioinformat-

ics, especially in pipeline deployment, because the reproducibility and availability of a pipeline

would be improved by container technology as application-level virtualization. Although con-

tainer compatible pipelines (e.g., Nextflow [25]) are spreading in the bioinformatics field, the

K computer does not provide such a container environment.

NGS analyzer [26] is a whole-genome analysis pipeline developed at RIKEN that can be

implemented in HPC environments such as the K computer. We used its implementations as a

reference for our pipeline development but the purpose of the pipeline is different from ours.

Conclusions

We developed pipeline software for the massively parallel environment of the K computer

and confirmed that the parallel performance in the alignment task of the mapping function shows

good scalability when using the real exome dataset. Our pipeline was designed to distribute its

internal tasks dynamically in parallel using MPI communications of the MPIDP framework;

thereby, we succeeded in reducing the number of jobs in the pipeline, apart from ensuring com-

patibility with the system environment. We also developed an extension of MPIDP to minimize

the task synchronizations by providing a function for considering the task dependencies.
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Furthermore, we attempted to extend the pipeline parallelization to the alignment post-

process, for which we proposed 3+1 approaches to resolve the performance bottleneck by focusing

on the number of concurrent tasks in alignment-post-process. The experimental results showed

that our approaches are able to effectively improve the performance of the pipeline, which

achieved a maximum speed-up of ×6.6 on 256 nodes, compared with the baseline.

The proposed pipeline has been tailored to the system architecture of the K computer.

However, the MPIDP framework extended in this study is based on the general MPI framework,

and therefore, it is compatible with regular pipelines and PC clusters. In addition, the proposed

pipeline would be expected to contribute to address the vast cost of genome analysis, and to the

personalized drug development based on genomic information.

Code Availability

The source code pertaining to the extended MPIDP framework is available in the author’s

GitHub repository5. The source code of the original Genomon-exome pipeline software [3] has

been distributed under the Genomon License6.
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The article presents an analysis of approaches to the development of enterprise information

systems that are in use today. One of the major trends that predetermines the agenda of informa-

tion technology is the focus on parallel computing of large volumes of data using supercomputing

technologies. The article considers the resulting ubiquitous move to distributed patterns of building

enterprise information systems and avoiding monolithic architectures. The emphasis is placed on

the importance of such fundamental characteristics of enterprise information systems as reliabil-

ity, scalability, and maintainability. The article justifies the importance of machine learning in the

context of effective big data analysis and competitive gain for business, vital for both maintaining

a leading position in the market and surviving in conditions of global instability and digitalization

of economy. Transition from storing the current state of a enterprise information system to storing

a full log and history of all changes in the event stream is proposed as an instrument of achieving

linearization of the data stream for subsequent parallel computing. There is a new view that is

being shaped of specialists at the intersection of engineering and analytical disciplines, who would

be able to effectively develop scalable systems and algorithms for data processing and integration

of its results into company business processes.

Keywords: enterprise information systems, parallel computing, supercomputing technologies,

big data, machine learning, scalability, event stream, analysis, digital economy.

Introduction

Today, enterprise information systems experience what can be called a rebirth. Only yes-

terday monolithic applications were considered the basis of software development, while today

unscalable development patterns from the “past” are falling into oblivion and giving way to

microservice architectures, which in turn support the further efficient digitalization of the econ-

omy.

However, scalability, fault tolerance and possibility to carry out parallel computing across

a cluster of computers come at a price of a significant increase in the systems complexity.

Deployment, trouble shooting and support of such complex systems are the tasks far from trivial,

requiring specialists of higher technical level compared to the development of applications that

do not require fault tolerance, process small volumes of data and run on a single machine,

namely, on the end user’s computer.

For many, microservice patterns for building information systems today is primarily a matter

of fashion. However, the need to move to flexible, loosely coupled and scalable systems did not

come out of nowhere. The volume and speed of data generation in recent years, as well as the

predicted growth of this trend cast doubt on the relevance of the entire data processing on one

device. Nowadays, it is impossible to count on the successful processing of the so-called big data

without a cluster of computing nodes, parallel algorithms, or involving supercomputer processing

power. An important driver for the spread of parallel computing in enterprise applications, in

addition to accumulating huge volumes of raw data, is the popularization of data science and

machine learning. Business is much more aware of the potential of this field than it was 10 years

ago. It allows one to see achievable goals for data analysis, invest money in computing resources

and specialists of a new school – data engineers.
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When developing enterprise applications based on parallel computing, it is more important

than ever to pay special attention to such fundamental characteristics as reliability, scalability,

and maintainability. There is a growth in complexity with moving to scalable development

patterns, which means that one needs to be more scrupulous about the quality of the code,

testing, fault tolerance, breaking tasks into subtasks, and linearizing command streams.

Besides developing approaches to parallel enterprise computing, databases also gained much

impetus. There is also a move to scalable data warehouses and shift away from distributed

transactions for the sake of achieving scalability of computing. Thus, distribution and scalability

are fundamental characteristics of modern technologies of enterprise software development.

In machine learning, like in other spheres, there is a move from data processing on a sci-

entist’s personal computer to calculations and receiving results from several computing nodes.

This is again explained by the volume of data that needs to be processed, as well as by the

extent to which a granular computational problem can be broken down into unrelated subtasks.

For a more comprehensive description of the current situation and emerging trends in the

development of modern enterprise information systems based on parallel computing, let us con-

sider big data in more detail, as the main reason of a quantum leap in the field of distributed

computing and related disciplines.

1. Big Data

1.1. General Characteristics

The concept of big data has in a sense become too common lately, and its meaning is now

quite indistinct.

Here is one of the existing definitions of big data, which is quite generalized, like the term

that it describes.

Big data is a scientific and practical field associated with the development and application

of methods and tools for operating large volumes of unstructured data [4].

Such an understanding of big data as a phenomenon caused by the development of modern

information technologies raises a number of global issues. The first issue is defining the criteria for

categorizing data as big. The second issue is the assignment of only unstructured data (schema-

less data) to the category in question at this stage of technology, when NoSQL and relational

databases, as well as approaches to the storage and indexing, are gradually overlapping [30]. We

list the well-known characteristics of big data [7]:

• Volume – How much data is there?

• Variety – How diverse are different types of data?

• Velocity – At what speed is new data generated?

• Veracity – How accurate is the data?

There are several additional characteristics, such as viability, value, variability, and visualiza-

tion [22].

Here is the list of typical sources of big data [35]:

• Internet of things.

• Social networks.

• Telecommunication satellites.

• Internet stores.

• Internet encyclopedias.
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• Various debug logs.

Surely, in addition to the listed above, there are many other sources of big data, and their

number will continue to grow.

We list the main types of generated big data [7]:

• Structured – data possessing a specific schema and a fixed set of attributes.

• Unstructured – data without a permanent structure, for example various text documents.

• Natural language – a special kind of unstructured data that includes all texts in all lan-

guages of the world.

• Machine-generated – created by a computer, application, or other machine without human

intervention.

• Graph-based – the natural representation of which is a graph modeling pairwise relations

between objects.

• Streaming – data create in response to the occurrence of an event.

• Audio, video, and images.

Having identified the sources of the big data generators and the types of information they

contain, let us consider the data science working process. Here is a description of the process

systematizing the work of the analyst [7]:

• Setting the research goal – what you are going to research, how the company benefits from

that, what data and resources you need.

• Retrieving data – checking the existence of, quality, and access to the data.

• Data preparation – enhancing the quality and consistency of the data, its normalization

and removal of invalid entries.

• Data exploration – analyzing how variables interact with each other, a deeper understand-

ing of the nature of phenomena under study.

• Data modeling – an iterative process of building a model to answer the research question

using the insights about the data you found in the previous steps.

• Presentation and automation – using a suitable way to present the work results, automating

the execution of the process to update results in case of new source data.

The presented typical process helps to systematically address problems with data that can fit

in the memory of a single computer, and answer questions posed to a much larger amount of

data, the processing of which may require a whole group of servers (cluster). Scientists and

programmers spend considerable amount of time solving the problems of distributed processing

of large data sets and teaching models on them.

Bearing in mind the volume of data generated in the world, the importance of solving the

problem of efficient distributed data processing cannot be underestimated. And this volume

is truly impressive. Google handles 5.5 billion searches per day [23], the number of Internet-

connected devices according to various estimates could reach 22–50 billion by 2020 [35] and

75 billion by 2025 [39], Instagram users create 95 million posts per day [8].

Yet, data volume alone cannot give a business a competitive advantage. Only correctly

putting questions to this data, as well as quickly making the most of the answers and restruc-

turing your business, one can justify the overhead costs and the ever-increasing complexity of

information systems that big data brings. In order to effectively work with data, analysts and

stakeholders need tools, and it is vital that they fit for solving existing problems.
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1.2. Big Data Tools

Numerous libraries that hide the complexity of the models behind their software interface

is one of the factors making the methods of working with big data more accessible to a wide

range of specialists.

On the one hand, this has a positive influence on the speed of the introduction and dissemi-

nation of new approaches to business and their integration into a greater number of key business

processes. On the other hand, the specialists who only yesterday developed document manage-

ment systems, by way of example, have a gap between the theory and practice of using machine

learning models. This may adversely affect the final result of their work when standard models

that work “out of the box” are not enough, and they have to be adjusted or even cascaded with

other models.

Therefore, to develop corporate IT infrastructure in the direction of data mining and au-

tomation of management decision-making support, the involved specialists need to study the

root technologies and the mathematical apparatus that underlie any library of machine learning

models. It will not be possible to solve problems on big data without mastering the patterns of

parallel data processing, distributed storage, and scalable multi-threaded algorithms. MapRe-

duce, proposed by Google and already considered a classic pattern, can be a good starting point,

although it is not so common in Google anymore [37].

The above mentioned “fundamentals” should become the focus of attention when training

new personnel in the future, because only this way makes possible the necessary breakthrough

growth of automation and informatization of Russian companies at the level of Western com-

petitors and higher.

Today, business is pushing technology development towards big data methods and systems.

There are various driving forces for such development [26]:

• Businesses need to be agile and respond to new market insights by quick and cheap hy-

potheses testing and short development cycles and TTM (Time to Market).

• Companies need to be able to modify their own software and systems, which fully fits into

the concept of open source software, which has become very successful.

• CPU clocks are barely increasing, but multi-core processors are standard, and networks

are getting faster. This means parallelism is only going to increase.

• Companies often benefit from outsourcing server capacities. Amazon Web Services and

Microsoft Azure offer highly demanded cloud infrastructures, such as IaaS (Infrastructure

as a Service).

Creating software systems is challenging. And the transition to a parallel pattern of working

with data requires special skills and attention to the software being developed. From this point

of view the following systems characteristics are especially important:

• Reliability.

• Scalability.

• Maintainability.

Let us dwell on each of these aspects in more detail, give their definitions and justify their

importance for the success of corporate information systems in general.
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2. Characteristics of Enterprise Systems

2.1. Reliability

The concept of reliability aggregates in itself such characteristics as the ability to recover

from failures, resistance to hacker attacks and the consistent level of performance with user

errors, software and hardware faults.

Thus, the system is reliable if it works correctly. There is no sense in creating an application

that will survive the destruction of all servers on which it is deployed. However, one must strive

to handle known types of failures in the early stages of system development. It is much more

difficult to comprehend and rewrite a large system than display a bit of healthy paranoia at the

start of work.

In terms of hardware faults, reliability is closely related to scalability, which is discussed

further. Scaling data storage, in addition to increasing bandwidth, also protects against data loss

due to hard drive faults. Apart from data duplication between data processing centers (DPCs),

RAID is also used on a server scale. The problem of hard disk failure seems not so important

given the probability of a 1% failure during the first 3 years of operation [41]. But on a storage

cluster with 10,000 disks, we should expect on average one disk to die per day.

Not all hardware faults are related to the problem of data storage failure, but loss of infor-

mation can have huge costs in terms of lost revenue and damage to reputation [13].

One can find software errors just looking at the application code, but the devil is in the

details. Such factors as the size of the application code, qualification and perseverance of those

who check it, integration with third-party services and the problem of race conditions [42] reduce

to zero the theoretical possibility to detect all errors before running the code. Often, software

errors lie dormant for a long time until they are triggered by an unusual set of circumstances.

Thus, to ensure the reliability of the system being developed, at a minimum, it is necessary

to test the logic of the application and the source code itself, as well as back up data and store

the complete log of its changes. Both of these requirements should be fulfilled starting from an

early development time frame, and embedded in the overall process on an ongoing basis.

2.2. Scalability

There are two types of scalability of information systems: vertical and horizontal or shared

nothing [32].

With vertical scalability, a possible increase in throughput and performance is achieved by

increasing the capacity of an individual server, for example, by increasing RAM size or replacing

the processor with a more powerful one. Horizontal scalability implies that adding a new server

increases the load that the system can handle. The term shared nothing well reflects that the

servers do not share common resources, such as CPU time, RAM, or hard drives, that is, they

are independent.

On the one hand, improving the performance of a single server, instead of using multiple

relatively low-power stations, has long been considered outdated, because the frequency of a

single processor core no longer increases to a great extent as it did before [47].

On the other hand, there appeared new processors for desktop computers that have 16–

18 cores and 32–36 threads of execution with an average frequency of one core equal to 3 GHz,

which greatly exceeds the “classic” quad-core processors with a frequency of 3.2–3.6 GHz. Thus,

even classical vertical scaling follows the path of horizontal scaling of the processor, increasing
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the number of cores rather than the frequency of their work, limited with the current architec-

ture [19].

Anyway, it is a technical debt to consider the option of vertical scaling right from the start,

in the current realities of increasing requirements for fault tolerance, throughput, the ability to

perform rolling upgrades. There is no doubt about it. Even Martin Fowler in 2002 in his book

discussed the architecture of horizontally scalable systems as the most preferable [17].

Thus, it is safe to call developing monolithic applications, which initially do not imply the

scaling possibility, an anti-pattern. Service architecture with independent deployment of blocks

and their horizontal scalability, is becoming a common approach in the development of complex

information systems. It should be noted that there is no need to build a service architecture for

simple applications, where such “flexibility” will bring more problems than benefits.

2.3. Maintainability

In addition to reliability and scalability, how flexible the system architecture is, how easily it

adapts to changing functional and technical requirements on the part of the business, determines

whether a business can be quickly rebuilt and remain competitive where the life cycle of projects

is measured in years and even decades.

When a project goes into the stage of support for 3, 5, 10 years and new functionality

is added rarely, developers supporting such legacy or brownfield [2] project have a desire to

rewrite it again. In some cases, it is justified. When a project uses a decade-old technology

stack, it becomes harder to find people who can and would like to work with it. It happens

that a project that has been living for a long time needs a new functionality or a change of the

old-fashioned interface, which entails rewriting the scenarios of the application server part.

Rewriting everything from scratch is not always necessary. When it comes to projects with

a monolithic architecture [24], small improvements using new technologies are complicated due

to the fragility of the design and code, and the lack of modularity of the system parts. The

complexly expandable system can be based on a relational database without replication, where

the application logic relies on the ACID guarantees (Atomicity, Consistency, Isolation, Durabil-

ity) [20]. Also the minimum number of simultaneous user sessions is ideal for functioning of such

a system.

In this situation, you can try to carefully divide the monolith into separate services with

a limited area of responsibility and the possibility of their independent deployment. It makes

no sense to break all application use scenarios into services, but gradually, as the parts of the

application are affected by new functionality, it needs to be done.

The modular system of services or micro-service architecture [33] has several advantages,

such as independent deployment, loose coupling, using appropriate tools, programming lan-

guages, interaction methods and databases for the solution of different tasks [36].

However, the application should not be split into micro-services just for the sake of the

Single Responsibility Principle or because the approach requires it. Excessive granularity leads

to new problems in support not inherent in monolithic architecture. It becomes difficult to track

connection between services, user query execution flows, interaction invariants between versions

of deployed services, as well as backward compatibility of contracts.

DDD (Domain Driven Design) approach to software development and dividing the applica-

tion into multiple bounded contexts makes possible a transition to a single database for a single

service [43].
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Various factors that influence the maintainability of an application are: the technology

used, the culture of writing code, coverage by tests, and architectural decisions taken in the

early stages of the project life cycle. There is no easy fix for making the system reliable, scalable

and maintainable. But it is absolutely necessary to control the complexity of the project and its

technical debt, to adequately assess future extension points, to conduct continuous testing, to

have chances not to rewrite the code every two years.

3. Data Storage

3.1. NoSQL and SQL

Having chosen programming languages, platforms, and the overall technology stack of a

project, one faces the question of choosing an appropriate data storage system. Eventually,

there is a choice between relational and NoSQL databases.

The concept of a relational data model was first described in the article by Edgar Codd in

1969 [9]. Thus, research and development in the field of relational databases has been going on for

50 years. It is based on a well-developed theoretical apparatus and language for building queries

to SQL data (Structured Query Language), which was first standardized at ANSI (American

National Standards Institute) and ISO (International Organization for Standardization) in 1986

and 1987, respectively [6].

The term NoSQL in its current interpretation was formed in 2009 [38]. This direction of

databases is focused on scalability, fault tolerance, ability to perform a large number of write

operations, and the concept of Eventual Consistency (EC) [44] is crucial for them. EC implies

that the system data, without being updated over time, will be consistent in all replicas, and

data access services will return the same last recorded value from any replica. This guarantee is

much weaker compared to ACID, but such behavior allows to achieve fast recording, scalability

and fault tolerance.

