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M. Puzović, E.K. Lee, V.V. Elisseev . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Autotuning Techniques for Performance-Portable Point Set Registration in 3D
P. Luszczek, J. Kurzak, I. Yamazaki, D. Keffer, J. Dongarra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Benchmarking Quantum Chemistry Methods in Calculations of Electronic Excitations
Vl.A. Mironov, B.L. Grigorenko, I.V. Polyakov, A.V. Nemukhin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Developing Quasi-Steady Model for Studying Hemostatic Response Using Supercom-
puter Technologies
P.V. Trifanov, V.N. Kaneva, S.V. Strijhak, M.A. Panteleev, F.I. Ataullakhanov, J. Dunster,
Vad.V. Voevodin, D.Y. Nechipurenko . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

New Binding Mode of SLURP Protein to α7 Nicotinic Acetylcholine Receptor Re-
vealed by Computer Simulations
I.D. Diankin, D.S. Kudryavtsev, A.O. Zalevsky, V.I. Tsetlin, A.V. Golovin . . . . . . . . . . . . . . . . . . . . . . . . 73

Supercomputer Simulations of Fluid-Structure Interaction Problems Using an Im-
mersed Boundary Method
N.S. Zhdanova, A.V. Gorobets, I.V. Abalakin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Test of Computational Approaches for Gold-Thiolate Clusters Calculation using
Lomonosov Supercomputer
N.N. Nikitina, D.A. Pichugina, A.V. Oleynichenko, O.N. Ryzhova, K.E. Kopylov, Vl.V. Krotov,
N.E. Kuzmenko . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Supercomputer Modeling of Dual-Site Acetylcholinesterase (AChE) Inhibition
S.V. Lushchekina, G.F. Makhaeva, D.A. Novichkova, I.V. Zueva, N.V. Kovaleva, R.J. Richardson . . . . . .89

Supercomputer Simulations of Dopamine-Derived Ligands Complexed with Cyclooxy-
genases
V.D. Maslova, R.V. Reshetnikov, Vl.V. Bezuglov, I.I. Lyubimov, A.V. Golovin . . . . . . . . . . . . . . . . . . . . 98

High Performance Computing of Magnetized Galactic Disks
S.A. Khoperskov, Yu.A. Venichenko, S.S. Khrapov, E.O. Vasiliev . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Regional Climate Model for the Lower Volga: Parallelization Efficiency Estimation
A.V. Titov, A.V. Khoperskov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Performance Analysis of Different Computational Architectures: Molecular Dynam-
ics in Application to Protein Assemblies, Illustrated by Microtubule and Electron
Transfer Proteins
Vl.A. Fedorov, E.G. Kholina, I.B. Kovalenko, N.B. Gudimchuk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Algorithm of the Parallel Sweep Method for Numerical Solution of the Gross –
Pitaevskii Equation with Highest Nonlinearities
A.D. Bulygin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115



This issue is distributed under the terms of the Creative Commons Attribution-
Non Commercial 3.0 License which permits non-commercial use, reproduction
and distribution of the work without further permission provided the original
work is properly cited.



Adaptive Load Balancing in the Modified Mind Evolutionary

Computation Algorithm∗

Maxim K. Sakharov1, Anatoly P. Karpenko1
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The paper presents an adaptive load balancing method for the modified parallel Mind Evo-

lutionary Computation (MEC ) algorithm. The proposed method takes into account an objective

function’s topology utilizing the information obtained during the landscape analysis stage as well

as the information on available computational resources. The modified MEC algorithm and pro-

posed static load balancing method are designed for loosely coupled parallel computing systems

and imply a minimal number of interactions between computational nodes when solving global

optimization problems. A description of the proposed method is presented in this work along with

the results of computational experiments, which were carried out with a use of multi–dimensional

benchmark functions of various classes. Obtained results demonstrate that an effective use of avail-

able computational resources in the proposed method helps finding a better solution comparing to

the traditional parallel MEC algorithm balancing. Further development of the proposed method

requires more advanced termination criteria in order to avoid excessive iterations.

Keywords: load balancing, landscape analysis, mind evolutionary computation, global opti-

mization.

Introduction

One of the distinct features of the real–world global optimization problems is the computa-

tional complexity of the objective functions. To cope with such problems within reasonable time,

it is necessary to utilize parallel computing systems. Grid systems, made of personal computers

and workstations, are widely used by scientific communities [8, 20]. Their availability is caused

by a relatively low cost and easy scaling. Such systems belong to a class of loosely coupled

computing systems.

When solving an optimization problem on parallel computing systems in general, and on

loosely coupled systems in particular, one of the main difficulties is the optimal mapping prob-

lem [4, 20] is how to distribute groups of sub–problems over processors. It should be noted that

a problem of optimal mapping of computational processes onto a parallel computing system

is one of the main issues associated with parallel computations. It is well known that such a

problem is NP complete and can be solved with exact methods within a very narrow class of

problems [4, 5].

Most often, methods of load balancing are used to obtain an approximate solution to an

optimal mapping problem. The main idea behind these methods is to distribute the computation

tasks over the processors in such a way that the total computing and communication load is

approximately the same for each processor.

There are two types of load balancing: static and dynamic. Static balancing is performed

once, before the computational process starts. When computational complexity of the objective

functions is unknown in advance, static load balancing can’t be effective. In this case, dynamic

load balancing should be implemented during calculation: the algorithm must re–distribute

computation tasks between processors depending on their loading.

∗The paper is recommended for publication by the Program Committee of the International Scientific Conference

“Parallel computational technologies (PCT) 2018”.
1Bauman MSTU, Moscow, Russian Federation
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Regarding loosely coupled computational systems, it is required to minimize the interac-

tion between computational nodes, hence re–distributing tasks during the calculations is highly

inefficient. In this paper, we propose to use the landscape analysis (LA) [1, 12, 19] in order

to evaluate computational complexity of objective functions and thus improve the efficiency of

static load balancing.

Nowadays, the LA methods are widely used in global optimization problems to determine

some distinct features of objective functions and, subsequently, classify these functions, for

example, to adjust some free parameters of the utilized population algorithms [10]. Population

algorithms represent a universal and powerful tool for solving global optimization problems.

Their popularity is caused by the fact that they can be easily implemented and applied to

various fields as they are based on the universal idea of evolution. However, their efficiency

heavily depends on numerical values of their free parameters, which should be selected based on

the characteristics of a problem in hand.

Within the landscape analysis approach, it is proposed to extract information on the ob-

jective function’s landscape and topology at the cost of additional trials (approximately 1–10%

of the total number of evaluations) [13]. In other words, the LA methods help identifying the

search for sub–domains with either rugged or smooth topology, or for sub–domains where the

objective function’s values are almost identical, etc.

A class of Mind Evolutionary Computation (MEC ) algorithms [2, 6, 7] is considered in this

work. These algorithms belong to a family of population methods inspired by human society.

Individual s is considered as an intelligent agent which operates in group S made of analogous

individuals. During the evolution process, each individual is affected by other individuals within

the group. This simulates the following logics. In order to achieve a high position within a group,

an individual has to learn from the most successful individuals in this group. Groups themselves

should follow the same principle to stay alive in the intergroup competition.

This work deals with the Simple MEC (SMEC ) algorithm. It belongs to a class of MEC al-

gorithms and was selected for the research because it is highly suitable for parallel computations,

especially for loosely coupled systems. Generally, in order to be efficient on loosely coupled sys-

tems, the basic optimization algorithm must imply a minimum number of interactions between

sub–populations which evolve on separate computational nodes. Only a few currently known

population–based algorithms, including the MEC algorithm, meet this requirement.

The authors propose a modified parallel MEC algorithm with an incorporated LA procedure

accompanied with the static load balancing method. Pperformance research was carried out to

evaluate efficiency of the proposed approach in comparison with the traditional parallel SMEC

algorithm [15, 17].

1. Problem Statement and the Basic Optimization Algorithm

A global deterministic unconstrained minimization problem is considered in this work

min
X∈R|X|

Φ(X) = Φ(X∗) = Φ∗, (1)

where Φ(X) is the scalar objective function; Φ(X∗) = Φ∗ is the required minimal value; X∗ =

(x1, x2, , x|X|) is |X|–dimensional vector of variables; R|X| is |X|–dimensional arithmetical space.

Domain D0 is defined as follows:

D0 =
{
X|xmin ≤ xi ≤ xmax, i ∈ [1 : |X|]

}
(2)

Adaptive Load Balancing in the Modified Mind Evolutionary Computation Algorithm

6 Supercomputing Frontiers and Innovations



and used for generating the initial population of solutions. The MEC algorithm can be consid-

ered as a multi–population one. A multi–population consists of independent sub–populations

with different instances of the SMEC algorithm. Each sub–population is made of leading groups

Sb = (Sb1, S
b
2, , S

b
|Sb|) and lagging groups Sw = (Sw1 , S

w
2 , , S

w
|Sw|). The number of individuals within

each group is set to be the same and equals |S|. Every group Sbi or Swj has its own communica-

tion environment called a local blackboard and denoted Cbi or Cwj correspondingly. In addition,

the whole sub–population S = {Sb, Sw} has a general global blackboard Cg. The original MEC

algorithm was presented in [2] and was named the simple Mind Evolutionary Computation

algorithm (Simple MEC, SMEC ). The SMEC algorithm is based on the operations of group

initialization, similar-taxis and dissimilation. Similar-taxis and dissimilation are iteratively re-

peated until there is an increase in the maximum score of the leading groups. When the growth

of this indicator stops, the current solution of a problem is declared a global minimum. By

individuals score we mean the value of objective function Φ(X) in its current position [8].

In [16], the authors carried out a wide performance research of the SMEC algorithms effi-

ciency depending on the values of the following free parameters: standard deviation σ, used for

the generation of new individuals; removing frequency of lagging groups ω; ratio η between the

number of leading |Sb| and lagging |Sw| groups in a sub–population. Obtained results were used

to formulate the strategies for selecting optimal numerical values for those parameters.

2. Modified SMEC Algorithm

The modified Mind Evolutionary Computation algorithm is based on hybridization of the

multi–population SMEC algorithm with the incorporated landscape analysis stage. The pro-

posed LA method allows one to study the objective functions topology without any additional

information on the problem in hand known a priori. Based on the results obtained during the

landscape analysis, we can classify an objective function into one of six possible categories and

form an adaptation strategy for the algorithm [14, 16]. To achieve this, the initialization stage of

the SMEC algorithm was modified. New initialization stage with the incorporated LA procedure

can be described as follows.

1. Generate N quasi–random |X|–dimensional vectors within domain D0. Here, N is the total

number of all groups in a multi–population (free parameter of the algorithm).

2. For every Xr, r ∈ [1:N ], calculate the corresponding values of objective function Φr and

sort those vectors in ascending order of values Φr, r ∈ [r:N ].

3. Equally divide a set of vectors (X1, X2, . . . , XN ) into |K| sub–populations (another free

parameter).

4. For every sub–population Kl, l ∈ [1: |K|], calculate a value of its diameter dl, the maximum

Euclidean distance between any two individuals.