One of the significant differences between relational and document-oriented databases is

considered to be the presence of a strict data schema in the first case and the lack of such in

the second [18]. However, this is not entirely true. Relational databases do have a mandatory

schema, the so-called schema-on-write, while document-oriented databases allow you to store

data in any form, including unstructured data. Though it does not imply that it is possible to

work productively with such data. Anyway, there is a schema, but in the form of schema-on-

read, when the client code expects to receive data in a specific format. Thus, schema-on-read is

a softer limitation than schema-on-write [26]. This freedom on the one hand makes it possible to

support multiple versions of data schemas, to perform hot-swapping of deployed services, while

the other carries the risk of data inconsistency. A more detailed comparison of the database

types in question is presented in the article [18].

However, in many areas considered in the article, and in the field of data storage and

processing in particular, there are tendencies to take the best from several worlds, creating

hybrid solutions. For example, the Polyglot Persistence approach [16] allows not to make a choice

in favor of either a relational database or document-oriented storage, but gives an opportunity

to select a variety of data storage options within a single project on grounds of expedience. This

approach removes the strict framework and allows you to achieve flexibility by using tools that

are best suited for the needs and tasks of the application parts. Alongside Polyglot Persistence,

NoSQL techniques are now being introduced into classical relational databases, such as MS
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SQL Server and PostgreSQL [46]. In particular, there are new data types that can be stored in

columns, for example, JSON documents (JavaScript Object Notation) [45]. But there is a reverse

trend, i.e., the creation of SQL-like data access languages in NoSQL solutions, for example, for

MongoDB [5].

3.2. OLTP and OLAP

In order make a conscious choice between the types of data storage, you need to know the

scenarios for its use. The number of write operations per second, the main types of read requests,

the types of connections between entities, the cost of data loss, the criteria of fault tolerance – all

of this crucially affects the choice between databases and the way data is organized, in particular

the choice between OLTP and OLAP.

OLTP (Online Transaction Processing) is a way of organizing databases, in which the system

works with small-sized transactions, but with a large stream, and at the same time the client

expects a minimum response time from the system [11].

OLAP (Online Analytical Processing) is a data processing technology that consists in prepar-

ing summarized (aggregated) information based on large datasets, structured according to a

multidimensional principle [10].

Based on these basic definitions, OLTP databases are used for prompt processing of user

requests, while OLAP solutions are used for analyzing the system’s snapshot at any point in

time, such as OLAP cube [34], Data Warehouse [40], or Data Lake [25]. The use of OLTP

solutions is typical of business transaction scenarios [17], where user input initiates writing to

the database and executing read requests.

The need to create analytical reports scanning a large volume of data, possibly entire tables,

led to the emergence of OLAP solutions that support a different interaction pattern than the

OLTP solutions.

The comparison of access patterns for these two classes of solutions is given in Tab. 1 [26].

Initially, the same databases were used for both transaction scenarios and creation of analytics.

Table 1. Comparing Characteristics of Transaction Processing versus Analytical Systems

Property Transaction processing systems

(OLTP)

Analytic systems (OLAP)

Main read

pattern

Small number of records per query,

fetched by the key

Aggregate over the large number of

records

Main write

pattern

Random-access, low-latency writes

from user input

Bulk import or event stream

Primarily

used by

End-user/customer, via web appli-

cation

Internal analyst, for decision sup-

port

What data

represents

Latest state of data (current point

in time)

History of events that happened

over time

Dataset size Gigabytes to terabytes Terabytes to petabytes

In this regard, SQL proved a powerful and flexible tool. However, over time, analystics was

removed into separate Data Warehouses [12]. Data Warehouse receives the data gathered from

all available sources in the company, which is aggregated, cleaned, transformed into a convenient
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format for creating analytics and loaded into the repository without editing options, i.e., for

read-only. The described data loading process is called Extract-Transform-Load (ETL), that is,

divided into stages: data extraction, transformation and loading [26].

While OLTP contains mostly normalized data without duplicating of information, OLAP

solutions achieve their goals by denormalizing data. Thus, the number of table join operations

is reduced.

The above systems are designed to solve different problems. Combining creation of analytics

and reports with execution of users’ business transactions may be easy at the start of the

project, but give less flexibility in the long run and greatly affect the performance of both usage

scenarios with increasing data. However, there are systems on the market that combine both

solutions, for example, Microsoft SQL Server and SAP Hana, giving access through a common

SQL interface [15, 29].

It may seem that the degradation of system performance with an increase in the amount

of data when using one solution instead of two is acceptable within reasonable limits. However,

Amazon’s research suggests that increasing server response time by only 100 ms reduces revenue

by 1% [31], other studies indicate that a 1 second slowdown reduces customer satisfaction by

16% [3, 14].

You need to cater to the needs of people who work with your systems every day throughout

their working hours, increasing efficiency, reducing the time of response and report generation,

not blocking the system operation with modal windows, and so on and so forth.

Storing the stream of events that occurred in the system is a fundamentally different storing

data option, compared with storing only the system’s current state. This option requires a

different attitude and design, but the result makes it possible to receive the system status at

any time, add analytics to make it as complex and deep as can be.

3.3. Event Stream Storage

Machine learning in general and its models in particular require source data, and the more

extensive and high-quality it is, the more effective the work gets. This explains the importance

of the source material, the lack of which may be the problem with the customary approach of

storing only the last state of existing business entities.

The transition from storing only the current state without the history of changes, which

would allow to restore data as of any moment of the systems existence, to storing the stream

of events affecting the data, as the primary source of application data, seems to be a very

logical step in the development of technology and world view of the community of programmers,

architects and business in the broad sense of the word. Keeping a complete history of changes

gives data tools “food for thought”.

However, it is necessary to perform not only the transition to systems with events stream

storing, but also the transition from a single relational data repository, or a synchronous repli-

cation repository – to which the community has become accustomed and even addicted – to

a distributed repository with replication and partitioning, or sharding. The transition to asyn-

chronous propagation of changes and abandoning distributed transactions is also a must as a

guarantee of the integrity of operations, though it comes at a price in terms of overall system

performance and its throughput for reading and writing.

Such shift in the mass paradigm in application development seems just as necessary and

inevitable as the transition from single-core and single-thread systems and the absence of Race
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Conditions [42] to a multi-thread model that imposes certain restrictions, requires greater care

and accuracy, as well as the use of tools for the synchronization of threads and execution pro-

cesses.

It is worth noting that despite the fact that multi-core systems and software models for

working with them have been around for a long time by the IT standards, developers are still

rather slow at mastering them. This may partially be due to the inertia of the process of higher

education, which does not yet cover this aspect by default, as basic computer literacy, and

partially due to the fact that many companies need a quick solution, designed for only a few

users with certain risk of data loss and a high time of response that is considered non-critical

for internal corporate users, and such approach prevails over more costly current approaches.

Therefore, employees find it hard and unnecessary to learn new things, since there is no demand

for such skills in the company.

Of course, the idea of storing the history of data change and obtaining its inherited repre-

sentation cannot be called a new one. A similar approach is found in relational databases which

store the transaction log and WAL (write ahead log) for indexes. They allow to restore the state

of a database after failures and deadlocks, as well as conduct an audit, but are limited in size

and are often cleared after a certain period of time, that is, not stored forever.

However, storing the entire stream of changes and events, in particular Event Sourcing, does

not involve the removal of old events to save disk space. In contrast, the events that occur are

considered immutable, and this has several advantages. Among such advantages we can single

out the possibility of the in-depth analysis of the history of system events, creation of analytics

of any complexity having a complete history, not just the latest actual state of the system,

caching events, etc.

The transition to the accumulation of huge datasets has set the task of their smart analysis,

identifying patterns and predicting the behavior of systems that are directly affected by feedback

from end users. The practical application of the revived direction of machine learning has become

the solution to these issues, without which it seems impossible to continue effective business

operations.

4. Machine Learning

4.1. Relevance

The application of machine learning has literally captured the minds of IT. Predicting

product demand, personalized targeted advertising, fraud detection – these are just a few of

the applications that everyone has heard of. To get the idea of the great demand for special-

ists in this field, it is enough to analyze data from hh.ru website. The current labor market

demonstrates a high demand for skills and technologies directly related to big data, analysis

and machine learning [21]. Python, Big Data, Machine Learning, Hadoop, Spark, Data Mining,

Deep Learning, Scala are at the top of the list.

The hype around this new and exciting – by IT standards – field, attracts more and more

young professionals. But besides yesterday’s students, developers with experience are also ea-

ger to try their hands at the field of intelligent systems. Interest in another “breakthrough”

framework for building server or client-side of applications fades as time goes by, some new

technologies appear, and there is no bottom to this turmoil. However, when it comes to big data

and machine learning, this new, previously unavailable business tool gives a bonus unattainable
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before – new knowledge. Therefore, the relevance of this direction will continue to increase with

the development of models and methods.

The analysis of historical data allows us to understand where the business is losing money,

to identify hidden trends and relationships, to avoid unprofitable decisions using existing expe-

rience.

Stream processing of new data allows you to make tactically more balanced decisions, in-

crease profits in the short term, identify and prevent malicious activity, thereby reducing losses.

Any new field requires workers of a new type, and now this is the case with Data Science (DS)

specialists. The thing is, data science specialists are not software engineers [1]. The key skills

of engineers are programming and creating software systems, whereas the core competencies

of a DS specialist are mathematical statistics, mathematics in general, machine learning and

analysis. Most of all, these two profiles overlap in the area of big data.

Attempts to impose responsibilities of engineers on DS specialists lead to a loss of efficiency.

The speed of solving problems associated with data analysis can reduce by 70–80% [1]. Therefore,

companies need to divide these areas, distribute responsibilities and competencies of employees.

But there must be a point of contact, and thus a machine learning engineer becomes such

point. Usually software engineers with a set towards mathematics and 3–6 years of experience in

software development and data flow design become specialists of this kind. They feel cramped

in the framework of their routine tasks and see an opportunity to do what they have always

wanted, but found difficult to start.

The toolkit of today allows a gradual transition from software engineering to data science,

step by step, deepening the knowledge of underlying theory. Such training can take years, but

it is possible that in 5–10 years we will see a legion of this kind of programmers.

In many ways, the explosive growth of the popularity of various machine learning models

and distributed systems that handle large volumes of often unstructured data is caused by

the advances in computer technology performance, increasing the number of processor cores,

reducing the cost of data storage, including SSD technology, and most importantly the ever-

growing use of cloud services as basics of available distributed computing.

4.2. Applicability

The problem of many companies is that there is not enough understanding of where and

how to appropriately apply methods and models of machine learning to the available data on

business processes. It is also a non-trivial task to find the sources of information from which to

write the history of changes in the long-term storage for its further analysis, to identify trends,

to ask the right questions, the answers to which will help reduce costs and increase the efficiency

of the company as a whole.

Existing machine learning models, such as regression, classification, clustering, and neural

networks, have proven themselves effective, but, as in many areas of science and technology,

hybrid models are of considerable interest, those that are created at the intersection, absorbing

all the best from several families of models and bringing something new, increasing the accuracy

and speed of forecasting.

In Western and European countries, in particular in the Netherlands, there have long existed

degree courses in data science. In Russia, however, the practical aspect of applying university

knowledge in mathematical statistics, theory of probability, econometrics, and mathematical

analysis is not yet so well emphasized. Such a gap between training and rapidly changing needs

of the labor market adversely affects the pace of automation of business processes. In addition,
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not all IT specialists at this stage feel an urgent need for retraining, mastering skills related to

machine learning, big data, distributed computing, algorithms used in cryptocurrencies.

Such rigidity from the part of developers is largely determined by the inertia of processes

and repeated tasks, which programmers in IT departments of large companies have faced for

the most part over the past 10 years. Growing companies, by contrast, can afford to adapt more

quickly and try to introduce new models. It is worth pointing out that yesterday’s students learn

more quickly, pursue career path faster and sometimes, as early as at the age of 21, work in the

position of Senior Developer.

Large corporations, which have established complex and highly inert business processes and

are not largely involved into information technology and consulting in the field of data analysis,

can experience considerable difficulties in the transition to new business models. Despite this,

such complete rethink of information expertise seems vital.

Timely upgrade will allow to remain competitive in the market, actualize the technologies

and knowledge which among other things can be used to reduce costs associated with support

of outdated approaches and tools.

Conclusion

Whatever direction the enterprise information systems development may evolve in, – be

it a variety of data storage solutions, evolution of processors, introduction of new software

architecture – the major ubiquitous tendency is moving away from the vertical scalability to

the horizontal one. With the growth of data volume and the complexity of its analysis, it is

the scalability of computing and data warehousing that is becoming the cornerstone of further

software development evolving. Supercomputing systems are becoming the foundation of the

future digital economy of Russia and the whole world. There is a clear need for decentralized

development and extensive use of supercomputers at universities and enterprises. A supercom-

puting complex at SUSU in Chelyabinsk is an example of such successful implementation and

application [27, 28].

Despite the abundance of terms and cliched phrases, such as big data, machine learning,

the Internet of things, asynchronous behavior, parallelism, distribution, they are united by com-

mon basic concepts, ideas, and problems, already known in the twentieth century. For example,

abstractions like Acknowledgment or Race Condition Automaton have existed in circuit engi-

neering for a long time, but modern IT continues to rediscover them again and again with the

advent of new fashionable development technologies and paradigms.

From this perspective, modern “breakthrough” and “hype” trends seem to be somewhat a

rethinking of the existing bundle of knowledge, showcasing it in a new sparkling edition. Hence,

there is no “silver bullet”, which would solve all problems in a certain area at the snap of your

fingers. Indeed, the development of such a universal tool may require a significant rethinking of

approaches to building information systems.

The inertia of introducing new approaches to development is explained by the complexity of

the mental shift towards the event stream as the main option for storing data, though it is also

well-grounded on the past. For instance, take an account book, where entries are made, but not

corrected after being made, and errors in previous entries are only compensated by new lines.

Due to ideological, methodological and technical difficulties, enterprise systems in the vast

majority of companies are built using approaches that have been approbated over the past

decade.
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We can say that there is a number of common tasks, such as document management, authen-

tication, authorization, CRUD operations for various business entities (Create, Read, Update,

Delete), building reports and analytics, etc. Their solutions have also been largely established,

though there are various options both from the point of view of the technological stack and the

quality of the implementation.

Despite the evolution of hardware and IT infrastructure, the mathematical interpretation

of the domain processes has not changed so much compared to the changes in technosphere.

For example, today much is said about sensor networks and what can be achieved with

their help to describe various objects of control. But at the same time, it does not matter how

many sensors there are on an object that we want to control more efficiently, these sensors only

record the dynamics of a control object’s state, and nothing more. The controlling mechanisms

themselves have not experienced any breakthrough. In essence, this process of reflecting the

characteristics of a control object in time is nothing more than a digital shadow. And globally,

decision-makers are still responsible for making decisions based on experience and intuition,

rather than on adequate models that would allow to justify these decisions.

Modern academic research is out of touch with the practice of industry. Theoretical studies

are important, but, unfortunately, are very far from practical needs.

The field of data science, entering upon the stage of IT specialists training, will very likely

change, or rather, is already changing, the vector of information systems development, training

specialists for their building and maintenance, and what is most important, the tasks, solving

which business becomes more competitive.

It can be unequivocally asserted that big data, data science, and evolution of scalability

and fault tolerance of information systems have predetermined the development of information

technologies in the long term. Companies which do not take advantage of the full range of the

offered opportunities can stay afloat, but only those that invest resources and adapt to rapidly

changing realities will ensure maximum benefit and gain the upper hand.

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-

mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work

without further permission provided the original work is properly cited.
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22. Hilbert, M., López, P.: The world’s technological capacity to store, communicate, and

compute information. Science 332(6025), 60–65 (2011), DOI: 10.1126/science.1200970

23. Jun, S.P., Yoo, H.S., Choi, S.: Ten years of research change using Google Trends: From the

perspective of big data utilizations and applications. Technological Forecasting and Social

Change 130, 69–87 (2018), DOI: 10.1016/j.techfore.2017.11.009
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Mapping MPI processes to processor cores, called process mapping, is crucial to achieving the

scalable performance on multi-core processors. By analyzing the communication behavior among

MPI processes, process mapping can improve the communication locality, and thus reduce the

overall communication cost. However, on modern non-uniform memory access (NUMA) systems,

the memory congestion problem could degrade performance more severely than the locality prob-

lem because heavy congestion on shared caches and memory controllers could cause long latencies.

Most of the existing work focus only on improving the locality or rely on offline profiling to analyze

the communication behavior.

We propose a process mapping method that dynamically performs the process mapping for

adapting to communication behaviors while coordinating the locality and memory congestion. Our

method works online during the execution of an MPI application. It does not require modifica-

tions to the application, previous knowledge of the communication behavior, or changes to the

hardware and operating system. Experimental results show that our method can achieve perfor-

mance and energy efficiency close to the best static mapping method with low overhead to the

application execution. In experiments with the NAS parallel benchmarks on a NUMA system, the

performance and total energy improvements are up to 34% (18.5% on average) and 28.9% (13.6%

on average), respectively. In experiments with two GROMACS applications on a larger NUMA

system, the average improvements in performance and total energy consumption are 21.6% and

12.6%, respectively.

Keywords: communication, congestion, locality, MPI, multi-core, NUMA, process mapping.

Introduction

In the fields of high-performance computing (HPC) and enterprise computing, a large-scale

Symmetric Multi-Processing (SMP) system is typically built by using multiple processors to

have more processor cores within a system. These processors have shared memories and on-

chip memory controllers that form the base for NUMA (Non-Uniform Memory Access) multi-

processors. Each processor consists of one or several groups of processor cores, each of which is

physically associated with one or more memory controllers and memory devices. Such a group

of processor cores is referred to as a NUMA node [13, 16, 25]. Although the NUMA nodes are

generally connected by high-speed interconnect links such as QuickPath Interconnect (QPI) [32]

and HyperTransport [25], accessing a remote NUMA node still needs a longer latency than

accessing the data of the local memory device. Thus, the cost of remote memory access is higher

than that of local memory access.

Currently, modern multi-core processors are widely used not only for shared-memory parallel

processing but also for distributed-memory parallel processing, such as Message Passing Interface

(MPI) [24]. In MPI, communication among MPI processes is explicit and is performed by sending

and receiving messages. Each MPI process has a unique identifier called process ID or process

rank. The process that sends the message is called a sender, while the process that receives the

message is called a receiver. Thus, a communication event can be defined as one message with
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its corresponding processes of a sender and a receiver. This pair is also referred to as a process

pair [12, 21].

In NUMA systems, a communication event will access the local memory device if it is

performed by a process pair whose sender and receiver are executed by different cores of the

same NUMA node. On the other hand, it will access the memory device of the remote NUMA

node if it is performed by a process pair whose sender and receiver are executed by different cores

of different NUMA nodes. MPI provides extensions that enable faster intra-node communication

through the use of shared memory, such as Nemesis for MPICH2 [8] and KNEM [17] for Open

MPI [15]. However, as the cost of communication significantly affects the performance on NUMA

systems, exploiting the communication behavior to optimize the mapping between MPI processes

and processor cores is necessary to improve performance. Such process mapping methods are

called communication-aware process mapping [12, 26].

In modern NUMA systems, process mapping becomes more challenging because a large

number of processor cores in a system induce a large number of accesses to memory devices. As

the number of processor cores increases, the number of communication that can simultaneously

happen will also increase, causing congestion on shared caches and memory controllers. We

refer to this congestion as memory congestion. Conventional work on MPI process mapping

mostly focuses on improving the locality of communication by mapping processes frequently

communicate with each other, to processor cores that are closer to each other in the memory

hierarchy. Improving the locality of communications is important because it will reduce the cost

of communication and congestion on interconnect links. However, only considering the locality is

not sufficient to improve performance on modern NUMA systems. Furthermore, maximizing the

locality can degrade performance because it potentially increases the memory congestion [2, 16].

To optimize the process mapping, it is necessary to analyze the communication behavior of

the MPI applications. The communication behavior is determined by the communication among

MPI processes of the application. A process does not necessarily need to communicate with all

the other processes, and the time and amount of data exchanged among processes may vary.

Conventional process mapping methods rely on offline profiling to trace the communication

events and analyze the communication behavior. However, the offline profiling and analysis

impose a high overhead and is not applicable if the application changes its communication

behavior between executions. Furthermore, the data generated during profiling might be very

large, requiring a time-consuming analysis [30].

In this paper, we present a process mapping method, called Online Decongested Locality for

MPI (OnDeLoc-MPI), to tackle the locality and the memory congestion problems on modern

NUMA systems. It consists of a mechanism that dynamically performs the process mapping

for adapting to changes in the communication behavior, and a mapping algorithm to calculate

the process mapping that can simultaneously reduce the amount of remote memory accesses

and the memory congestion. OnDeLoc-MPI works at runtime during the execution of an MPI

application. It does not require prior knowledge of the communication behavior, modifications

to the application, or changes to the hardware and operating system.

The rest of the paper is organized as follows. In Section 1, we discuss related work and

compare it to OnDeLoc-MPI. Then, we describe the procedure and implementation of OnDeLoc-

MPI in Section 2. Experimental setup and results are presented in Section 3. This section also

discusses the overhead of our method. Finally, conclusions and future work are summarized in

Section 3.5.
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1. Related Work

Various MPI process mapping methods have been proposed in the related studies. Most of

the methods rely on offline profiling to trace communication between processes and to analyze

the communication behaviors of the applications [2, 9, 21, 31]. The main drawback of these

methods is the requirement of offline profiling, which has a high overhead and is potentially time-

consuming. On the other hand, the proposed OnDeLoc-MPI does not have these disadvantages

because it performs the process mapping dynamically at runtime during the execution of the

application.

An online communication detection method, called CDSM, has been proposed in a related

study [13]. It works on the operating system level during the execution of the parallel appli-

cation. It detects the communication behavior from page faults, and uses this information to

dynamically perform the process and thread mapping. CDSM employs a locality-based map-

ping algorithm to minimize the communication cost. The evaluation results of the related work

have shown that CDSM can improve the performance of the MPI benchmarks. There are two

key differences between CDSM and this work. First, OnDeLoc-MPI does not need to employ

a communication detection mechanism because communication events can be traced directly

from MPI events. Thus, it does not suffer from detection inaccuracy nor overhead caused by

the communication detection mechanism. Second, OnDeLoc-MPI employs a mapping algorithm

that aims to reduce both the communication cost and the memory congestion. In Section 3, we

compare the performance results of OnDeLoc-MPI and CDSM, and discuss the benefits of our

method.

A memory placement method, called Carrefour, has been proposed in [10]. It improves per-

formance on modern NUMA systems by reconciling the data locality and the memory congestion

problems. Carrefour works as a data mapping policy of the Linux kernel to dynamically place

memory pages on NUMA nodes to avoid the congestion. Since the method works at system

runtime, it suffers from the overheads caused by the memory access sampling and memory page

replication. Lepers et al. [23] proposed a thread and memory placement method, called Asym-

Sched, that considers the bandwidth asymmetry of asymmetric NUMA systems to minimize

congestion on interconnect links and memory controllers on modern NUMA systems. It relies

on continuous sampling of the memory accesses to analyze the communication among threads.

We cannot compare OnDeLoc-MPI with Carrefour and AsymSched because both methods

require a sampling mechanism that is available only in AMD processors. However, in contrast

to these methods, OnDeLoc-MPI analyzes the communication behavior directly from MPI com-

munication events, and it does not require the communication detection and memory sampling

mechanisms. Moreover, OnDeLoc-MPI works on the runtime system level, and it does not rely

on a specific operating system or hardware. Compared with AsymSched, OnDeLoc-MPI focuses

on reducing not only memory congestion but also the amount of remote accesses. Our evaluation

results in Sections 3.2 and 3.3 show that the reduction of the amount of remote accesses can

substantially improve performance and energy efficiency.
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Figure 1. The procedure of OnDeLoc-MPI

(a) A node topology with eight cores (b) A communication matrix with eight processes

Figure 2. The examples of NUMA node topology and communication matrix

2. OnDeLoc-MPI: An Online Process Mapping Method

for Coordinating Locality and Memory Congestion

In this section, we describe how OnDeLoc-MPI works during the execution of an MPI

application. We first explain the procedure of the method, and then describe the implementation

of the method in the MPI runtime system.

2.1. Procedure of OnDeLoc-MPI

Figure 1 shows the procedure of OnDeLoc-MPI, which consists of four steps:

1. Gather the node topology information of the NUMA system.

2. Monitor MPI communication events during the execution.

3. Calculate the MPI process mapping.

4. Apply the process mapping.

First, when the target application is launched, OnDeLoc-MPI obtains the information about

the NUMA node topology of the target system. The topology is modeled as a tree to express

the information about the locations of cache memories, memory controllers, and interconnect

links. In NUMA systems considered in this work, each NUMA node is physically associated

with a shared last-level cache (LLC) and an integrated memory controller, such as Intel-based

and AMD-based NUMA systems [25]. Thus, the location of the NUMA node represents both

the location of memory controllers and LLCs. This information is required because OnDeLoc-

MPI focuses on reducing the amount of remote accesses through interconnects and reducing

the congestion on the shared caches and memory controllers. Figure 2(a) shows an example of

the model of a two-node NUMA system that consists of eight processor cores. The model also

contains information about the physical identities of the NUMA nodes and the processor cores.

This information is used later by the mapping algorithm to calculate the mapping.

Second, during the execution of the application, the communication behavior of the appli-

cation is analyzed by monitoring the communication events among MPI processes. A commu-
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Figure 3. The mechanism of mapping interval adjustment

nication matrix is used to model the communication behavior, and it consists of identifiers of

MPI processes and amount of communication among the processes. The communication matrix

is a square matrix of order Np, where Np is the number of MPI processes executed by the ap-

plication. It has the same number of rows and columns because each process can communicate

with all the other processes. Figure 2(b) shows an example of the communication matrix for an

application that consists of eight processes. Each cell (x, y) of the matrix contains the amount

of communication between a pair of processes x and y, which is obtained by aggregating the

volume and number of communication events between the pair. In the communication behav-

ior shown by the matrix, processes 0 to 3 have a larger amount of communication than the

other processes. Since the communication behavior of the application may change during the

execution, we update the communication matrix periodically with a certain time interval, called

mapping interval. At the beginning of the execution, the values of all cells are set equal to zero.

In the third and fourth steps, OnDeLoc-MPI uses the information about communication

behavior to optimize the process mapping. In Step 3, the mapping is obtained by using an algo-

rithm, called OnDeLocMap+ algorithm, which is executed every time the communication matrix

is updated. The algorithm calculates the mapping that can improve the communication locality

and the memory congestion, which is detailed in Section 2.2. Then, in Step 4, the calculated

mapping is applied to the execution by assigning processor cores to processes according to the

mapping. Since the mapping result of Step 3 can be different for each calculation, OnDeloc-MPI

will migrate a process if the mapping of the process changes from the previous mapping.

As shown in Fig. 1, Steps 2 to 4 are performed iteratively during the execution of the

application. We note that the mapping interval can significantly affect the performance results

and overhead of our method. If the interval is too long, OnDeLoc-MPI may not adapt quickly to

the changes in the communication behavior. On the other hand, a shorter interval will increase

the overhead because it increases the frequency of updating the communication matrix and

calculating the process mapping. We discuss the overhead of OnDeLoc-MPI in more detail in

Section 3.4.

To reduce the overhead, OnDeLoc-MPI dynamically adjusts the mapping interval, which is

shown in Fig. 3. We use a slope parameter, v, to automatically increase and decrease the mapping

interval, where v > 1. If the calculated mapping does not differ from the previous mapping, the

mapping interval is multiplied by v as in Equation 1. The mapping interval is increased because

the current mapping is assumed to be stable. On the other hand, if the mapping differs from

the previous mapping, the mapping interval is divided by v as in Equation 2. We shorten the

mapping interval so that the mapping can adapt more quickly to changes in the communication

behavior.

Intervalcurr = Intervalprev × v. (1)

Intervalcurr =
Intervalprev

v
. (2)
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2.2. Implementation of OnDeLoc-MPI

OnDeLoc-MPI has been implemented as a module for Open MPI runtime system [15]. The

implementation consists of four parts:

1. A modification to the monitoring layer of the runtime system.

2. Data consolidation among MPI processes.

3. OnDeLocMap+ algorithm.

4. Data structures to store the communication matrices and process mapping.

2.2.1. Modification of the runtime system

For the implementation, we added a module in the monitoring layer of the Open MPI runtime

system, and the module is started when an MPI application is launched by the runtime system.

To perform Steps 1 and 2 of the OnDeLoc-MPI procedure, we have implemented two functions

in the module. The first function obtains the node topology information of the system by using

Hwloc library [7]. We use this library because it can provide both logical and physical indexes of

the processor cores and the NUMA nodes. The second function monitors MPI communication

events during the execution. During the monitoring, the amount of communication of each

process pair is accumulated using a counter. This function uses a monitoring framework [6] that

is built on top of the point-to-point management layer (PML) of the Open MPI stack [15]. We use

PML because it can monitor point-to-point operations organizing a collective communication,

and thus the communication events can be traced in both cases of point-to-point and collective

communications.

For Steps 3 and 4, we create a thread, called mapper thread, that periodically calculates and

applies the process mapping. This thread is a child thread of the process that has the local ID 0.

In MPI, the local ID is the local rank of an MPI process within a system [15, 18]. It means that

if an MPI application is executed with more than one NUMA system, OnDeLoc-MPI will create

one mapper thread for each system, and each thread calculates and applies the process mapping

separately for each system. To apply the process mapping, we assign the target processor cores

to processes according to the mapping by using the sched setaffinity() function call of the

Linux system. However, the use of this function is not mandatory. Alternatively, some libraries

such as Hwloc-bind [7] and Likwid-pin [29] can be used to assign processor cores to processes.

We are aware that, in an MPI application, two MPI processes running on different NUMA

systems may communicate with each other. Thus, calculating the process mapping separately for

each system may not result in the best mapping for the application. However, by performing the

process mapping separately for each system, OnDeLoc-MPI does not suffer from the overhead of

migrating processes from one system to another system. This overhead may surpass the benefit

of our method because migrating MPI processes across systems potentially incurs a significant

network overhead [5]. In the future, we will discuss the impacts of migrating MPI processes

across NUMA systems to the performance results of our method.

2.2.2. Data consolidation

In an MPI application, each MPI process is executed on a processor core as a single operating

system process. However, the PML monitors MPI communication events separately for each

process, and in Linux and other UNIX operating systems, a process cannot directly access
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Figure 4. The consolidation mechanism with four MPI processes

the address space of another process. Thus, to determine the communication behavior of the

application, it is necessary to consolidate the communication events among the processes.

The consolidation mechanism is shown in Fig. 4. For the consolidation purpose, we store

an intermediate communication matrix in a shared memory region. Each row of this matrix has

its own shared memory object, and thus the accesses to the matrix do not need to be locked

since each row is updated only by one process. We use the POSIX shared memory API [22] to

read and write the shared memory objects. However, the consolidation process may increase

congestion on the shared region if a large number of processes frequently update the matrix.

Thus, we also use the mapping interval to limit the frequency of updating the matrix.

During Step 2, each process updates its row in the intermediate matrix using the monitoring

counters. The i-th row (ri) is updated by the process with ID i (Pi). However, the value of each

counter is accumulated during the monitoring step. If the communication matrix is updated with

the accumulated values, OnDeLoc-MPI may not be able to detect changes in the communication

behavior because the previous communication behavior may significantly influence the current

result of communication behavior. Thus, to reset the communication behavior, we update cell

(x, y) by subtracting the last value of the cell from the counter value for processes x and y.

The mapper thread generates a consolidated matrix by aggregating the data from all rows of

the intermediate matrix. The generated communication matrix is then used as the input to the

mapping algorithm.

2.2.3. OnDeLocMap+ algorithm

The OnDeLocMap+ algorithm is depicted in Algorithm 1. We adopt the algorithm proposed

in our previous work, called On-DeLoc [3], to implement OnDeLocMap+. A key difference

between these two algorithms is that OnDeLocMap+ considers the previous mapping to calculate

the current mapping. In the previous work, we have shown that the migration overhead has

a significant impact on the performance results of On-DeLoc. To reduce this overhead, the

OnDeLocMap+ algorithm prevents unnecessary process migrations by giving a higher priority

to processes that have a higher amount of communication to be mapped to the same NUMA node

of the previous mapping. We detail the difference between the two algorithms in the following

description.

First, OnDeLocMap+ uses the topology model to construct the map between processor core

IDs and process IDs (Line 1). The keys of the map represent the IDs of processor cores available
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Algorithm 1 The OnDeLocMap+ Algorithm.

Input: T {The node topology tree}
Input: A {The communication matrix}
Input: PrevM {The previous mapping}
Output: M {The map of processor core IDs and process IDs}

1: M ← createMap(T )

2: Pairs← generatePairs(A)

3: sortedPairs← sortByAcomm(Pairs)

4: i← 0

5: while i < num(Pairs) and numUnmappedCores(M) > 0 do

6: current pair ← sortedPairs[i]

7: prev nodes← getPreviousNodes(current pair, PrevM)

8: if isNodesAvailable(prev nodes) then

9: mapPair(current pair, prev nodes)

10: else

11: mapPair(current pair, nextNodeAvailable(T ))

12: end if

13: i← i + 1

14: end while

in the system, and each value represents the ID of the process mapped to the processor core of

the key. At the beginning of the algorithm, all values are set to empty. Then, it generates pairs of

processes from the communication matrix (Line 2). A pair of processes x and y is generated for

each matrix cell (x, y) of the matrix. The algorithm then selects a process pair that has not been

mapped to processor cores sequentially from the pairs with the highest to the lowest amount

of communication. This selection is achieved by the sorting step in the algorithm (Line 3). A

NUMA node is available for the mapping if it has one or more unmapped cores. In On-DeLoc, the

mapPair() function always maps the processes to the processor cores of the NUMA node that is

currently available in a round-robin fashion (Line 11). We aim to improve the locality by mapping

two processes of a pair to the same NUMA node, while also reducing the memory congestion

by mapping different pairs to the different NUMA nodes. However, in contrast to On-DeLoc,

when selecting the target NUMA nodes for a process pair, OnDeLocMap+ first evaluates the

NUMA nodes that have been previously mapped for the same pair (Lines 7–8). The function

getPreviousNodes() will return two NUMA nodes, where each node is associated with each

process of the pair. If the previous NUMA nodes are available, it will map each process of the

pair to the processor cores of the previous NUMA node associated with the process (Line 9)

so that each process of the pair will not be migrated to a different NUMA node. Otherwise,

OnDeLocMap+ will map the pair to the processor cores in a round-robin fashion, the same way

as the previous algorithm.

2.2.4. Data structures

For each MPI application, we allocate two arrays to store the two communication matrices.

The first array is to store the consolidated communication matrix, and the other array is to

store the intermediate matrix. Since the matrix is a square matrix of order Np, the size of each
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matrix scales quadratically with the number of MPI processes. The size of each matrix cell

is 4 bytes, and thus the total size of the memory used for all the communication matrices is

(N2
p × 2× 4) bytes. In addition to the communication matrices, we allocate a key-value map to

store the previous mapping, where each element of the map consists of a processor core ID and

its associated process ID. The size of the map scales linearly with Np. The size of each element

is 8 bytes, and thus the total size of the memory allocated for the key-value map is (Np × 8)

bytes.