5. Build a linear approximation for the dependency of diameter d(l) on group number l, using

the least squares method [14].

6. Calculate an estimation of the size of domain D0 using the formula

d0 =
√
|X|(xmax − xmin)2.

7. Classify objective function Φ(X) into one of the six categories provided in Tab. 1 based

on the calculated parameters and determine the corresponding numerical values for the

M.K. Sakharov, A.P. Karpenko
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SMEC algorithm for each sub–population. Numerical parameters in Tab. 1 are based on

the empirical results [16].

Table 1. Classification of objective functions based on the LA results

d(l) increases d(l) constant d(l) decreases
d0
d1
> 2.5 Nested sub–populations

with dense first sub–

population (category I)

Non–intersected sub–

populations of the same

size (category III)

Distributed sub–

populations with

potential minima

(category V)
d0
d1
≤ 2.5 Nested sub–populations

with sparse first sub–

populations (category

II)

Intersected sub–

populations of the

same size (category IV)

Highly distributed sub–

populations with poten-

tial minima (category

VI)

In Fig. 1, an example of calculating a diameter is demonstrated for the first sub–population

of individuals generated for two–dimensional Composition Function 1 from CEC 14 [11]. Circles

represent an arbitrary neighborhood of the individuals; different colors of those circles correspond

to different sub–populations. Additional examples of the landscape analysis procedure for various

Composition Functions from the same set of benchmark problems are presented in Fig. 2.

Each classification category describes a specific topology of an objective function with the

following pre–determined rules for calculating numerical values of the free parameters.

1. For objective functions from categories I and II, there is a high probability to find a global

optimum within sub–population K1. In such a case, numerical values for parameter σ are

defined to increase the search intensification for the first sub–populations and the search

diversification for the last sub–populations:

σ(l) = 0.25 + 0.75
(l − 1)

(|K| − 1)
.

2. For objective functions from categories III and IV, numerical values for parameter σ are

defined randomly from a specified range:

σ(l) = rand(0.1, 0.9).

3. For objective functions from categories V and VI, the first sub–population usually covers a

large part of initial domainD0. In such a case, the goal is to increase the search diversification

for the first sub–populations:

σ(l) = 1− 0.75
(l − 1)

(|K| − 1)
.

4. For categories with odd numbers, the removing frequency of lagging groups ω = 20, while

ratio between the number of leading and lagging groups in a sub–population η = 50. For

categories with even numbers: η = 75, and ω = 25 in order to provide enough time for

lagging groups in a sub–population to explore their search sub–domains.

Adaptive Load Balancing in the Modified Mind Evolutionary Computation Algorithm
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(a) Distribution of individuals for four

sub–populations

(b) Determining a diameter of the first

sub–population

Figure 1. Determining a diameter of the first sub–population for the benchmark Composition

Function 1 from CEC 14

3. Adaptive Load Balancing

As mentioned above, parallel optimization methods should be used in order to efficiently

solve the real–world global optimization problems. Multi–population version of the SMEC algo-

rithm can be naturally used to decompose the problem and map it onto computational nodes of

the loosely coupled system. In such a case, each sub–population or a group of sub–populations

evolves independently on separate computational nodes. This approach lies behind the idea of

the traditional Parallel MEC algorithm and was used by the authors in [9] in order to design

multi–memetic algorithms.

When performing landscape analysis, it is reasonable to use all extracted information in or-

der to use available computational resources as efficiently as possible and, subsequently, increase

the efficiency of the algorithm in general.

(a) Composition function 3

from CEC 14 (Group I)

(b) Composition function 4

from CEC 14 (Group II)

(c) Composition function 5

from CEC 14 (Group VI)

Figure 2. Results of the landscape analysis procedure for a few benchmark functions

M.K. Sakharov, A.P. Karpenko
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We modified the initialization stage described above so that during step 2, the time required

for calculations tr is measured together with calculating the values of objective function Φr. The

proposed adaptive load balancing method can be described as follows.

1. For each sub–population Kl, l[1 : |K|], we analyzed all time measurements tr for the corre-

sponding vectors Xr, r ∈ [1 : N
|K| ] in order to determine whether there are outliers or not.

All found outliers t∗ are excluded from sub–populations. A new sub–population is composed

from those outliers; it can be studied upon users request after the computational process is

over.

2. If the number of sub–populations |K| is equal to the number of available computational

nodes M , then we send the first sub–population K1 to one node. Individuals in other

sub–populations are re–distributed between neighboring sub–populations starting from K2,

so that the average calculation time would be approximately the same for every sub–

populations. Balanced sub–populations Kl, l ∈ [2 : |K|] are then mapped onto the com-

putational nodes. Then we go to step 5.

3. If the number of sub–populations |K| is greater than the number of available computational

nodes M , then we send the first sub–population K1 to one node. The rest sub–populations

are divided into equal groups of sizes (|K|−1)
(M−1) in ascending order; the last group contains all

remaining sub–populations.

4. Individuals in sub–populations are re–distributed between neighboring sub–populations

starting from K2, so that the average calculation time would be approximately the same for

every sub–populations. Balanced sub–populations Kl, l ∈ [2 : |K|] are then mapped onto

the computational nodes.

5. The modified SMEC algorithm is launched on each node with the specific values of free

parameters in accordance with Tab. 1.

4. Performance Investigation

The modified SMEC algorithm and the proposed load balancing method were implemented

in Wolfram Mathematica. A set of numerical experiments with the use of multi–dimensional

(|X| = 16) benchmark functions of various classes [3] was carried out to estimate performance

of the proposed approach. During the study, efficiency of the parallel modified SMEC algo-

rithm with the adaptive load balancing (SMEC/LA) and the parallel multi–population SMEC

algorithm without the landscape analysis were compared.