3. Experimental Evaluation

In this section, we present the experimental evaluation of OnDeLoc-MPI. Our main exper-

imental results on a NUMA system consist of three parts: performance, energy consumption,

and overhead. In addition, we provide and discuss our evaluation results with a larger NUMA

system.

3.1. Experimental Setup

The main experiments have been conducted on a NUMA system, named Xeon2, that consists

of two NUMA nodes and one Intel Xeon E5-2690 processor per NUMA node. The system has 32

logical cores in total, and it is running Linux OS kernel v3.2. The NUMA nodes are connected

with QuickPath Interconnect (QPI) [32], and each NUMA node has 16 logical cores and an

Integrated Memory Controller (IMC). Open MPI v3.1 is used as the MPI runtime system for

the experiments. As workloads, we used eight MPI applications of the NAS Parallel Benchmarks

(NPB) [4] v3.4 with the class C problem size. All the applications except BT and SP are executed

with 32 processes using all cores in the system. BT and SP require a square number of processes,

and thus we execute these two applications with 25 processes.

In all the experiments, we keep the mapping interval higher than or equal to 500 ms to

limit the overhead. The parameter v is set equal to 2, and this value is chosen empirically from

experiments with the NPB applications. We are aware that in parallel applications that change

their communication behavior during their execution, this parameter will affect the performance

results of our method. However, to determine the optimal value of v for a particular application,

it is necessary to analyze its temporal communication behavior prior to the execution of the

application. We avoid this analysis step because it will incur a high overhead [30]. In our future

work, we will investigate the impacts of this parameter on the performance and overhead of our

method.

We compare OnDeLoc-MPI with an online-based thread mapping method and two static

mapping methods. The static mapping methods are Default and Static-best. Default is the

original mapping of the MPI runtime system that maps the neighboring processes to processor

cores of different NUMA nodes in a round-robin fashion. It represents the baseline of our ex-

periments. Static-best mapping is obtained by using an offline-based method proposed in our

previous work [2]. It first collects communication traces by preliminary running the target ap-

plication. Then, it analyzes the communication behavior of the application and calculates the

mapping using the CLB algorithm. We also evaluated the Treematch [21] algorithm to calculate

the mapping. Since CLB shows lower execution times than Treematch, we show only the results

for CLB. Note that Static-best mapping works offline prior to the execution of an application,

and thus has a high overhead caused by the preliminary run and offline analysis.
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(a) Performance results of CDSM, normalized to the

baseline

(b) The total number of threads compared with the

number of MPI processes

Figure 5. Evaluation results with CDSM

Figure 6. Performance results on Xeon2, normalized to the baseline

The online-based mapping method used for the evaluation is CDSM-mod, which is a modified

version of CDSM. We modify CDSM because our experimental results show that it significantly

degrades the performance of all the tested applications, which are contrast with the results shown

in the related work [13]. Figure 5(a) shows the performance results of CDSM, compared with

the baseline and a random mapping method. For the random mapping, we randomly generate a

process mapping before each execution. As shown in the figure, CDSM shows higher execution

times for all the applications. In BT, CDSM can increase the execution time by a factor of two

compared with Default. We have observed that the performance degradation is caused by the

inaccuracy of detecting the communication events among MPI processes. CDSM detects the

communication events by analyzing the page faults of all threads of the application. However,

in multithreaded MPI implementations, an MPI process can spawn multiple threads [14]. Thus,

the total number of threads spawned by the runtime system can be higher than the number of

MPI processes.

Figure 5(b) shows the total number of threads executed for the NPB applications with

32 number of MPI processes on Xeon2. Although the number of MPI processes is less than or

equal to the number of processor cores of the system, the total number of threads executed during

the execution is substantially higher than the number of cores and MPI processes. By detecting

the communication among all threads of the application, CDSM cannot accurately detect the

communication among MPI processes. To increase the accuracy, we modify the method to only

include the parent threads of the MPI processes in the steps of detecting communication and

calculating the thread mapping. We detect these parent threads from the first n threads created

at the beginning of the execution, where n is equal to Np.

3.2. Performance Evaluation

Figure 6 shows the performance results on the Xeon2 system. We measure the execution

time of the applications with each mapping method. All the experimental results are the averages
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(a) LLC miss (b) QPI volume

(c) IMC queue

Figure 7. Performance monitoring results, normalized with the baseline

obtained from 10 sample executions, which are normalized to the results of the baseline method.

We also provide the 95% confidence interval calculated with Student’s t-distribution. The error

line of the bar represents the confidence intervals of the samples.

On average, OnDeLoc-MPI shows higher performance improvements than those of Default

and CDSM-mod. Compared with Default, the average performance improvement of OnDeLoc-

MPI is 18.5%. The highest performance improvements are exhibited in CG and LU by 31.2% and

34%, respectively. CDSM-mod shows performance improvements from Default for most of the

applications, indicating that our modification to CDSM effectively increases the communication

detection accuracy, and thus it can increase the performance of the applications.

For all the applications except EP and SP, Static-best shows the highest improvements.

However, the average improvement of OnDeLoc-MPI is only 0.5% lower than that of Static-

best, which means that our method can achieve performance close to that of Static-best even

without any kind of extensive profiling and analysis. Moreover, in SP, OnDeLoc-MPI achieves

the highest performance improvement among the methods. These results indicate that in the

case of SP, the static mapping is not sufficient to take into account the temporal changes of the

communication behavior.

To investigate the sources of performance improvements, we evaluate the performance char-

acteristics of the NPB applications. We use LLC misses, QPI volume and IMC queue metrics for

the evaluation. These metrics are obtained by monitoring the Intel performance counters [20].

LLC misses represent the number of last-level cache misses across all NUMA nodes. IMC queue

is the total queuing time of memory accesses in the memory controllers. A higher value of this

metric indicates a longer queuing delay caused by the memory congestion. QPI volume is the

total volume of data sent through interconnect links. A higher value of this metric indicates

longer latencies from the remote memory accesses.

Figures 7(a), 7(b) and 7(c) show the results of last-level cache misses, QPI volume and

IMC queue, respectively. These figures show that most of the applications gain a substantial

performance improvement from reductions in the caches misses and IMC queuing delay. It

means that the memory congestion has a significant impact on the performance of most of
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Figure 8. Energy consumption results on Xeon2, normalized with the baseline

the NPB applications. Moreover, in BT and SP, CDSM-mod increases the IMC queuing delay,

and in most of the applications, it shows a higher IMC queue than those of OnDeLoc-MPI and

Static-best. This fact suggests that only considering the locality is not sufficient to achieve the

best performance for these applications. In the cases of BT and SP, the performance differences

among the methods are smaller than that in the other applications. It is because, as shown

in our previous work [3], these two applications have the communication behavior that can

benefit from the Default mapping. In these two applications, most communication events are

performed by the neighboring processes, and thus the Default mapping is sufficient to improve

the performance of these applications.

In most of the applications, CDSM-mod shows a higher QPI volume (Fig. 7(b)) and a

longer execution time (Fig. 6) compared with Static-best and OnDeLoc-MPI. By migrating

the processes during the execution, CDSM-mod and OnDeloc-MPI potentially increase data

traffic on interconnects because the migrated processes may need to access data that reside in

a remote NUMA node. However, the performance improvements achieved by OnDeLoc-MPI

are close to those of Static-best. Furthermore, even for the applications that cannot gain a

significant performance improvement from Static-best mapping, such as BT, OnDeLoc-MPI

does not reduce the performance of the applications. These results show that the migration

overhead in online-based mapping methods can have a significant impact on the execution time.

However, our method can effectively reduce this overhead.

3.3. Energy Consumption Evaluation

In this section, we discuss the energy consumption of the NPB applications on the Xeon2

system. We measure the processor energy and DRAM energy by using the Running Average

Power Limit (RAPL) hardware counters [11]. As shown in the performance monitoring results,

the process mapping methods have a significant impact on the cache misses, the interconnect

traffic, and queuing delay in memory controllers. Therefore, the mapping methods will affect

the energy consumption of not only the processor cores but also the interconnects and memory

controllers. In the Intel processor used for the evaluation, each package of processor consists

of core and Uncore components. Uncore refers to components that are apart from processor

core, which include QPI and memory controllers [19]. To evaluate the energy consumption of

processor core and Uncore components, we decompose processor energy consumption into core

and Uncore energy consumptions. We measure core and Uncore energy also using the RAPL

counters.
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Figure 9. Core and Uncore energy consumptions on Xeon2, normalized with the baseline

Figure 8 shows the results of processor energy and DRAM energy for each mapping method

on Xeon2. In all the applications, OnDeLoc-MPI shows a lower total energy consumption than

those of Default and CDSM-mod. On average, the total energy is reduced by 13.6% compared

with Default, and the highest reduction is 28.9% in the case of LU. In some applications, such

as IS and MG, OnDeLoc-MPI and CDSM-mod increase DRAM energy. It is because these two

online mapping methods use more DRAM to analyze the communication behavior and calculate

the mapping. However, the increase in DRAM energy is relatively small compared with the

decrease in processor energy. Since the total energy is mostly contributed by the processor

energy, OnDeLoc-MPI achieves lower total energy consumption than the baseline in all the

applications.

Figure 9 shows the results of core and Uncore energy consumptions. In all the NPB applica-

tions, OnDeLoc-MPI show lower core and Uncore energy consumptions than those of CDSM-mod

and Default. The core energy consumption is reduced most in LU, with a reduction of 31.5%,

and the Uncore energy consumption is reduced most in CG, with a reduction of 27.9%. On

average, the core energy is reduced by 15% in OnDeLoc-MPI and 16.1% in Static-best, while

Uncore energy is reduced by 16% and 17.7%, respectively.

In most of the applications, CDSM-mod shows higher core and Uncore energy consumptions

than Static-best and OnDeLoc-MPI. The increases in core and Uncore energy is caused by the

increases in execution time and interconnect traffic, respectively. Moreover, in BT and SP,

CDSM-mod shows the highest Uncore energy because, as shown in Fig. 7(b) and 7(c), it also

increases the queuing time in the memory controllers. These results show that compared to

Default and CDSM-mod, OnDeLoc-MPI is more effective in reducing the energy consumption

of interconnects and memory controllers.

In most of the applications, the lower execution time leads to the lower core and Uncore

energy consumptions, indicating that the energy reductions are mainly contributed by the re-

duction in execution time. By reducing the execution time, OnDeLoc-MPI, CDSM-mod, and

Static-best reduce the static energy consumption in most of the applications. However, as shown

in BT and SP, OnDeLoc-MPI can achieve lower reductions in core and Uncore energy consump-

tions than those of Default and CDSM-mod with no significant differences in the execution time.

This fact shows that OnDeLoc-MPI also reduces the dynamic energy consumption by reducing

the number of cache misses and queuing time in the memory controllers.
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(a) Mapping overhead (b) Migration overhead

Figure 10. Overhead of OnDeLoc-MPI

3.4. Overhead of OnDeLoc-MPI

OnDeLoc-MPI incurs overhead on the execution of an MPI application because it works

during the application runtime. The overhead is caused by the computation of the mapping

and the migration of processes. The mapping overhead consists of the repeated accesses to

the intermediate and consolidated communication matrices and the execution of the mapping

algorithm, while the migration overhead consists of increases in cache misses and interconnect

traffic for the process after migration. In this section, we evaluate the overhead of OnDeLoc-MPI

on the Xeon2 system.

The mapping overhead is shown in Fig. 10(a). It is evaluated by measuring the time in the

function that accesses the communication matrices and to calculate the mapping. The values are

the percentage of the execution time of each application. For all the applications, the mapping

overhead is less than 9%, and the average overhead of the mapping is low, which is 2.5%. IS shows

the highest mapping overhead because its execution time is much shorter than those of the other

applications, and thus, the ratio of the mapping overhead to the execution time is higher than

those of the other applications. However, the time used in IS for updating the communication

matrices and calculating the mapping is less significant compared with the other applications.

The results of mapping overhead show that the dynamic adjustment of the mapping interval

can effectively reduce the overhead.

The migration overhead is evaluated by comparing the performance monitoring results of

Static-best mapping and OnDeLoc-MPI for each application. However, in this evaluation, we

disable the functions of OnDeLoc-MPI that repeatedly update the communication matrix and

compute the mapping. The process mapping for each interval is provided offline prior to the

execution. We obtain the mapping of each interval by preliminary running each application with

OnDeLoc-MPI. Thus, in this evaluation, only the migration overhead affects the execution of

each application.

Figure 10(b) shows the migration overhead on the cache misses and interconnect traffic. We

obtain cache misses by aggregating the cache misses of all cache levels across the NUMA nodes.

For all the applications, the migration overhead is less than 11%, and the highest overheads

on the interconnect traffic are imposed in CG and FT. As shown in our previous work [3], CG

has a wide variation of the amount of communication among processes. Moreover, these two

applications have a high number of memory accesses. Thus, migrating a process potentially

increases the amount of remote accesses because the process may need to access data that reside

in the previous NUMA node. BT and CG show the highest overhead to last-level cache misses,
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(a) Test Case A (b) Test Case B

Figure 11. The communication behaviors of the GROMACS applications

indicating that these two applications access cache memories more than the other applications.

For the other applications, the migration overheads are small because, in these applications,

the process mapping is more stable than those of CG and FT. OnDeLoc-MPI performs less

migration during the execution of these applications.

The performance and overhead results show that the migration overhead mainly causes the

performance differences between OnDeLoc-MPI and Static-best mapping. This overhead is af-

fected by the numbers of memory accesses and changes in the communication behavior of the

application. During the execution, some applications, such as BT, CG and FT access memory

devices and change their communication behavior more frequently than the other applications.

The migration overheads of OnDeLoc-MPI in these applications are the highest among the

applications, and thus OnDeLoc-MPI shows a lower performance improvement compared with

Static-best mapping. On the other hand, it shows lower migration overheads in the other ap-

plications, and thus OnDeLoc-MPI can achieve a comparable performance with Static-best in

the other applications. Moreover, in SP, the benefit of online mapping surpasses the overhead

of OnDeLoc-MPI, and thus it can achieve a higher performance than that of Static-best.

3.5. Evaluation on a Larger System

To evaluate our method with larger number of NUMA nodes and processor cores, we have

conducted experiments on a NUMA system, named KNL4, which is based on Intel Xeon Phi

Knights Landing (KNL) processor [28]. The system has 288 logical cores in total, and it is

running Linux kernel v4.4. We configure the system as a four-node NUMA system by setting

Sub-NUMA clustering (SNC) mode as the clustering mode of the KNL. In this cluster mode,

the system is partitioned into four NUMA nodes, with 72 logical cores per NUMA node. We

also use Open MPI v3.1 as the MPI runtime system for this evaluation.

In this evaluation, we use two biomolecular applications of the UAEBS workloads [27, 33].

The applications are Test Case A and Test Case B of the workloads that are based on GROMACS

simulation [1]. The communication behaviors of these applications are shown by the communica-

tion matrices in Fig. 11. The darker cells indicate a higher amount of communication. We obtain

these matrices from the last mapping result of OnDeLoc-MPI during the execution of these ap-

plications. These two applications are executed with 288 number of MPI processes to use all the

processor cores of the system. We do not use the NPB applications because all the applications

except EP cannot be executed with this number of processes. OnDeLoc-MPI is compared with
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(a) Performance and energy (b) LLC misses (c) Memory bandwidth

Figure 12. Performance and energy consumption results on KNL4, normalized with the baseline

Default and Static-best mapping. We cannot compare our method with CDSM-mod because

of its limitation to the previous version of Linux kernel. This fact highlights the advantage of

implementing our method in the runtime system. which is that OnDeLoc-MPI does not depend

on specific features of the hardware or operating system.

Figure 12(a) shows the results of performance and energy consumption on the KNL4 system.

We cannot provide the Uncore energy in this evaluation because of the limitation of the RAPL

counters on the KNL. However, we can still evaluate the impacts of the mapping methods

on the total energy consumption by measuring processor and DRAM energy. As shown in the

figure, OnDeLoc-MPI reduces the execution times and energy consumptions in both applications.

Compared to Default, the execution time is reduced most in Test Case B, with a reduction of

22.3%, while the highest total energy reduction is shown in Test Case A, with a reduction of

14.3%. On average, the execution time and total energy consumption are reduced by 21.6% and

12.6%, respectively.

As shown in the figure, OnDeLoc-MPI shows lower improvements compared with Static-

best. However, the performance and energy consumption results of these two methods are close

to each other. The differences of execution time are 3.91% in Test Case A, and 1.24% in Test

Case B, while the processor energy differences are 3.98% and 0.47%, respectively. The differences

in Test Case A are higher than those in Test Case B because the communication behavior of Test

Case A is more irregular than that of Test Case B. As shown in their communication matrices,

the number of tasks that perform substantial amount of communication in Test Case A is higher

than that in Test Case B. OnDeLoc-MPI updates the process mapping more frequently in Test

Case A. The performance and energy consumption results of these two applications suggest that

the overhead of OnDeLoc-MPI is still low even if the number of processes and NUMA nodes

becomes larger.

For further evaluation, we measure the last-level cache misses and memory bandwidth met-

rics on the KNL4 system. Memory bandwidth is the bandwidth of memory accesses to the

memory controllers. We cannot measure the QPI volume and IMC queue metrics because of the

limitation of the monitoring counters on the KNL. However, the memory bandwidth metric can

show the impacts of the mapping methods on the memory congestion because higher memory

congestion leads to lower memory access bandwidth.
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Figures 12(b) and 12(c) show the results of cache misses and memory bandwidth, respec-

tively. These results suggest that both OnDeLoc-MPI and Static-best gain performance and

energy improvements by reducing last-level cache misses and memory congestion. Compared

with Default, OnDeLoc-MPI shows lower cache misses and higher memory bandwidth for both

applications. The highest reduction of cache misses is 30% with Test Case A, while the highest

improvement of memory bandwidth is 28.8% with Test Case B. Compared with Static-best,

OnDeLoc-MPI shows higher cache misses in Test Case A, and shows lower memory bandwidth

for both applications. However, the differences of the results between the two methods are small.

The differences of cache misses are 3.37% in Test Case A, while the memory bandwidth differ-

ences are 2.9% and 2.1% in Test Case A and Test Case B, respectively.

Conclusions and Future Work

In this paper, we have proposed a process mapping method, called OnDeLoc-MPI, to address

the locality and the memory congestion problems on NUMA systems. Our method works online

during the execution of an MPI application, and dynamically performs the process mapping to

adapt to changes in the communication behavior of the application. In contrast to the related

work, OnDeLoc-MPI does not need offline profiling to analyze the communication behavior of

the application, and does not rely on communication detection mechanisms and specific features

of the hardware or operating system. Alternatively, it analyzes the communication behavior by

monitoring the MPI communication events during the execution of the application.

OnDeLoc-MPI has been evaluated on a real NUMA system with a set of NAS parallel

benchmarks. On average, it can achieve performance and energy improvements close to the

best static method with low overhead. Compared with the default mapping of the MPI runtime

system, the performance and total energy improvements are up to 34% (18.5% on average),

and 28.9% (13.6% on average), respectively. In addition, OnDeLoc-MPI has been evaluated on

a larger NUMA system with two GROMACS applications. On the larger system, it achieves

performance and energy improvements up to 22.3% and 14.3%, respectively. Our evaluation

results have shown that the performance and energy improvements are obtained from reductions

in cache misses, interconnect traffic, and queuing delay in memory controllers.

During the execution of an MPI application, OnDeLoc-MPI imposes overhead from the

mapping calculation and process migration. To reduce the overhead, OnDeLoc-MPI employs

mechanisms to prevent unnecessary process migrations and automatically adjust the mapping

interval. The evaluation results show that the mechanisms can effectively reduce the overhead.

The mapping overhead to the execution time is less than 9%, and the migration overhead to

interconnect traffic and cache misses is less than 11%.

As future work, we intend to evaluate the impacts of our method on the performance

and energy consumption of a large cluster of NUMA systems. For this future work, we will

investigate the overhead of migrating processes between systems, and the impacts of parameter

v for different applications. We also intend to extend to our method for parallel applications

with hybrid programming of MPI and multithreading, such as OpenMP and Pthreads.
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General purpose GPUs are now ubiquitous in high-end supercomputing. All but one (the

Japanese Fugaku system, which is based on ARM processors) of the announced (pre-)exascale

systems contain vast amounts of GPUs that deliver the majority of the performance of these

systems. Thus, GPU programming will be a necessity for application developers using high-end

HPC systems. However, programming GPUs efficiently is an even more daunting task than tra-

ditional HPC application development. This becomes even more apparent for large-scale systems

containing thousands of GPUs. Orchestrating all the resources of such a system imposes a tremen-

dous challenge to developers. Luckily a rich ecosystem of tools exist to assist developers in every

development step of a GPU application at all scales.

In this paper we present an overview of these tools and discuss their capabilities. We start

with an overview of different GPU programming models, from low-level with CUDA over pragma-

based models like OpenACC to high-level approaches like Kokkos. We discuss their respective

tool interfaces as the main method for tools to obtain information on the execution of a kernel

on the GPU. The main focus of this paper is on two classes of tools, debuggers and performance

analysis tools. Debuggers help the developer to identify problems both on the CPU and GPU side

as well as in the interplay of both. Once the application runs correctly, performance analysis tools

can be used to pinpoint bottlenecks in the execution of the code and help to increase the overall

performance.

Keywords: performance analysis, debugging, GPU computing.

Introduction

General purpose GPUs are now ubiquitous in high-end supercomputing. With the rise of

deep learning and the convergence of simulation-based HPC and AI, GPU computing took a

major leap forward. All but one (the Japanese Fugaku system, which is based solely on ARM

processors) of the announced (pre-)exascale systems contain vast amounts of GPUs that deliver

the majority of the performance of these systems. Thus, GPU programming will be a necessity for

application developers using high-end HPC systems. However, programming GPUs efficiently

is an even more daunting task than traditional HPC application development. This becomes

even more apparent for large-scale systems containing thousands of GPUs. Orchestrating all

the resources of such a system imposes a tremendous challenge to developers. Besides GPUs

other accelerators have been tried, the most prominent being Intels Xeon Phi as a many-core

architecture and FPGAs. However, the Xeon Phi has been discontinued and FPGAs are only a

niche solution for very specific workloads or research projects, but not (yet) ready for production

use in general HPC.

NVIDIA GPUs power most of todays GPU-enabled supercomputers. 136 systems in the

TOP500 list of November 20192 are equipped with NVIDIA GPUs, including the number one

and two systems, the U.S.-based Summit [33] and Sierra [25] supercomputers. Thus, we put a

strong focus on NVIDIA GPUs in this paper.

Tools have always been an integral part of the HPC software stack. Debuggers and correct-

ness checker help application developers to write bug-free and efficient code. Code efficiency can

1Forschungszentrum Jülich GmbH, Jülich Supercomputing Center, Jülich, Germany
2https://www.top500.org/list/2019/11/
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be improved by pinpointing bottlenecks with performance analysis tools. The tools community

is working hard to provide tools that master the complexity of modern HPC systems [30], facing

the same challenges when scaling up as the application developers themselves. Today, a rich

ecosystem of tools exist to assist developers in every development step of a GPU application at

all scales, from a workstation to a supercomputer.

In this paper we present an overview of these tools and discuss their capabilities. We present

the currently dominant programming models for GPU computing and discuss their tool interfaces

as the main method for tools to obtain information on the execution of a kernel on the GPU in

section 1. Then we look into debuggers in section 2, which help to develop correct heterogenous

applications that scale to several hundred or thousand of GPUs. Performance analysis tools,

which help to use these resources efficiently, are discussed in section 3. Finally we conclude the

paper and give an outlook on future developments in heterogenous supercomputing.

1. GPU Programming Models

For decades two programming paradigms dominated the HPC landscape – distributed-

memory programming (inter-node) and shared-memory programming (intra-node). The main

programming model for distributed-memory programming is MPI, the Message Passing Inter-

face [28], which is used in virtually all HPC applications. MPI is a rather low-level interface,

i.e. the user has to explicitly express the communication pattern and data transfers. Shared

memory programming is mostly done via OpenMP [36], a directive-based API. For both MPI

and OpenMP alternatives exist, like the PGAS (Partitioned Global Address Space) model for

distributed memory or pthreads and TBB (Threading Building Blocks) for shared memory, but

none come close in popularity to MPI and OpenMP.

With the advent of general purpose GPUs, things changed significantly. Now a new very

powerful but also very complex architecture was thrown into the mix, yet on the other hand the

old programming paradigms are still valid in order to create scaling HPC applications. There

exist several programming models for GPUs, some are low-level like MPI, others are pragma-

based like OpenMP. Some support only certain languages or specific vendor architectures, others

are more open. So it is a challenge for an application developer to choose the right programming

model for his application, but also for tools developers to choose which models to support. In

this section we present various GPU programming models that suits different needs, CUDA

and OpenCL as high-performance low-level interfaces, OpenACC and OpenMP as easy-to-use

yet efficient directive-based approaches and KOKKOS and RAJA that aim for performance

portability on a wide range of architectures. Where applicable we also give an introduction to

the respective tools interface as the main source for tools to get information on the kernels

running on the accelerator and the data transfers to and from the device.

1.1. CUDA

CUDA [32] is a parallel computing platform and programming model developed by NVIDIA

for general computing on NVIDIA GPUs. It is a very low-level interface, i.e. the programmer has

to specify every data movement and kernel launch explicitly. Given access to all hardware features

of modern GPUs like Unified Memory, CUDA can yield the highest performance achievable on

GPUs. However, this comes at the cost of a rather high development effort and non-portability.

A rich set of libraries, both from NVIDIA directly and from third parties, are available for
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CUDA, enabling developers to harness the power of CUDA without the need to deal with all

the low-level details of the architecture. So far CUDA is the most popular programming model

for GPU programming, thus most tools support CUDA to some extend. While CUDA itself is

C++, CUDA bindings exist for many programming languages like C, Fortran (currently only

for PGI compilers), Python and MATLAB.

1.1.1. CUPTI – The CUDA Performance Tools Interface

The NVIDIA CUDA Profiling Tools Interface (CUPTI) provides performance analysis tools

with detailed information about how applications are using the GPUs in a system. CUPTI pro-

vides two simple yet powerful mechanisms that allow performance analysis tools to understand

the inner workings of an application and deliver valuable insights to developers. The first mech-

anism is a callback API that allows tools to inject analysis code into the entry and exit point of

each CUDA C Runtime (CUDART) and CUDA Driver API function. Using this callback API,

tools can monitor an applications interactions with the CUDA Runtime and driver. The second

mechanism allows performance analysis tools to query and configure hardware event counters

designed into the GPU and software event counters in the CUDA driver. These event counters

record activity such as instruction counts, memory transactions, cache hits/misses, divergent

branches, and more. This enables automated bottleneck identification based on metrics such as

instruction throughput, memory throughput, and more.

1.2. OpenCL, SYCL and oneAPI

The aim of OpenCL, the Open Computing Language, is to provide a vendor independent

programming interface for all kinds of computing devices, from CPUs over GPUs to FPGAs.

OpenCL is developed by the Khronos Group, an open industry consortium of over 100 leading

hardware and software companies. OpenCL, like CUDA, is a low-level API where the kernels

are written in the OpenCL C++ kernel language, a static subset of C++14.

To ease the development of heterogenous applications, the Khronos group developed SYCL

as an abstraction layer build on the concepts, portability and efficiency of OpenCL. SYCL allows

the developer to program on a higher level than OpenCL, while still having access to lower-

level code. A lot of the boilerplate code of OpenCL is removed by SYCL and a single-source

programming, where host and device code are contained in the same source file, is enabled.

The newest member in the OpenCL language space is Intel’soneAPI with DPC++ (Data

Parallel C++), which in turn is built upon SYCL. Due to its recent Beta release and the – at the

time of writing – limited availability of hardware, the support of tools for oneAPI could not be

evaluated for this paper. However, it is clear that the well-known Intel tools VTune and Advisor

will have rich support for oneAPI. The most interesting and unique feature of the Intel Advisor

will be an analysis of the potential gain of offloading a sequential code path to an accelerator.

It will be interesting to see how oneAPI will be adopted by the HPC community and how

the tools support for SYCL and oneAPI develops. Codeplay, a compiler vendor and active part

in the SYCL community, recently announced SYCL support for NVIDIA GPUs [38], which

could dramatically increase the interest in SYCL as a portable API as it significantly increases

to potential user-base.
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1.2.1. The OpenCL Profiling Interface

OpenCL provides a very basic interface to get profiling information on memory operations

and kernel launches. If profiling is enabled, the function clGetEventProfilingInfo returns

timing information of OpenCL functions that are enqueued as commands to a command-queue.

The most interesting for performance analysis are the begin and end timestamps of kernel

launches. The SYCL specification defines a similar profiling interface. However, most tools with

OpenCL support use some form of library wrapping to obtain information of the OpenCL

execution.

1.3. OpenACC

The OpenACC (Open ACCelerator) API [34] describes a collection of compiler directives

to specify loops and regions of code to be executed in parallel on a multicore CPU, or to be

offloaded and executed in parallel on an attached accelerator device, providing portability across

operating systems, CPUs, and accelerators. With directives for C/C++ and Fortran, OpenACC

covers the most important programming languages for HPC.

OpenACC eases the development of heterogenous applications as it relieves the user from

explicit accelerator and data management as well as data transfers to and from the device. Data

management is handled with the data construct, where enter data and exit data directives can be

used to control data transfers between host and device. Two fundamental compute constructs,

kernels and parallel can be used to offload the execution of code blocks to an accelerator.

While OpenMP is a prescriptive programming model, i.e. the developer explicitly states

how to split the execution of loops, code regions and tasks among well-defined teams of threads,

OpenACC is more descriptive model, telling the compiler where it is safe to parallelize loops or

offload kernels and what data has to be transferred. This enables the compiler to perform more

optimizations and generate faster code [43].

1.3.1. OpenACC Profiling Interface

OpenACC provides a profiling interface for both profile and trace data collection. This

interface provides callbacks that are triggered during runtime if specific events occur. Three

types of events are supported: data events, launch events and other events. Data events cover

the allocation/deallocation of memory on the accelerator as well as data transfers. Launch events

trigger before and after a kernel launch operation. Other events include device initialization and

shutdown as well as wait operations [10]. However, these events only give host-side information.

For information on the device the respective tools interface of the backend has to be used.

1.4. OpenMP

OpenMP is a directive-based API already well known for shared-memory parallelization on

CPUs which is easy to learn. It also offers a path to more portable GPU-accelerated applica-

tions. Like OpenACC, one of the goals of the OpenMP standard is to minimize the need for

applications to contain vendor-specific statements. Thus, codes are portable across all supported

GPU architectures.

Pragmas to offload work on general purpose GPUs have been introduced in OpenMP 4 [35],

the OpenMP device constructs. The target construct is required to specify a region to be launched
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on the device. Target data maps the variables on the device. The teams pragma inside target

spawns the set of teams with multiple OpenMP threads. The distribute construct partitions the

iterations and maps it to each team.

1.4.1. The OpenMP Tools Interfaces

Unlike the other programming interfaces, OpenMP since version 5 [36] provides two tools

interfaces, OMPT for performance analysis tools and OMPD for debuggers [12].

OMPT [13] is a portable interface for both sampling-based and instrumentation-based per-

formance analysis tools. Like the other tool interfaces, OMPT provides callbacks for defined

OpenMP events, like the begin of a parallel region or the start of a offloaded kernel. It also

maintains the tools data for OpenMP scopes and it provides signal-safe inquiry functions to get

OpenMP runtime information. OMPT is intended for first-party tools, i.e. tools that are linked

into or loaded from the OpenMP application.

OMPD, the OpenMP debugging interface, on the other hand is an interface for third-party

tools, i.e. tools that live in a different process from the OpenMP application. This interface allows

external tools to inspect the OpenMP state of a running program via callbacks. The debugger

has no direct access to the OpenMP runtime, it interacts with it through the OMPD architecture

and the OMPD interface is transparent to the OpenMP application. The OMPD library can be

used to debug a running program as well as core files generated when the application aborted

due to an error.

1.5. Kokkos and RAJA

As stated above, HPC programming models didn’t change for a long time, which gave

application developers some confidence that their application will perform on the next generation

of machines. With an increased variability in architectures and programming models that does

not hold any more. An application tuned for a specific platform could perform badly on the

next system, which could be completely different from the current one. Further, applications

and libraries that are used universally need some kind of assurance to perform well on a wide

range of architectures.

In the scope of the Exascale Computing Project [29], two projects emerged that strive for

performance portability by providing an abstraction layer over the existing programming models.

Both originate from US national laboratories, one is Kokkos [11], developed at Sandia, and the

other one RAJA [2] from LLNL. The abstraction layers include memory and execution spaces,

data layout (i.e. the data layout might change depending on the architecture the application is

compiled for) and parallel execution.

Both Kokkos and RAJA currently provide only C++ interfaces and only have a CUDA

backend for offloading work to a GPU, though support for other programming models is likely

to follow.

1.5.1. The Kokkos Profiling Interface

Kokkos provides a set of hooks for profiling libraries to interface with the Kokkos run-

time [19]. These hooks can be implemented in the form of callbacks within a shared library.

Upon start of the application, the Kokkos runtime loads the library, checks for implemented

callbacks, and invokes the performance monitor via corresponding callbacks. Currently Kokkos
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supports callbacks for initialization and finalization of the runtime, deep data copies, and the

three parallel execution models parallel for, parallel reduce, and parallel scan. Similar

to the OpenACC profiling interface only events on the host are triggered, though device events

can be captured with CUPTI. RAJA unfortunately does not provide a profiling interface at this

time.

2. Debuggers

Developing correct parallel programs is already a daunting task, adding the complexity of

GPUs to the mix makes that endeavour even harder. This holds especially when using low-level

programming paradigms, where the user is responsible for correct memory management and

data movement. Luckily, several debugging solutions exist to assist the application developer in

finding and fixing bugs, both at small and large scale.

Table 1. Debugger compatibility matrix showing the level of support of different

debuggers for the most popular GPU programming models [Status Feb. 2020]

Tool CUDA OpenACC OMPD OpenCL

CUDA-MEMCHECK yes partly (CUDA kernels) no no

CUDA-GDB yes partly (CUDA kernels) no no

TotalView yes yes prototype no

DDT yes yes no no

Debuggers, especially those for large-scale HPC systems are very complex and sophisticated

pieces of software and virtually no open source solution exist here. The main debugging solutions

for GPU programming right now are the NVIDIA provided CUDA-MEMCHECK and CUDA-

GDB and the commercially available TotalView and DDT. Table 1 shows the supported GPU

programming models of each of these debuggers. There is very good support for CUDA and

OpenACC (where the NVIDIA tools support the debugging of the generated CUDA kernels),

but nearly no support for the other programming models. TotalView showed a prototype with

support for OpenMP offloading using an experimental OMPD-enabled OpenMP runtime. There

exist a couple of debugges for OpenCL, but none proved usable for complex HPC applications3.