The benchmark optimization functions considered in this paper are presented in Tab. 2 along

with their known global optimal values. An original domain for generating initial population

equals

D0 = {X : −5 ≤ xi ≤ 5, i ∈ [1 : |X|]} .

All numerical experiments were carried out using the multi–start method with 100 launches. The

best obtained value of objective function Φ∗ as well as its average value Φ̄ based on the results

of all launches were utilized as the performance indices for comparison of the two algorithms

and their software implementations along with maximum iteration number Nmax among all

computational nodes and the number or iterations Nopt from the node, where the optimal value

was obtained.

In this work, LPτ–sequence was used to generate the initial vectors for the LA procedure,

as it provides a uniform coverage of the search domain [18]. Other parameters had the following

Adaptive Load Balancing in the Modified Mind Evolutionary Computation Algorithm
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values for both algorithms: the total number of groups in one sub–population γ = 40; the

number of individuals in each group |S| = 40; the number of sub–populations |K| = 8.

The number of stagnation iterations λstop = 50 was used as a termination criterion for the

algorithms. Tolerance used for identifying stagnation was equal to ε = 10−5. All computations

were performed with a use of computational network made of M = 8 computational nodes and

one master node. All computational nodes did not communicate with each other. Each node

represents a personal computer with Intel Core i5–6600 CPU and 8GB RAM.

Table 2. Definitions of benchmark functions

Function Definition Global minimum

Griewank Φ1(X) =
∑|X|
i=1 x

2
i 4000−∏|X|i=1 cos

(
xi
√
i
)

+ 1
Φ1(X

∗) = 0

X∗ = (0, . . . , 0)

Rastrigin Φ2(X) =
∑|X|
i=1(10 + x2i − 10 cos(2πxi))

Φ2(X
∗) = 0

X∗ = (0, . . . , 0)

Rosenbrock Φ3(X) =
∑|X|
i=1

(
100(xi+1 − x2i )2 + (1− x2i )

) Φ3(X
∗) = 0

X∗ = (1, . . . , 1)

Zakharov Φ4(X) =
∑|X|
i=1 x

2
i +

(∑|X|
i=1 0.5 i xi

)2
+
(∑|X|

i=1 0.5 i xi
)4 Φ4(X

∗) = 0

X∗ = (0, . . . , 0)

The obtained results (Tab. 3) demonstrate superiority of the proposed SMEC/LA algorithm

in comparison with the simple parallel MEC in terms of accuracy.

Table 3. Results of numerical experiments

Function SMEC SMEC/LA

Griewank
Φ̄1 = 1.63E−2

Φ∗1 = 9.19E−3

Φ̄1 = 2.44E−5

Φ∗1 = 1.21E−5

Rastrigin
Φ̄2 = 7.27E+1

Φ∗2 = 5.25E+1

Φ̄2 = 7.69E−3

Φ∗2 = 3.54E−6

Rosenbrock
Φ̄3 = 2.73E+1

Φ∗3 = 2.12E+1

Φ̄3 = 8.91E−1

Φ∗3 = 9.45E−2

Zakharov
Φ̄4 = 2.79E+1

Φ∗4 = 2.10E+1

Φ̄4 = 1.16E+0

Φ∗4 = 1.13E−1

For all benchmark functions, results obtained with the use of SMEC/LA are better than

ones obtained using just parallel SMEC by several orders of magnitude both for average values

Φ̄ and least found values Φ∗.
On the other hand, the SMEC/LA algorithm requires more iterations Nmax than SMEC

algorithm (Fig. 3). This can be explained by the fact that both parallel algorithms wait until

all computations are over; and in case of the SMEC/LA algorithm, it contains groups made of

individuals with large values of the objective function. Such a group can require many iterations

to converge to some local optimum. The comparison of the number of iterations Nopt required to

find a global optimum proves our assumption (Fig. 4). The results demonstrate that the global

optimum with the use of SMEC/LA method can be found relatively rapidly and, therefore, some

unnecessary iterations can be avoided with the use of more advanced termination criteria.

M.K. Sakharov, A.P. Karpenko
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Figure 4. Iteration number Nopt required to find a global optimum for different benchmark

functions

Conclusions

This paper presents a new adaptive load balancing method designed for the multi–population

SMEC algorithm with the incorporated landscape analysis procedure. The algorithm is capable

of adapting to various objective functions using an adaptation based on the results of objective

functions classification.

Performance investigation was carried out in this work with the use of multi–dimensional

benchmark optimization functions of various classes. The proposed algorithm along with the

proposed load balancing technique was capable of localizing all known global optima with high

precision. The parallel algorithm worked in the synchronous mode; that led to a significant

increase in the maximum number of iterations. This disadvantage can be overcome using either

asynchronous mode or some advanced termination criteria.

Further research will be devoted to a more extensive study of various objective functions

and their classification as well as the efficiency of adaptation.

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-

mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work

without further permission provided the original work is properly cited.
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A wide range of modern system architectures and platforms targeted for different algorithms

and application areas is now available.

Even general-purpose systems have advantages in some computation areas and bottlenecks in

another. Scientific applications on specific areas, on the other hand, have different requirements

for CPU performance, scalability and power consumption.

The best practice now is algorithm/architecture co-exploration approach, where scientific

problem requirements influence the hardware configuration; on the other hand, algorithm imple-

mentation is re-factored and optimized in accordance with the platform architectural features.

In this research, two typical modules used for multispectral nighttime satellite image process-

ing are studied:

• measurement of local perceived sharpness in visible band using the Fourier transform;

• cross-correlation in a moving window between visible and infrared bands.

Both modules are optimized and studied on wide range of up-to-date testbeds, based on

different architectures. Our testbeds include computational nodes based on Intel Xeon E5-2697A

v4, Intel Xeon Phi, Texas Instruments Sitara AM5728 dual-core ARM Cortex-A15, and NVIDIA

JETSON TX2.

The study includes performance testing and energy consumption measurements. The results

achieved can be used for assessing serviceability for multispectral nighttime satellite image pro-

cessing by two key parameters: execution time and energy consumption.

Keywords: energy consumption, performance analysis and optimization, cross-platform anal-

ysis, energy consumption analysis, multispectral image processing, nighttime remote sensing.

Introduction

This paper describes the cross-platform analysis of the nighttime remote sensing multispec-

tral image processing algorithms.

The timeliness and relevance of the nighttime remote sensing was reaffirmed by such studies

as correlation of electric lighting on the Earths surface with socioeconomic trends [1], monitoring

of night fishing boat lights [2], detection and characterization of combustion sources [3], and

global survey of natural gas flaring [4].

The first step to design a suitable HPC system for processing remote sensing data is analyz-

ing the applicability of modern platforms to the typical algorithms used in multispectral image

processing.

A wide range of modern system architectures and platforms targeted for different algorithms

and application areas is now available. Even general-purpose systems have advantages in some

computation areas and bottlenecks in another.
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Following the current trends in system architecture, all the experiments were conducted on

different platforms:

• Modern Intel® architectures Intel® Xeon® E5 (2697A v4).

• multicore architecture Intel® Xeon Phi® 7250.

• GPU Nvidia Jetson TX2.

• Dual-core ARM (Texas Instruments Sitara AM5728 dual-core ARM Cortex-A15).

Scientific applications used in specific areas have different requirements for CPU perfor-

mance, scalability and power consumption. The co-design approach is widely considered as best

practice for designing an effective and economical system. This approach implies that scientific

problem requirements influence the hardware configuration; on the other hand, algorithm imple-

mentation is re-factored and optimized in accordance with the platform architectural features.

Two typical algorithms used in nighttime image processing have been selected therefore for

further cross-platform examination:

• Correlation Module Inter-channel image cross-correlation in a moving window.

• Sharpness Module Spectral and spatial measure of local perceived sharpness [9].

The study was conducted using multispectral images from VIIRS radiometer onboard of

Suomi National Polar Partnership (SNPP) satellite.

The image processing modules have been implemented and optimized for the different hard-

ware architectures.

According to the latest trends, the key research issue remains in providing a holistic so-

lution that can collectively minimize energy consumption by HPC facility [5]. So, the energy

consumption study in addition to the performance analysis is required to choose the most suit-

able architecture for future HPC system.

This paper mainly contributes to characterization of selected HPC architectures in terms

of energy consumption and execution time while running the remote sensing data processing

tasks. To perform this study, different implementation and architecture-dependent optimization

of a source code were developed, and both time and energy consumptions were measured and

analyzed using the chosen architectures.

The rest of the paper is structured as follows. Section 1 reviews earlier research of perfor-

mance and energy consumption in hyperspectral imaging field. Section 2 provides a detailed

specification of the compared architectures. After that, Section 3 describes the selected bench-

marking algorithms used in nighttime image processing. Section 4 describes the parallel imple-

mentation and architecture-specific optimizations of these algorithms on selected architectures.

Section 5 describes software and hardware used for measurements. Section 6 provides tables with

measured results as well as the testing protocol. Finally, the last Section concludes the paper

with discussion of the obtained results.

1. Related Work

Advances in sensor technologies are resulted in substantial increase in spatial, spectral and

temporal resolution of satellite imagers. For example, Visible Infrared Imaging Radiometer Suite

(VIIRS) onboard of the Suomi NPP satellite generates 3 TB of multispectral images for every

month of nighttime observations. Both re-processing of the full 6-year archive of the nightime

images and recent addition of the second sattelite with the same imager require an upgrade in

energy efficiency and computing performance of the current processing environments.
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There are some research efforts aimed at energy efficient processing of hyperspectral image

data. For example, in 2013 Remon et al. [6] presented a detailed assessment of performance

and energy consumption of hyperspectral unmixing algorithms on multi-core platform equipped

with 4 AMD Opteron 6172 processors.

Another study entitled “Energy consumption characterization of a Massively Parallel Pro-

cessor Array (MPPA) platform running a hyperspectral SVM classifier” [7] presents a study of

the MPPA-256-N power dissipation and energy consumption while running a SVM hyperspectral

classifier. This paper also includes comparison with GPU 780Ti GTX.

2. Hardware

In Tab. 1, codenames and specifications of the studied testbeds are listed.

Table 1. Testbeds Specifications

Codename CPU # Cores Memory GPU (subject to

the availability)

Broadwell Intel® Xeon® E5-

2697A v4

2x 16 128 GB DRAM

DDR4/2133MHz

-

KNL Intel® Xeon Phi®

7250

68 MCDRAM Intel®

16GB +

-

7250 Intel® 16GB

+ 32GB

DDR4/2133MHz

ARM Texas Instruments

Sitara AM5728

dual-core ARM

Cortex-A15/1.5GHz

2 DDR3, 2 GB Not used: 2x

PowerVR

SGX544 3D

GPU cores; Vi-

vante GC320 2D

GPU core

Jetson ARM Cortex-A57

(quad-core)/2GHz +

6 8GB 128-bit

LPDDR4/1866Mhz

256-core Pas-

cal/1300MHz

NVIDIA Denver2

(dual-core) /2GHz

3. Algorithms

3.1. Sharpness

Sharpness module is the most computationally intensive part of the automatic system for

detecting fishing boat lights from nighttime images of the VIIRS multispectral radiometer [2].