2.1. NVIDIA Debugging Solutions

NVIDIA realized the importance of debugging for novel programming paradigms right from

the beginning and shipped debugging tools right from the beginning with the CUDA toolkit [17].

These tools can be used standalone from the command-line, but are also integrated in the Nsight

IDE [20], NVIDIAs development platform for CUDA and OpenACC applications. An example

debugging session is shown in Fig. 1.

2.1.1. CUDA-MEMCHECK

CUDA-MEMCHECK is like valgrind for GPUs, a very powerful memory tracker and analy-

sis tool. Hundreds of thousands of threads running concurrently on each GPU can be monitored.

3Some promising OpenCL debuggers are usable only on Microsoft Windows, which is not the intended platform

for HPC applications

Tools for GPU Computing – Debugging and Performance Analysis of Heterogenous HPC...

96 Supercomputing Frontiers and Innovations



Figure 1. Debugging a CUDA application from within the Nsight IDE

It reports detailed information about global, local, and shared memory access errors (e.g. in-

dex out-of-bounds or misaligned memory accesses) and runtime executions errors (e.g. stack

overflows and illegal instructions). Potential race conditions can also be detected with CUDA-

MEMCHECK. In case of an error, CUDA-MEMCHECK displays stack back-traces on host and

device.

2.1.2. CUDA-GDB

CUDA-GDB is, as the name indicates, an extension to gdb, the Unix debugger. Simultaneous

debugging on the CPU and multiple GPUs is possible. The user can set conditional breakpoints

or break automatically on every kernel launch. It is possible to examine variables, read/write

memory and registers and inspect the GPU state when the application is suspended. Memory

access violations can be analyzed by running CUDA-MEMCHECK in an integrated mode to

detect the precise causes.

2.2. TotalView

TotalView4 is a symbolic debugger specifically designed for HPC applications written in

C/C++, Fortran or Python. Noteworthy are the analysis capabilities for heavily templated

C++ codes with complex data types. Advanced Memory Debugging allows to keep track of all

memory accesses and memory allocations and deallocations to find memory leaks and corrupted

memory. Another feature that sets TotalView apart from the competition is reverse debugging,

i.e. the program execution is recorded and the user can step back from the point where the

error occurred. This is especially helpful in fixing non-deterministic bugs. TotalView features

full control over processes and threads with the ability to stop and debug an individual thread or

groups of threads or processes. Debugging of CUDA [18] and OpenACC applications is supported

with the possibility to debug multiple GPUs on a single node or multiple nodes across a cluster.

Here it is possible to seamlessly set breakpoints in host and device code.

4https://totalview.io/products/totalview
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Figure 2. Debugging a matrix-multiplication kernel with TotalView

Figure 2 shows a screenshot of a CUDA debugging session using the new TotalView GUI,

which greatly improves the usability.

2.3. Arm DDT

DDT5 is another commercial debugger with a modern interface and very similar features to

TotalView. It supports all major HPC programming languages with a special focus on complex

C++ applications. Multi-process and multi-thread support is a matter of course. DDT also

features advanced memory debugging and visualizations of huge data sets. Like TotalView, DDT

supports debugging of CUDA and OpenACC applications with a fine-grained thread control, as

shown in Fig. 3. DDT is available standalone or together with the Arm profiling tools in the

Arm Forge suite6.

Figure 3. Arm DDT

5https://www.arm.com/products/development-tools/server-and-hpc/forge/ddt
6https://www.arm.com/products/development-tools/server-and-hpc/forge
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3. Performance Analysis Tools

Performance analysis tools are an integral component in the HPC software stack for decades

and many application developers were exposed to profilers to a certain degree. There are many

tools for all kinds of analyzes, some are vendor provided and thus tied to a specific platform,

some are commercial and several open source. The latter are usually developed at universities

or national research laboratories with larger supercomputers. The tools community, which has

a long history of collaboration, started adding GPU support relatively early [26], though the

programming models and amount of features supported varies significantly between tools.

Though we commonly refer to performance analysis tools as profilers, we distinguish between

trace-based tools, which store all events with timestamps and profile-based tools, which only

store statistical information like the number of calls to a specific routine and the total time

spend in that routine. Several tools can generate both profiles and traces and are thus universally

applicable.

Table 2. Performance tool compatibility matrix showing the support for GPU

programming models of several popular performance analysis tools [Status Feb. 2020]

Tool CUDA OpenACC OMPT OpenCL

NVIDIA Tools yes yes no no

ARM Tools yes no no no

Score-P yes yes prototype (no offload) yes

TAU yes yes prototype (no offload) yes

HPCToolkit yes no yes (experimental runtime) no

Extrae/Paraver yes no no yes

Tool support for the various GPU programming models varies significantly. The tool com-

patibility matrix for some of the most popular and wide-spread performance analysis tools is

shown in Tab. 2. CUDA is supported by all the tools we consider. This is partly because CUDA

was the first programming model for GPUs, but also because NVIDIA provides a very powerful

and easy to use tools interface with CUPTI. Half of the tools support OpenACC or OpenCL, so

there are options for all application developers. Several tools are working on supporting OpenMP

offload to GPUs, but there is currently no public OpenMP runtime that implements OMPT for

target directives. However, both Score-P and TAU already support OMPT on the host-side.

HPCToolkit showed a prototype with OpenMP offload support using an internal experimental

OpenMP runtime that implements OMPT for target directives.

3.1. NVIDIA Tools

NVIDIA realized early on that good tools (and a good documentation) are a necessity for a

new platform to gain traction. So NVIDA began shipping their own profiler nvvp, the NVIDIA

Visual Profiler, shortly after the release of CUDA. It is an integral feature of the CUDA tool-kit

since then, so it is available on all CUDA-enabled platforms, without the need for a third-party

tool. After several years, nvvp began to show scalability (and maintenance) issues and will

be deprecated in a future CUDA release. Luckily, two new tools, Nsight Compute and Nsight

System, are ready to fill that gap.
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3.1.1. NVIDIA Visual Profiler

For many years, nvvp [5] was the de-facto standard profiler for CUDA applications. It

presents a unified CPU and GPU timeline including CUDA API calls, memory transfers and

kernel launches. For a more detailed analysis of CPU activities, users can annotate the source

code using the NVIDIA Tools Extension (NVTX) [24]. It supports all the advanced features of

recent CUDA versions like Unified Memory, with CPU and GPU page faults and data migrations

shown in the timeline. Upon selection of a specific kernel, nvvp shows a detailed low-level kernel

analysis with performance metrics collected directly from GPU hardware counters and software

instrumentation. Nvvp can compare results across multiple sessions to verify improvements from

tuning actions. Another unique feature is an Automated or Guided Application Analysis with

graphical visualizations to help identifying optimization opportunities. The Guided Analysis

provides a step-by-step analysis and optimization guidance. The Visual Profiler is available as

Figure 4. The NVIDIA Visual Profiler showing the timeline of the application execution, a

detailed analysis of the selected kernel, and the results of the guided analysis

both a standalone application, as shown in Fig. 4 and, like NVIDIAs debugging solutions, as

part of the Nsight IDE.

3.1.2. Nsight Compute

NVIDIA Nsight Compute7 is an interactive kernel profiler for CUDA applications. It provides

similar features to nvvp’s low-level kernel analysis, i.e. detailed performance metrics and the

guided performance analysis. Nsight Compute provides a customizable and data-driven user

interface (as shown in Fig. 5) Further, it has a command-line mode for manual and automated

profiling and can be extended with analysis scripts for post-processing results. Additionally, its

baseline feature allows users to compare results directly within the tool, very much like in the

Visual Profiler.

7https://developer.nvidia.com/nsight-compute-2019 5
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Figure 5. Nsight compute showing its detailed kernel analysis with the baseline comparison

3.1.3. Nsight Systems

NVIDIA Nsight Systems8 is a system-wide timeline-based performance analysis tool. It is

designed to visualize the complete application execution help to identify the largest opportunities

to optimize, and tune to scale efficiently across any quantity or size of CPUs and GPUs. Users

will be able to identify issues, such as GPU starvation, unnecessary GPU synchronization, and

insufficient overlap with CPU computation. An example timeline is shown in Fig. 6. It is possible

to zoom in to any level of detail. Kernels showing unexpected behavior can be analyzed in detail

with Nsight Compute, launched directly from the Nsight Systems GUI. NVTX is supported to

get a more detailed picture of the CPU utilization. Currently Nsight System is focused on a

single process, with more advanced support for MPI and OpenMP planned for a future release.

3.2. ARM Tools

Arm, since the acquisition of Allinea in 2016, provides several commercial cross-platform

performance analysis tools, that can be obtained standalone or together with DDT in the Arm

Forge9 suite.

3.2.1. Performance Reports

Arm Performance Reports is a gateway to the world of performance analysis. It is a very

low-overhead tool working on unmodified optimized binaries that generates a one-page report

characterizing the application performance at a rather high level. Performance Reports analyzes

8https://developer.nvidia.com/nsight-systems
9https://www.arm.com/products/development-tools/server-and-hpc/forge
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Figure 6. Nsight Systems showing the CPU timeline at the bottom and the activity of various

CUDA stream on top

CPU utilization, MPI communication behavior, I/O and memory usage as well as accelerator

usage. For all these categories it presents three to four sub-metrics to give more detailed informa-

tion, e.g. the ratio of scalar and vector operations. For issues found, Performance Reports gives

hints on how to proceed with more sophisticated analysis tools. An example of the accelerator

breakdown of Performance Reports is shown in Fig. 7. This only gives a very brief overview of

the GPU utilization, but in this case indicates that a thorough analysis with more advanced

tools might be beneficial.

3.2.2. MAP

Arm MAP [21] is a fully featured cross-platform source level performance analysis tool. It

supports low-overhead sampling-based profiling of parallel multi-threaded C/C++, Fortran and

Python codes. MAP providing in-depth analysis and bottleneck pinpointing to the source line as

well as an analysis of communication and workload imbalance issues for MPI and multi-process

codes. For accelerators, MAP offers a detailed kernel analysis with data obtained via CUPTI.

This includes a line-level breakdown of warp stalls. Possible reasons for warp stalls include

execution and memory dependencies or barriers. Knowing the reason for warp stalls can help the

developer tuning the code accordingly. However, MAP currently supports only kernels generated

Figure 7. Performance Reports accelerator breakdown
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Figure 8. Arm MAP screenshot of a CUDA application analysis. It features the detailed warp

stall analysis next to the source code

by CUDA-C++, not those generated by OpenACC, CUDA-Fortran or OpenMP offload. Figure 8

shows an example of MAP analyzing a CUDA application.

3.3. The Score-P Ecosystem

Score-P [23] is a community instrumentation and measurement infrastructure developed

by a consortium of performance tool groups. It is the next-generation measurement system of

several tools, including Vampir [22], Scalasca [16], TAU [42] and Periscope [3]. Common data for-

mats for profiling (CUBE4) and tracing (OTF2 [14]) enable tools interoperability. Figure 9 gives

an overview of the Score-P ecosystem. On the bottom are the various supported programming

paradigms, which are implemented as independent adapters interacting with the measurement

Figure 9. The Score-P ecosystem
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system core. That eases adding support for new paradigms. The measurement data can be en-

riched with hardware counter information from PAPI [31], perf, or rusage. Score-P supports

all major GPU programming models with CUDA [26], OpenACC [8], and OpenCL [9]. OMPT

support for host-side measurement was recently added [15] and there is ongoing work to support

OpenMP target directives [7]. Score-P also features a sampling mode for low-overhead mea-

surements. It supports both profiling and tracing for all adapters. Profiles are generated in the

CUBE4 format, that can be analyzed by TAU or Cube [39].

Cube is the performance report explorer for Score-P profiles as well as for the Scalasca trace

analysis. The CUBE data model consists of a three-dimensional performance space with the

dimensions (i) performance metric, (ii) call-path, and (iii) system location. Each dimension is

represented in the GUI as a tree and shown in one of three coupled tree browsers, i.e. upon

selection of one tree item the other trees are updated. Non-leaf nodes in each tree can be

collapsed or expanded to achieve the desired level of granularity. Figure 10 shows a profile of a

simple OpenACC application Cube GUI. On the left (Fig. 10a), the results of a pure OpenACC

measurement are shown. Due to restrictions of the OpenACC tools interface, only the host-

side calls are visible. However, if Score-Ps CUDA support is enabled as well, also the kernels

generated by OpenACC get recorded (Fig. 10b).

(a) OpenACC only (b) OpenACC + CUDA

Figure 10. Screenshots of Cube showing the Score-P measurement of a simple OpenACC appli-

cation, (a) with only OpenACC enabled, showing only the host side, and (b) with OpenACC

and CUDA enabled, which additionally shows the kernels and device activity

OTF2 traces generated by Score-P can be analyzed automatically with Scalasca, which

determines patterns indicating performance bottlenecks, and manually with Vampir. Unfortu-

nately, Scalasca currently does not support the analysis of traces containing GPU locations, but

can be used to analyze the communication of multi-node heterogenous programs if the corre-

sponding adapter for the GPU programming model is disabled, i.e. only host-side events are

recorded. In contrast to traditional profile viewers, which only present aggregated values of per-

formance metrics, Vampir allows the investigation of the whole application flow. The main view

is the Master Timeline which shows the program activity over time on all processes, threads,

and accelerators. An example is shown in Fig. 11.

The Master Timeline is complemented by several other views, timelines, and tables, e.g. the

Process Timeline to display the application call stack of a process over time or a Communication

Matrix to analyze the communication between processes. Any counter metics, e.g. from PAPI

or counter plugins, can be analyzed across processes and time with either a timeline or as a

heatmap in the Performance Radar. It is possible to zoom into any level of detail, all views are

updated automatically to show the information from the selected part of the trace.
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Figure 11. Vampir screenshot of an MPI + C++11 threads + CUDA application, showing a

kernel launch on two processes in the Master Timeline. The line between the master process and

the CUDA device indicates a data transfer, the thickness of the line represents the amount of

data transferred

3.4. TAU

TAU [42] is a very portable tool-set for instrumentation, measurement and analysis of paral-

lel multi-threaded applications. It features various profiling modes as well as tracing and various

forms of code instrumentation as well as event-based sampling. All major HPC programming

languages (C/C++, Fortran, Python) and programming models (MPI, OpenMP, Pthreads) are

supported by TAU. TAU offers the widest support for accelerators, it allows measurement of

CUDA [27], OpenACC, OpenCL, Kokkos [41], and also AMDs ROCm+HIP. For the analysis

of 3-dimensional profile data, TAU includes ParaProf, which – like Cube – shows performance

metric, call-path and location for an easy and quick investigation of bottlenecks. Figure 12 shows

the visualization of a TAU trace file with Jumpshot10.

3.5. Extrae/Paraver

Extrae11 is a measurement system to generate Paraver trace files for post-mortem analysis.

It supports C/C++, Fortran, and Python programs on all major HPC platforms, i.e. Intels x86,

NVIDIA GPUs, Arm, and openPOWER. Extrae features several measurement techniques, which

are configured through an XML file. The main source of information in Extrae is preloading

shared libraries that substitutes symbols for many parallel runtimes, e.g. MPI, OpenMP and

CUDA. Extrae also support dynamic instrumentation by modification of the application binary

and parallel runtimes via Dyninst [4]. Further, Extrae supports sampling via signal timers and

hardware performance counters. Since the Paraver trace format has no predefined semantics,

adding support for new paradigms is relatively straightforward.

Paraver [37, 40] is a very flexible data browser working on the trace files generated by Extrae.

Flexible means that there is no fixed set of metrics, the metrics can be programmed in the tool

itself. Paraver offers a large selection of views, e.g. timelines, histograms, and tables, that can

10https://www.mcs.anl.gov/research/projects/perfvis/software/viewers/index.htm
11https://tools.bsc.es/extrae
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Figure 12. Jumpshot screenshot of a TAU trace measurement of a CUDA application

be combined to show virtually all the information that is present in the data. A view (or a set of

views) can be saved as a Paraver configuration and recalculated with another trace file. CUDA

streams are displayed in Paraver like any other data source, e.g. MPI processes or OpenMP

threads.

3.6. HPCToolkit

Figure 13. hpcviewer showing the profile of a CUDA application

HPCToolkit [1] is an integrated suite of tools for measurement and performance analysis of

applications at all scales. Working on unmodified, fully optimized executables, it uses sampling to

generate both call-path profiles and traces, independent of the language used. It supports multi-

process (MPI) and multi-threaded (OpenMP, Pthreads) applications, but features no collection
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or analysis of communication and I/O metrics. For GPU analysis, it supports CUDA [6] and, as

a currently unique feature, OpenMP offload by shipping an experimental OpenMP runtime that

implements OMPT for target constructs. It measures the execution time of each GPU kernel as

well as explicit and implicit data movements. For CUDA codes it uses program counter sampling

to pinpoint hotspots and to calculate the utilization of the GPU. A powerful analysis features

of HPCToolkit is the blame shifting from symptoms to causes, so the user can quickly identify

the real bottlenecks.

HPCToolkit consists of multiple programs that work together to generate a complete picture.

hpcrun collects calling-context-sensitive performance data via sampling. A binary analysis to

associate calling-context-sensitive measurements with source code structure is performed by

hpcstruct. The performance data and the structure information are combined by hpcprof

and finally visualized by hpcviewer for profiles and hpctraceviewer for traces.