VIIRS Boat Detector (VBD) considers all isolated bright spikes that are sharply visible on

the sea’s night surface as candidates for boats. In the moon light, the interference by clouds

and lunar glint are taken into account as well. This Sharpness Module processes visible images

E.O. Tyutlyaeva, A.A. Moskovsky, I.O. Odintsov, S.S. Konyukhov, A.A. Poyda...
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from the VIIRS Day/Night Band (DNB). If part of the image appears blurry according to the

Sharpness Module result, it will be discarded from the search for the isolated electric lights from

boats.

The flow graph of the module is shown in Fig. 1

Figure 1. Sharpness Module Flow Graph

The Sharpness module reads input from the VIIRS DNB image stored in HDF5 format.

Output data are stored in binary ENVI format. Data processing includes the following steps:

• Logarithmic transformation of the brightness histogram (stretch).

• Applying the Wiener filter [8].

• Computing the Spike Median Index (SMI).

• Computing the Sharpness Index (SI) [9] in a moving window of Block Size × Block Size.

The Direct Fourier Transforms and Overdetermined real linear systems solving routines

are repeatedly performed during this step.

3.2. Cross-Correlation

The Cross-correlation module calculates correlations between two spectral bands, visible

and infrared. The main idea of the algorithm is validating the detected sources in different

spectral bands under moonlit conditions.

The validation is carried out by performing a synchronous computing the linear Pearson’s

correlation between the corresponding moving windows in two spectral images. If the visible

and infrared images are locally well-correlated, it means that the signal in the visible images is

coming from moonlit clouds. If the local correlation is weak, it means that the visible signal is

coming from the sea surface.

4. Implementation Details

The original versions of both algorithms were implemented using Matlab programming

language.

We implemented the studied modules using C++. The source code was refactored to reach

the maximal level of compiler-assisted optimization. The final C++ version of the code was

implemented in a straight-line manner; all repeatedly performed loops had single entry and

single, not data-dependent exit.

Input and output data details for both algorithms are presented in Tab. 2. HDF5-1.8.19 was

used for parsing and reading HDF5 data.

4.1. Intel Version

In order to achieve the best performance on Intel testbeds, the vectorization features were

used. In this context vectorization means using of the Intel SSE instruction set, which is an

extension to the x86 architecture [10].

The efficient memory access was used by data alignment to the 32 byte boundaries (for Intel

Advanced Vector Extensions (Intel AVX) ) and 64 byte boundaries (for Intel AVX-512).

Multicore Platform Efficiency Across Remote Sensing Applications
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Table 2. Data Specifications

Algorithm Stage Data Format Size, MB Data Type Dimensions

H×W

Sharpness
Input HDF5/DNB 60 Double 3072×4064

Output ENVI 96 Double 3072×4064

Cross- Input ENVI,HDF5/DNB 48,60 Float, Double 3072×4064

Correlation Output ENVI 96 Double 3072×4064

Intel compiler pragmas were used to inform the compiler of where it can safely ignore data

dependencies and to inform that data is aligned.

Repeated operations with data arrays were implemented in a consecutive manner to use

direct load from memory in a single SSE instruction.

Moreover, the typical trip count of the loop based on the typical image size is advised to

the compiler in the Cross-Correlation module.

Mathematical calculations such as vector logarithm computation, Direct Fourier Transforms

and solving the Overdetermined real linear systems were performed using the Intel MKL Library

(2017).

The Processor-specific options of the form -ipo -O3 -xMIC-AVX512 (for

KNL)/-xCORE-AVX2 (for BRW) were used to generate optimized and specialized code for

processors.

The hybrid (MPI + OpenMP) parallelization scheme for an efficient application of the mul-

ticore architectures was used for this implementation. Each MPI rank processes its own images

independently, so there are minimum communications between the processes. The OpenMP

threads were used on Sharpness Index computation step. OpenMP threads process independent

data in different positions of a moving window.

This version was tested on Intel testbeds with codenames Broadwell and KNL (Tab. 1).

4.2. ARM Version

The ARM-optimized version of FFTW3 open source library was used for Direct Fourier

Transforms. The LAPACK library (3.7.1-4) was used for solving the overdetermined real linear

systems. The processor-specific options were used for compilation.

Current implementation uses only ARM Cortex-A15 cores; the GPU cores are idle during the

computation. So, the ARM testbed still have room for code optimization to achieve maximum

possible performance.

The simple MPI-only parallelization scheme was used for this implementation, where each

MPI rank processes its own images independently. An additional OpenMP parallelization layer

is not required in this case due to the absence of hyperthreads. We used MPICH MPI imple-

mentation optimized for the ARM.

This version was tested on the ARM testbed (Tab. 1).

4.3. CUDA Version

The Sharpness algorithm is optimized for Jetson testbed according to the algorithm’s logical

structure described in subsection 3.1
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The preparation steps, such as data input, stretch, applying the Wiener filter, and computing

the Spike Median Index (SMI) are performed on CPU. The most computationally intensive step

(computing the Sharpness Index) is implemented using CUDA (V8.0.62). This step is performed

using GPU cores only.

The Cross-Correlation algorithm is also implemented using CUDA. The number of

threads used in each block is justified with the image’s width; the number of blocks is justi-

fied with the image’s height.

CUDA threads effectively use GPU resources, so the MPI layer is not used in this imple-

mentation.

This version was tested on Jetson testbed (Tab. 1).

5. Measuring Equipment

Running Average Power Limit (RAPL) energy sensors, available in recent Intel CPUs, were

used for measuring energy consumption for Intel testbeds (Broadwell and KNL). According to

the Intel research [11], RAPL software power closely follows the actual power measurements.

RAPL reports various energy readings. This includes energy consumption for the processor

packages and the DRAM packages.

PAPI library [12] was used on Intel testbeds as an interface to RAPL energy consumption

measurements [13]. PAPI provides a uniform access to performance counters as well as to RAPL

data, so it provides the opportunities for enhanced measurements in the feature.

Hantek DSO2000 Series USB Oscilloscope [14] was used for power measurements for ARM

and NVidia testbeds. Electric current was measured in ampers at every second of testing. Voltage

was measured before execution of test series.

The execution time was measured using PAPI Library (PAPIgetrealnsec() function) on all

testbeds.

6. Performance and Energy Consumption Study

This section presents experimental results of processing of time and energy consumption

measurements of the modules reported in Section 3, measured using the equipment described in

Section 5 on the testbeds listed in Section 2.

The testing procedure consisted of measurements regarding energy consumption and exe-

cution time. The testing procedure included a series of 10 executions per each combination of

input data set and input feature sets.

Appropriate preparatory steps had been done prior to each execution, especially removing

the results of previous computations and cleaning up the caches and swap.

The aggregate result is calculated as a median value of the measured results. Median value is

used for understanding the central tendency of benchmarking results and for filtering out values

that are skewing the results (for example, abnormally big values caused by temporal system

processes’ routines).

Input data for parallel processing was duplicated, so each of MPI rank processes separates

a copy of input data. (According to the real case of archive processing, where each MPI rank

should process a separate image). The numbers of MPI processes and CUDA threads are carefully

adjusted according to the available number of cores and implementations for each architecture.
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Testing results for the Sharpness module are listed in Tab. 3; results for the

Cross-Correlation module are shown in Tab. 4.

Table 3. Sharpness Module Execution Statistics

Characterization Broadwell KNL ARM Jetson

Images processed 32 68 2 1

Execution Time, sec 39.229 206.121 355.5 33

Energy Consumed, J 9947 30757 3511 258

Table 4. Cross-Correlation Module Execution Statistics

Characterization Broadwell KNL ARM Jetson

Images processed 32 (× 2) 68 (× 2) 2 (× 2) 1 (× 2)

Execution Time, sec 25.7 39 20 5

Energy Consumed, J 4382 5107 179 27

It is important to note that measuring tools used in this research (see Section 5) oversee

global energy consumption of the system, not just the energy consumed by the module under

study. So, energy consumption results listed in Tab. 3, 4 refer to the total testbeds’ consumptions

during execution of the studied module.

As stated above, the number of processes and threads was selected according to the architec-

ture requirements and implementation details. For Intel architectures in particular the optimal

number of MPI processes refers to the number of physical cores; the number of OMP threads

refers to the number of hyperthreads per core (2 OMP threads per MPI process for Broadwell

testbed and 4 OMP threads per MPI process for KNL testbed). For ARM testbed, only MPI

processes weere used. Finally, only CUDA threads were used for Jetson testbed. Thus, the num-

ber of pictures, processed in a parallel, differs for each testbed; execution time and consumed

energy also vary in a wide range. So, it is difficult to define the appropriate testbed for these

modules.

In this context, in is important to outline that rapid technological progress in multispectral

imaging area stimulates new methods and challenges coming to existense in analysis and inter-

pretation of hyperspectral data sets. This, in turn, leads to re-processing of data collected over

the last year(s). So, the re-processing procedure is maintained systematically.

According to the current data, one Visible Infrared Imaging Radiometer Suite (VIIRS)

day/night band (DNB) image corresponds to 5 min observations’ data. Therefore, observation

data archived for 1 year contains approximately 52560 DNB images. Table 5 shows the estimated

time and energy to process a 1-year archive using the the Sharpness module in conformity with

the experimental results mentioned above.

Table 5. Sharpness Module’s Estimated Time To Process a 1-year archive

Characterization Broadwell KNL ARM Jetson

Time to Process, hours 17.9 44.3 2595.15 481.8

Energy Consumed, kJ 16337.9 23773.3 92269.08 13560.48
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As shown in Tab. 5, the best energy consumption (13560 kJ) is reported for Jetson testbed.

Following a close second is Broadwell testbed with 16337 kJ estimated energy consumption to

process a 1-year archive. However, the execution time is much longer in Jetson testbed (481

hours corresponding to 20 days), while Broadwell testbed should complete processing of the

archive with 18 hours.

As an alternative solution, the GPU cluster can be constructed to reduce the computation

time and increase the performance. While this approach could benefit for the time of processing,

energy consumption would be increased due to communication costs. Moreover, it is worth noting

that increasing the number of components affects resilience of the solution.

Conclusion

This paper presents a research regarding execution time and energy consumption at different

testbeds while running a multispectral image processing module.

Intel® Xeon® E5 and Nvidia Jetson TX2 demonstrated the most efficient results regarding

computation performance and energy consumption criteria.

As a result, Intel® Xeon® E5 can be recommended for periodical re-processing of large

archives of multispectral images in a reasonable time (days or weeks of full HPC cluster load).

NVidia Jetson TX2 could be used for near real-time image processing, for example, at a direct

receiving station, because it shows good results in per-picture processing.