Conclusion

In this paper we showed that tools can support developers in programming heterogenous

codes on current supercomputers, both in writing correct bug-free (debuggers) and efficient

(performance analysis tools) applications.

There is one point in GPU programming where tools can’t help – the decision which pro-

gramming model to use. However, regardless of the choice, there is at least some tools support

for each of the programming models. Due to the dominance of NVIDIA GPUs in today’s data-

centers, currently most developers choose CUDA or OpenACC, which are also the models with

the best tools support. To use the tools as efficient as possible we recommend for that case

to use the NVIDIA tools on a single node (with possibly multiple GPUs) when developing or

porting the application to GPUs. When scaling up, i.e. inter-node data distribution and commu-

nication becomes an issue, we recommend the usage of more sophisticated tools like Score-P or

TAU, which offer dedicated communication analysis. Errors occurring at scale can be debugged

efficiently using TotalView or DDT.

Most supercomputing centers offer support to their users in porting and tuning applications

to GPU architectures, sometimes in dedicated labs, like the JSC/NVIDIA Application Lab12.

The tools community is also actively supporting users via mailing lists and trainings, e.g. the

VI-HPS Tuning Workshops13, which offer multi-day hands-on workshops covering a range of

different tools.

So far the dominant player in GPU-enabled supercomputing is NVIDIA, but with the an-

nounced (Pre-)Exascale systems like Aurora14, which will be based on Intels Xe architecture,

and Frontier15 with purpose-build AMD GPUs, a wider variability of architectures becomes

available. We will see systems using NVIDIA GPUs and Intel, AMD, IBM POWER and even

Arm based CPUs, Intel Xeons with Xe accelerators and completely AMD-based systems with

EPYC CPUs and Radeon GPUs. Portability and maintainability of GPU applications will be-

come more important, so developers might switch to more portable programming models like

OpenMP or SYCL or even a higher-level abstraction model like Kokkos, to ensure performance

portability. Tools will have to adapt to this increased variability and provide better support for

more architectures and programming models.

12https://fz-juelich.de/ias/jsc/EN/Research/HPCTechnology/ExaScaleLabs/NVLAB/ node.html
13https://www.vi-hps.org/training/tws/tuning-workshop-series.html
14https://press3.mcs.anl.gov/aurora/
15https://www.olcf.ornl.gov/frontier/
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The scientific computing community has long taken a leadership role in understanding and

assessing the relationship of reproducibility to cyberinfrastructure, ensuring that computational

results – such as those from simulations – are “reproducible”, that is, the same results are obtained

when one re-uses the same input data, methods, software and analysis conditions. Starting almost a

decade ago, the community has regularly published and advocated for advances in this area. In this

article we trace this thinking and relate it to current national efforts, including the 2019 National

Academies of Science, Engineering, and Medicine report on “Reproducibility and Replication in

Science”.

To this end, this work considers high performance computing workflows that emphasize work-

flows combining traditional simulations (e.g. Molecular Dynamics simulations) with in situ ana-

lytics. We leverage an analysis of such workflows to (a) contextualize the 2019 National Academies

of Science, Engineering, and Medicine report’s recommendations in the HPC setting and (b) en-

vision a path forward in the tradition of community driven approaches to reproducibility and

the acceleration of science and discovery. The work also articulates avenues for future research at

the intersection of transparency, reproducibility, and computational infrastructure that supports

scientific discovery.

Keywords: reproducibility, replicability, transparency, high-performance computing, molecular

dynamics, in situ analytics.

Introduction

In recent years, issues of reproducibility and replicability have come to the fore in venues as

diverse as scholarly publications, numerous panels and presentations at conferences and other

gatherings, and publications in the scholarly literature. These discussions and topics have en-

gaged researchers in a diverse set of disciplinary areas such as scientific computing, the life

sciences, statistics, geophysics, psychology, and more. A frequent thread in these discussions is

the shortcomings in the clarity, completeness, and specificity of computational and data analy-

sis methods in research dissemination. At the same time, journal editors and scientific societies

have considered approaches to making available the code and data relied on published articles.

In addition, national and international research funders have and are adopting requirements

to promote transparency in research artifacts, such as data and code, that result from funded

research.

Some of this activity can be rooted in examples that have been raised in the research

community: the journal Nature recently reported that experiments at CERN had not shown

neutrinos to be faster than light as originally reported [8]; data can be lost or unavailable

and analysis algorithms in proprietary codes [46]; and a recent workshop at the ACM/IEEE

Supercomputing (SC) conference discussed how parallelized simulation codes can in some cases

produce unexpected nondeterminism in scientific findings [28]. Attention has recently been drawn

to principles for advancing reproducibility in the computational context [41–43]. As a heuristic for
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understanding the salience of reproducibility issues, a Google Scholar search for “reproducibility”

and “replicability” yields over 5,000 hits in 2019 alone, compared to 2009 with fewer than 800.

In this article, we trace the context and history of discussions and efforts regarding repro-

ducibility in the high performance computing (HPC) context and list key efforts to improving

our understanding of the costs and benefits of advancing reproducibility across the cyberinfras-

tructure ecosystem. We then relate these efforts to the National Academies of Science, Engi-

neering, and Medicine 2019 report on “Reproducibility and Replication in Science” [33]. We use

the framing of the report to discuss three of its recommendations regarding reproducibility and

replication that are particularly actionable for research teams in HPC but whose level of abstrac-

tions may create interpretation ambiguity. To address the ambiguity, we discuss and interpret

these recommendations in an exemplar case, the A4MD study [45], with the aim of enabling

and advancing HPC communities in their current efforts to create reproducible, replicable, and

transparent HPC ecosystems for smart cyberinfrastructures [10, 14, 20, 29, 39]. We then leverage

to formalisms, PRIMAD [24] and Whole Tale’s Tale [15], to apply the recommendations in the

use case. We conclude with a call to extend these analysis to other use cases.

1. Reproducibility in HPC Driven Communities: Overview

1.1. Community Efforts

The notion of “really reproducible research” was introduced in 1992 [18, 19, 37] and coined

in 1995 [9]. The term was intended to refer to the ability to computationally regenerate the

results in a publication. Since these early days this idea has been developed and applied in

many contexts [22], including policy development for journals [34] and research funding, as well

as best practice and guidance development for institutions, repositories, and researchers. Many

challenges to these ideas have been raised [6, 16, 32]. Most recently two of the authors partic-

ipated in the development of seven guidance points for the community when stepping toward

computational reproducibility [42]. Several conferences including the SC conference, the PPoPP

conference, and the CGO conference, are taking steps toward to enable the integration of trans-

parency in their paper artifacts and engaging students in the effort to promote reproducibility,

replicability, and transparency. One of the authors has led the effort in the past five years to

make sure that the papers accepted to the SC conference have enough information to trust their

results. At SC19, for the first time, all accepted papers included an appendix with a detailed

artifact description of environments and methodologies that were used for achieving the key

results in the papers. In pursuing the success of the reproducibility initiative, the conference

has engaged the next HPC generation through the Reproducibility Challenge in the Student

Cluster Competition (SCC): a paper accepted to a past SC conference is used as source for

the Reproducibility Challenge of the next SC conference. SCC is an SC program that engages

16 teams (of 6 undergraduate students each) every year who are tasked to work with a vendor

to build a HPC cluster from scratch and run a set of key HPC benchmarks on it during the

conference. These benchmarks now include the replication of artifacts in the selected paper on

the 16 different cluster architectures, creating a unique setting for practitioners to study the

impact of different hardware platforms on the performance of a single common application.
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1.2. Identifying Sources of Irreproducibility

First efforts to address sources of irreproducibility tackled numerical reproducibility [11, 44].

Numerical reproducibility focuses on the relationship between system software, hardware, and

the ability to return bit-wise identical output [21, 27]. In the scientific domains there is generally

less concern with obtaining bit-wise identical results from one study or experiment to another,

however changes in the underlying computational system can give rise to uncertainties that

can affect the scientific interpretation of computational results [40]. There are several possible

computational sources of irreproducibility including:

• Hardware: Many fundamental operations of a computer are inherently non-deterministic.

I/O devices report interrupts at unpredictable times, affecting scheduling of processes and

progress of I/O, each visible to the application at the system call layer.

• Concurrency: Current systems provide high degrees of concurrency at all levels (e.g.,

applications use multiple processes, multiple threads, multiple cores, and/or rely on parallel

accelerators like GPUs).

• Algorithmic Randomness: Many fundamental scientific algorithms rely upon random num-

ber generators: Monte Carlo sampling algorithms, random walks, and so on.

• Application Complexity: The overall application extends beyond the application code,

and includes supporting libraries and services, configuration files, the operating system,

and perhaps even the configuration of the network upon which it relies. It is typical to

employ more than one application in the discovery process, adding to the complexity as

interactions and dependencies between applications may not be well understood. Each

of the environment elements may be configured and updated independently by different

parties, e.g. end user(s), system and network administrators, and automatic processes.

• Provenance Capture: Assessing and verifying the significance of a data or computationally-

enabled scientific finding typically requires understanding the statistical, modeling, and

calibration steps taken, including the capture and reporting of negative findings and the

steps used to create visualizations and figures that present results. In addition, many

applications embed state information into their output to help with debugging and general

provenance, however such information may not be sufficient to assess whether results that

differ bit-wise are scientifically equivalent.

Applications such as Coulomb n-body atomic system simulations, planetary orbit calculations,

supernova simulations all require stringent bit-wise numerical reproducibility [4].

1.3. Formalisms and Abstractions

The community is taking a structured approach to reason about and assess reproducibility

in the cyberinfrastructure context at large, beyond bit-wise reproducibility. We outline the use of

two formalisms to allow the community to understand the impact of changes including costs and

benefits: the PRIMAD model designed to understand changes when research is replicated [24],

and the “Tale” description of reproducible published computational research [15].

The PRIMAD Model: PRIMAD is a general model intended to guide reproducibility.

PRIMAD helps meet an acute need in the scientific community to ground reproducibility, yet it

is inherently abstract due to its applicability across all scientific domains, leading to challenges

in establishing a useful level of specificity. PRIMAD breaks reproducibility into six named com-

ponents (Platform, Research objective, Implementation, Methods, Actors, and Data), each of
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which represents an element of a computational experiment where reproducibility can be en-

forced by design, or conversely where a lack of such design can allow irreproducibility to seep in

and potentially corrode the overall integrity of the experiment. As a first example of a PRIMAD

applicability study, two of the authors have successfully evaluated the efficacy of PRIMAD as

a tool for characterizing the reproducibility of more traditional applications such as real-world

computational science workflows. Specifically, we examined computational workflows used to

detect gravitational waves using data from the Laser Interferometer Gravitational-Wave Obser-

vatory (LIGO) [1] and the Virgo Observatory [2]. Our findings outlined how PRIMAD can be

used as a general model to guide reproducibility from publications [12].

The Whole Tale “Tale”: The object defined as a “Tale” is a digital bundle of artifacts

and descriptors for the dissemination and publication of computational scientific findings in

the scholarly record [15]. The NSF-funded Whole Tale project is developing a computational

environment designed to capture the entire computational pipeline associated with a scientific

experiment and thereby enable computational reproducibility [7]. In other words, research pub-

lished from the Whole Tale project is published in the Tale format, which allows researchers

to create and package the code, data, and information about the workflow and computational

environment necessary to support, review, and recreate the computational results reported in

published research. As shown in Tab. 1, the Tale captures the artifacts and information needed

to facilitate greater understanding, transparency, and executability of the Tale for review and

reproducibility at the time of publication.

Table 1. A manifest of objects that comprise the Whole Tale “Tale” and whose

descriptions are included as Tale metadata. Adapted from [15]

Metadata Description

Authors List of Tale authors

Creators Tale Creators (may differ from authors)

Title Title of the Tale

Description Description of the Tale

Categories List of subject categories (keywords)

Illustration Illustration for the Whole Tale browse page

Create Date Date the Tale was created

Update Date Date the Tale was last updated

License License selected by the user

Environment Computational environment information

Workspace Code/scripts, workflow, narrative, documentation, data, results

External data Data by reference to external source

Identifier Persistent identifier for published Tale

Without standardization, decisions about what constitutes “relevant information” are in-

evitably ad-hoc, and may not be uniform from publication to publication or across multiple

workflows within a single publication. Thus, formalisms such as PRIMAD and the Tale offer an

abstraction with which to build sustainable reproducibility in a uniform fashion across scientific

domains.
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2. The 2019 National Academies Report Recommendations

and the HPC Ecosystem

The 2019 National Academies of Science, Engineering, and Medicine (NASEM) consensus

report “Reproducibility and Replication in Science”, of which one of us was a committee mem-

ber, found its origin in the 2017 “American Innovation and Competitiveness Act”. In this Act

Congress made a provision that directed the National Science Foundation to assess “research and

data reproducibility and replicability issues in interdisciplinary research” and make “recommen-

dations for improving rigor and transparency in scientific research”. This opportunity offered a

chance to understand the problem and the current state of reform efforts, and to articulate ways

the National Science Foundation and others might improve reproducibility and replicability in

research. The NASEM report set forth definitions of the terms “reproducibility” and “replica-

tion” and offers a number of recommendations regarding reproducibility and replication [33].

We discuss each of those aspects in turn.

Key words used in reproducibility discussions may have different interpretations or meanings

in different disciplines and even in different discussions. For the purposes of the NASEM report

the committee established the following definitions (reproduced without modification). We follow

this convention in the current writing as it is consistent with previous efforts [38].

Reproducibility is obtaining consistent results using the same input data, com-

putational steps, methods, and code, and conditions of analysis. This definition is

synonymous with “computational reproducibility”, and the terms are used inter-

changeably in this report.

Replicability is obtaining consistent results across studies aimed at answering

the same scientific question, each of which has obtained its own data. Two studies

may be considered to have replicated if they obtain consistent results given the level

of uncertainty inherent in the system under study.

Generalizability, another term frequently used in science, refers to the extent

that results of a study apply in other contexts or populations that differ from the

original one. A single scientific study may include elements or any combination of

these concepts.

Reproducibility involves the original data and code; replicability involves carrying out new

studies or experiments to ascertain consistency with previous answers to the same research

question. In addition, these definitions suggest that when underlying digital artifacts are made

accessible, the results should ideally be reproducible. However, a study conducted according

to best practices and utilizing correct analysis may of course fail to replicate due to inherent

uncertainties of other factors.

Among the recommendations regarding reproducibility and replication provided by the re-

port, some are more actionable than others for research teams in the HPC setting. Accordingly,

we prioritize discussion of recommendations that both describe or refer to potential changes to

computational scientists’ day-to-day engineering practices that could encourage or enable repro-

ducibility and replicability of their research, and advocate for enhancements of computational

scientists’ software infrastructure, where success will positively impact computational science

ranging from workstation-scale prototyping to studies run on leadership-class HPC systems.
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Our empirical and experiential evaluation identified three NASEM report recommendations

that are particularly suitable to be tailored for HPC workflows and HPC practitioners. These

are reproduced from the report without modification:

RECOMMENDATION 4-1: To help ensure the reproducibility of computa-

tional results, researchers should convey clear, specific, and complete information

about any computational methods and data products that support their published

results to enable other researchers to repeat the analysis, unless such information

is restricted by non-public data policies. That information should include the data,

study methods, and computational environment:

• the input data used in the study either in extension (e.g., a text file or a binary)

or in intension (e.g., a script to generate the data), as well as intermediate results

and output data for steps that are non-deterministic and cannot be reproduced

in principle;

• a detailed description of the study methods (ideally in executable form) together

with its computational steps and associated parameters; and

• information about the computational environment where the study was orig-

inally executed, such as operating system, hardware architecture, and library

dependencies (which are relationships described in and managed by a software

dependency manager tool to mitigate problems that occur when installed soft-

ware packages have dependencies on specific versions of other software pack-

ages).

RECOMMENDATION 5-1: Researchers should, as applicable to the specific

study, provide an accurate and appropriate characterization of relevant uncertainties

when they report or publish their research. Researchers should thoughtfully com-

municate all recognized uncertainties and estimate or acknowledge other potential

sources of uncertainty that bear on their results, including stochastic uncertainties

and uncertainties in measurement, computation, knowledge, modeling, and methods

of analysis.

RECOMMENDATION 6-3: Funding agencies and organizations should con-

sider investing in research and development of open-source, usable tools and infras-

tructure that support reproducibility for a broad range of studies across different

domains in a seamless fashion. Concurrently, investments would be helpful in out-

reach to inform and train researchers on best practices and how to use these tools.

We refer the reader to the report for more details on these and the other recommenda-

tions [33]. In the next section we interpret these recommendations in the context of a specific

HPC workflow, Analytics for Molecular Dynamics (A4MD).

3. Assessing the Impact of the 2019 NASEM Report

Recommendations on an HPC Workflow:

The A4MD Use Case

In this section we discuss the applicability of the three targeted NASEM recommendations

to a real HPC use case, the Analytics for Molecular Dynamics (A4MD) workflow [45]. This
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use case focuses on molecular dynamics simulations that are augmented with in situ analytics

components, thus allowing us to study a research workflow that integrates data factors into

a traditionally compute intensive only project. We utilize the specific use case approach to

concretize and interpret the NASEM recommendations.

3.1. The A4MD Use Case

Molecular Dynamics (MD) simulations studying the time evolution of a molecular system

at atomic resolution. The fields of chemistry, material sciences, molecular biology, and drug

design widely utilize MD simulations. The system sizes and time-scales accessible to MD simu-

lations have been steadily increasing. Next-generation HPC systems will have dramatically larger

compute performance than do current systems. This increase in computing capability directly

translates into the ability to execute an increasing number of longer simulations and thus to

expand the range of biomolecular phenomena that can be studied by MD simulation.

3.2. The NASEM Recommendations in the Context of the A4MD Workflow

The A4MD workflow presents unique challenges for compliance with the best practices

outlined in NASEM recommendations, particularly in terms of capturing and disseminating the

A4MD computational environment, and all of its relevant data products. Recommendation 4-1

explicitly states that the “operating system, hardware architecture, and library dependencies”

of a computational experiment should be captured and shared. Since A4MD consists of three

distinct computational components (the molecular dynamics simulation itself, the data staging

server, and the in situ analytic packages), each of which may execute on separate hardware

resources, the difficulty of fulfilling this requirement is magnified. We summarize in Fig. 1 a set

of metadata for each of the three A4MD components that can conceivably fulfill the requirements

of environment sharing specified in Recommendation 4-1. These metadata can, in principle, be

captured in an automated fashion as part of the job scripts that comprise the workflow.

Figure 1. Capturing A4MD’s computational environment

Beyond capture of the computational environment, Recommendation 4-1 also calls for “input

data used in the study either in extension (e.g., a text file or a binary) or in intension (e.g., a

script to generate the data), as well as intermediate results and output data for steps that are

nondeterministic and cannot be reproduced in principle”. While capture of intermediate data

products can potentially bolster efforts to achieve reproducibility, doing so necessarily comes at
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the cost of scalability, especially in the HPC setting. Efforts to achieve scalable record and replay

of HPC applications indicate that capturing fine-grained data about the intermediate state of

parallel executions remains an active and challenging area of research [13]. Hence, in our view

the feasibility of Recommendation 4-1’s guidelines regarding capture of intermediate data must

be managed on a case-by-case basis. In Fig. 2 we sketch out a possible set of data products that

could be recorded per execution of the A4MD workflow, ranging from the highly feasible, e.g.,

the input files to the MD simulation, to the highly challenging (e.g., the evolving state of the

data staging server).

Figure 2. Capturing A4MD’s input, output, and intermediary data

NASEM Recommendation 5-1 stresses the importance of uncertainty quantification in com-

putational experiments. In an effort to comply with this recommendation, an empirical evalua-

tion of the A4MD workflow was conducted in [45] (specifically, in Section III.C) to quantify the

effect of imbalances the rate at which the MD simulation produces data and the rate at which

the in situ analytics module consumes that data. That evaluation has provided insights for the

revision of Rec. 5-1 in the next section.

Finally, in an effort to make the A4MD workflow more accessible to other researchers,

the experiments described in [45] are packaged as a Jupyter notebook. However, the A4MD

workflow typically involves submission of multiple interdependent jobs to a batch-scheduler; an

activity not native supported by the Jupyter notebook environment. Instead, the authors of

A4MD had to leverage various third-party workarounds (e.g., the signac workflow manager [3])

to encapsulate these implementation details away from the user experience of A4MD. These

efforts highlight the need of the NASEM Recommendation 6-3 revision presented below, namely

the need for investment in open-source, reproducibility-oriented software infrastructure.

The NASEM recommendations have broad applicability across computational settings, and

we interpret the recommendations focused on in this work in the specific setting of leadership-

class high performance computing (HPC) platforms. These recommendations have the highest

potential for positive impact on trust and traceability of scientific findings and face unique

challenges due to the characteristics of HPC platforms and HPC software.

4. The NASEM Recommendations in the HPC Setting

We leverage lessons learned from the use case in Section 3.1 to address the challenges

that research teams will face when implementing a subset of the NASEM recommendations for

their HPC-enabled scientific workflows. Additionally, and where appropriate, we propose HPC-
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tailored refinements of the recommendations with the intent of facilitating their widespread

adoption. We will refer to the NASEM recommendations by their numerical identifier as given

in the report (e.g., Rec. 4-1).

4.1. Recommendation 4-1: Sharing Methods, Data, and Environment

Scientific workflows, especially those deployed on HPC resources, rarely consist of a single

computational element. More often, workflows consist of multiple executables that generate or

consume data sets, and multiple scripts that serve functions such as pre- and post-processing of

data sets, visualization, and gluing together other computational elements. Furthermore, these

computational elements are not executed directly by researchers on a static resource (e.g., a

single workstation), but instead are scheduled onto available resources–either by a traditional

batch-scheduler (e.g., SLURM) or a more sophisticated workflow manager (e.g., Pegasus [20]).

All of these factors motivate the need to refine Rec. 4-1s request to “convey clear, specific,

and complete information about any computational methods”. It may be tempting to interpret

this as being fulfilled by English text descriptions in publications (i.e., the text of a “Methods” or

“Evaluation” section), we contend that this is insufficient–especially in the HPC setting. Instead,

the “computational methods” should be described as a directed graph of executable elements.

Each vertex in this graph would represent a single executable, script, or scheduled job, each asso-

ciated with metadata such as commit hashes, library versions, and input parameters. In contrast

with a possibly-ambiguous or incomplete English language description of “computational meth-

ods”, this representation affords researchers with the ability to distinguish between structurally

similar, but nevertheless distinct computational methods which is critical to investigating the

reproducibility of scientific findings.

Even if an unambiguous and formal, yet shareable and ergonomic representation of “com-

putational methods” gains traction in the scientific community, a further challenge remains:

namely updating the peer-review process to appropriately evaluate study methods expressed in

this form. This challenge is starting to take shape in the present day as computational notebooks

(e.g., Jupyter) become more and more popular as vehicles for sharing scientific findings.

4.2. Recommendation 5-1: Broadening Notions of Uncertainty

Quantification

Despite the relative ubiquity of uncertainty quantification (UQ) in the HPC setting, it is

usually targeted towards probing the effect of uncertainty of inputs to simulations, rather than

uncertainty inherent in the HPC platform itself. However, we contend that in the HPC setting,

three factors contribute to the need to treat HPC platforms as dynamic environments in need

of UQ just as much as the inputs of sensitive simulations: (1) use of multiple parallel runtimes;

(2) multi-tenancy on HPC systems; and (3) opacity of code generation.

For multiple parallel runtimes, to cope with evolving HPC system architectures, the use of

multiple parallel runtimes (e.g., MPI + OpenMP) in a single codebase has become increasingly

common in scientific computing. The effect of mixing these runtimes on application-level non-

determinism has been identified as a major challenge in the push to exascale [26], and the scarcity

of tools for mitigating non-determinism in these types of codebases has been documented [13].

For multi-tenancy, beyond the challenge of reproducing the internal state of non-

deterministic applications from run to run, a greater challenge lies in reproducing the state
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of the system on which those applications ran, at the time that they ran. The majority of com-

putational science on HPC systems is performed on systems in which the investigator is not the

sole tenant. Thus, contention for resources such as network bandwidth between compute nodes

or IO bandwidth between the system and a parallel file system can conceivably contribute to

reproducibility challenges.

Finally, for opacity of code generation, the increasing complexity of scientific codebases cou-

pled with the rising popularity of high-level user-friendly interfaces to them (e.g., computational

notebooks) contributes to an increased risk of computational scientists being fundamentally un-

familiar with the code they execute. Incremental increases in complexity may be unavoidable

for scientific codebases, we encourage computational scientists to familiarize themselves with

modern tools that can increase their awareness of code-generation effects that may impede re-

producibility. For example, the FLiT tool [35, 36] allows users to assess the effects of various

combinations of compiler options on their codes numerical properties, while tools like Spack [25]

ease the burden of maintaining and organizing multiple versions of complex scientific software

built against multiple toolchains.

4.3. Recommendation 6-3: Investment in Open Source Tools to Facilitate

Reproducible Research

The NASEM recommendations advocate for increased investment from funding agencies in

open-source tools tailored towards reproducible research. While tools and infrastructure have

emerged recently (e.g., Whole Tale [7], Popper [30, 31], ReproZip [17], Repo2Docker [23]) these

tools may require that their users adhere to specific organizational patterns for their projects, or

simply require additional steps in setup that researchers may find cumbersome. We contend that

the fundamental tools by which researchers develop experiments ought to have reproducibility-

oriented features baked in as first-class citizens [43]. In particular, we contend that computational

notebooks are an attractive candidate for such an overhaul due to their increasing ubiquity;

their design that co-locates data, code, and exposition; and their as-of-yet untapped capacity to

capture metadata about computational experiments in support of reproducibility.

Were a funding body to invest in greenfield development of a reproducibility-oriented com-

putation notebook environment, we suggest that the following features be prioritized: (1) auto-

mated experiment metadata collection; (2) interoperability with existing version control systems;

and (3) interoperability with HPC system software.

Automated Metadata Collection: Computational notebooks present a user-friendly en-

vironment where typically, a scripting languages readevalprint loop (REPL), data visualization

capabilities, and free form textual exposition, are able to be colocated. We suggest that in addi-

tion to these advantages, computational notebooks are uniquely positioned to capture metadata

about computational experiments (e.g., versions of third-party libraries, identifiers for datasets,

configuration details for how figures were generated) that are essential for achieving reproducibil-

ity. The HPC community has stressed the importance of collecting this metadata and provided

tools for doing so, such as the SC Reproducibility Initiatives Artifact Descriptor Toolkit [5].

However the inherent drawback of tools like this is that they constitute an extra, post-hoc step

for researchers–separate from their day-to-day experimental workflow. Were this functionality

to be integrated directly into a reproducibility-oriented computational notebook, this metadata

would be captured as a matter of course–and consequently more likely to be available to the

greater scientific community.
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Interoperability with version control: Currently, computational notebooks present

challenges for version control. The notebook is typically stored in a hierarchical format such

that small changes from the perspective of the user interface may induce relatively large changes

in the underlying document (e.g., swapping cell orders in a Jupyter notebook). While this does

not exclude notebooks from versioning via, e.g., Git, per se, it does render the commit history

for a notebook significantly less transparent and informative than the commit history for a

regular source file. A future reproducibility-oriented redesign of the computational notebook

should prioritize improving integration with version control.

Interoperability with HPC system software: Despite the ease-of-use computational

notebooks have enjoyed for prototyping experiments, there remain pain-points when it comes to

porting these prototypes to run on large-scale HPC resources [14]. We argue that it is impera-

tive that computational notebooks evolve to integrate seamlessly with batch schedulers so that

researchers may more easily and reproducibly scale up their prototypes.

5. Applying Formalisms to Assess the NASEM

Recommendations in the HPC Ecosystem

The formalisms discussed in Section 1.3 suggest guidance to understanding how to generalize

findings from use cases and thereby indicate potential avenues to build sustainable reproducibil-

ity efforts in a uniform fashion across scientific domains. We identify how specific components

of the two proposed formalisms (i.e., PRIMAD and the Whole Tale) can be identified or defined

in order to support applicability of the three targeted recommendations (i.e., 4-1, 5-1, and 6-3)

across workflows in a specific domain and for desired levels of reproducibility. The first step is to

apply the formalism, the second is to update the interpretation of the three recommendations

targeted in this work.

5.1. Applying the PRIMAD Formalism

We begin by presenting the elements of the PRIMAD formalism in Tab. 2. The second

column of the Table applies these elements to the A4MD use case discussed in this work.

A clear division between implementation and methods in the PRIMAD model is fundamental

for Rec. 4-1 but such a separation is subjective. Minor adjustments to an algorithm generally

fall into implementation, yet it is hard to determine when changes are substantial enough to

call it a new algorithm and thus a change in methods. In other cases, the effects of the human

actors on reproducibility may be difficult to document. Even within the same research group

and under consistent leadership, research objectives, and computational environments, changes

in team members and shifts in member responsibility can introduce unacknowledged sources

of variability. Appropriately documenting the knowledge and experience that is applied to the

elements of a workflow is a challenge and it is important to understand when and how scientific

results rely on specific human actions for example.

5.2. Applying the Tale Formalism

The Tale description is given in Tab. 3 with associated detail for the A4MD as best as we

are able since the implementation of the A4MD use case in Whole Tale is currently underway.

However, some aspects of the Tale format could be refined to fit the A4MD workflow better. In
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Table 2. Applying the PRIMAD Formalism in the A4MD Use Case

PRIMAD Element Application to A4MD Use Case

Platform NERSCs Cori Cray XC40 System

Research Molecular Dynamics (MD) simulations executed on a

state-of-the-art supercomputer that characterize the impact of in situ

and in transit analytics on overall MD workflow performance,

and the capability for capturing rapid, rare events in the simulated

molecular system.

Implementation Two workflow configurations are run that represent in situ and

in transit analytics on Haswell nodes of NERSCs Cori.

Each Haswell node has two16-core Intel Xeon processors, 128GB

memory, and are connected by a Cray Aries interconnect.

Methods In the first type of workflow, because the analysis is not able to

consume the frame in a timely manner, the MD either

simulation waits in I/O to write to the in-memory staging area of

DataSpaces (idle simulation time) or discards any frame that cannot

be ingested into the staging area. In the second type of workflow the

MD simulation generates a new frame with large strides and the

analytics are waiting in I/O and the associated resources are idle.

Trends for the time spent waiting in I/O for the simulation and idle

time for the analytics are measured and observed.

Actors Researchers at multiple institutions.

Data MD-generated data created as output from the workflow.

particular, since the A4MD workflow consists of multiple applications (i.e., the MD simulation,

the data staging server, and the in situ analytics modules) that potentially execute on different

hardware platforms, the monolithic “environment” component of the Tale ought to be decom-

posed into a collection of environments. Links between various sub-components of the Tale’s

“workspace” and individual environments within that collection could then make explicit the

correct way to set up and execute an equivalent A4MD workflow in a future replication study.

5.3. Application of the Formalisms to Our Analysis of Three NASEM

Recommendations

In our analysis of the NASEM recommendations in the HPC setting, we observe significant

overlap between aspects of the recommendations and the common components of reproducibility

formalisms such as PRIMAD and Whole Tale. In particular, there is a clear parallel between

Recommendation 4-1’s emphasis on sharing study methods, computational environment, and

data, and “methods”, “platform”, and “data” components of PRIMAD, or the “environment”,

“workspace”, and “external data” components of Whole Tale. Our approach of leveraging for-

malisms helps refine and define what this might mean in particularly research settings. In Sec-

tion 4.1 we discuss the potential pitfalls of compliance with Recommendation 4-1 in the HPC

setting, and suggest possible refinements. Reproducibility formalisms are a natural vehicle by

which those refinements can be made explicit and actionable for research teams.
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Table 3. Applying the Whole Tale “Tale” Formalism in the A4MD Use Case

Tale Element Application to A4MD Use Case

Authors Thomas, S., Wyatt, M., Do, T.M.A., Pottier, L., da Silva, R.F.,

Weinstein, H.,Cuendet, M.A., Estrada, T., Deelman, E., Taufer, M.

Creators C. Willis

Title Characterizing in-situ and in transit analytics of molecular dynamics

simulations for next generation supercomputers.

Description This tale implements the computational pipeline associated with the

publication cited in [45].

Categories Scientific workflows, data analytics, performance, workload modeling,

remote direct memory access.

Illustration Figure 1 “Capturing A4MD’s computational environment”.

Create Date February 2020

Update Date February 2020

License [License selected by the user]

Environment [Computational environment information]

Workspace Code/scripts, workflow, results

External data None.

Identifier As yet unpublished Tale

Elsewhere, specifically with respect to Recommendation 5-1, there is less overlap with ex-

isting reproducibility formalisms. Neither PRIMAD nor Whole Tale explicitly guide researchers

towards incorporating uncertainty quantification into their studies. We contend that failure to

quantify and report potential uncertainties of the computational environment can have dramatic

impacts on reproducibility, and thus warrants explicit incorporation into future reproducibility

formalisms. As Whole Tale is an active and ongoing development effort, there is potential to

align aspects of the Tale format with Recommendation 5-1.

Finally, while in our discussion in Section 4.3 we focus on potential improvements to com-

putational notebooks, we also see in well-funded open-source software a natural avenue for re-

producibility formalisms to become useful and ubiquitous. As software tools for computational

scientists mature, integration of a reproducibility formalism and tools into the common software

stacks can reduce the degree of effort required for research teams to conduct reproducible ex-

periments and disseminate sufficient information for the broader community to build on their

work.

Conclusion

Even in the absence of a community-standardized formalism for reproducibility, individual

research teams can nevertheless strive to comply with the NASEM recommendations, to the

extent that the NASEM recommendations are sensibly interpreted for their specific use case.

In this work, we presented one example of this with the A4MD workflow, and based on our

example we articulated a set of refinements to Recommendations 4-1, 5-1, and 6-3 that renders

them more suitable for computational science conducted in the HPC setting. We also showed an
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approach to making the recommendation implementations explicit and actionable through the

use of a reproducibility formalism.

The results presented in this work are intended to indicate areas for further investigations.

We see two principal avenues to extend our work.

First, our analysis was augmented with one single HPC use case. Still, our use case allowed

us to concretize and interpret the NASEM recommendations, as well as to indicate future direc-

tions while opening the door to the empirical analysis of the impact of the recommendations in

a broader HPC settings and workflows. The extension of our empirical approach based on use

cases to a larger and diverse suites of HPC workflows can allow scientists and practitioners to un-

derstand the impact, costs, and benefits of the NASEM recommendations on the reproducibility

of more and more complex HPC ecosystems.

Second, the two considered formalisms were not initially designed to resolve questions tack-

led in this work such as “how do suggested adjustments to research workflows affect HPC

ecosystems as a whole and improve their reproducibility”? Still, the clarity they can each bring

is an important step. Ultimately reproducibility formalisms should be further refined to com-

pletely and automatically capture the appropriate elements of the HPC ecosystem that are most

impacted by the implementation of increased computational reproducibility.
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