However, ARM testbed must be further studied to fully exploit its potential. We intend to

continue this work in the following directions:

• In the nearest future, we are planning to study other types of architectures, including

Russian VLIW Elbrus CPUs and Intel® Xeon® Scalable Processors.

• We are planning to carry out a more detailed analysis of correlations between energy

consumption and other performance metrics, including cache misses, the number of cycles

and executed instructions, and so on.

Designing an energy-efficient system for processing multispectral observation data is a com-

plex task that introduces new programming and optimization challenges. However, the results

listed in this paper could be helpful for selection of the most appropriate architectures.
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On the path to Exascale, the goal of High Performance Computing (HPC) to achieve maxi-

mum performance becomes the goal of achieving maximum performance under strict power con-

straint. Novel approaches to hardware and software co-design of modern HPC systems have to be

developed to address such challenges.

In this paper, we study prediction of power consumption of HPC systems using metrics

obtained from hardware performance counters. We argue that this methodology is portable across

different micro-architecture implementations and compare results obtained on IntelR© 64, IBMR©

POWER
TM

and Cavium ThunderXR© ARMv8 microarchitectures. We discuss optimal number and

type of hardware performance counters required to accurately predict power consumption.

We compare accuracy of power predictions provided by models based on Linear Regression

(LR) and Neural Networks (NN). We find that the NN-based model provides better accuracy of

predictions than the LR model. We also find, that presently it is not yet possible to predict power

consumption on a given microarchitecture using data obtained on a different microarchitecture.

Results of our work can be used as a starting point for developing unified, cross-architectural

models for predicting power consumption.

Keywords: hpc, power consumption, modelling, exascale, cross-architectural, neural networks.

Introduction

Upcoming High Performance Computing (HPC) systems are on the critical path towards

delivering the highest level of performance for large scale applications. If contemporary tech-

nologies were used to build even more powerful HPC systems, the power consumption required

by those systems would be unsustainable, as it would require hundreds of megawatts of power.

Thus, current HPC systems must be built considering energy efficiency as the first and fore-

most design goal. Currently, the most power efficient HPC system on the Green500 [26] list

is Shoubu System B located at ACCC, RIKEN with 17GFlops/Watt. In order to achieve a

sustainable power draw, future HPC systems will have to feature power efficiency of around

50GFlops/Watt. Such power efficiency levels require novel software/hardware co–design, with

software guiding static and dynamic power management.

Successful development of such software relies on availability of tools for measuring power

consumption and temperature. Temperature and power sensors have been introduced to pro-

vide these type of measurements. Unfortunately, as a result of the fabrication process used to

build microprocessors, measurements of changes in power and temperature happen significantly

later then the actual event (thermal inertia). An alternative to using power and temperature

sensors would be to directly measure processor events that are causing power and temperature

changes thus eliminating time lag limitation. The best proxy for measuring processor events is

the hardware performance counters, because they offer a reliable interface to detect power and

temperature variations within a real system. Considering a very large number of hardware per-

formance counters typically available on modern systems, the task of selecting counters that are

most representative of the full system power is becoming a challenge. Moreover, complexity of
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this problem significantly increases when different types of micro–architecture implementations

are considered. The matter is further complicated by the fact that each architecture has a limited

number of registers that can be simultaneously recorded without resorting to multiplexing and

therefore reducing the accuracy. For example, IBM POWER8 architecture can simultaneously

track at most six different performance counters, while the latest Intel 64 architecture can track

up to eight.

In this paper, we extend recent works [2, 13] on estimation of power consumption of

HPC systems with metrics obtained using hardware performance counters on three different

micro–architecture implementations: Intel 64 Broadwell, IBM POWER8 and Cavium Thun-

derX ARMv8 architecture and argue that the methodology is portable across different micro–

architecture implementations. We study advantages and disadvantages of a model presented

in [2] and [13] in dealing with emerging HPC workloads. We improve accuracy of power con-

sumption predictions by adoptong a model based on Neural Networks (NN) and discuss the

optimal number and the type of hardware performance counters required to accurately predict

power consumption within few percents of the actual power consumption. We believe that our

results can guide system designers in implementing hardware counters which measure similar

events between different types of architectures, which in turn will allow developing more general

models of power consumption.

The rest of the paper is structured as follows. Section 1 describes the use of hardware

performance counters for power consumption estimations. Section 2 explains advantages and

disadvantages of the power estimation model from [2, 13] and describes methodology that was

used to collect data on three different HPC systems. Section 3 describes NN based approach

to developing a more accurate prediction model and shows results that we have obtained using

the new model to estimate power on emerging HPC workloads. Finally, the section entitled

“Conclusions and Future Work” presents conclusions and future directions of our work.

1. Related Work

The use of hardware performance counters to estimate power consumption has been around

for some time [10]. Such approach is appealing, because it does not require information about

power consumption of individual functional units, but its accuracy relies on selecting the most

suitable hardware performance counters and on having a very representative set of applications,

which can fully characterise the target platform in order to build a reliable expression for power

estimation. Previous studies [18] have shown that it is sufficient to use only instructions per

cycle (IPC) to characterise behaviour of an operating system. In this case, the constructed

power consumption model is a static power model. In [4], authors have proposed a dynamic

power model, where the framework used to construct it contains a set of heterogeneous power

models. In all these examples, the power model has been constructed only for a micro–processor

and memories, but not for events related to a chipset, I/O and disk. For majority of workloads,

that is acceptable in terms of accuracy as microprocessors and memories consume most of the

power, and the rest of the system makes up between 10% and 20% of total power (dependant

on the type of the workload). The work presented in [7] shows how to assess the total power

of a system using hardware performance counters. The authors use the trickle–down approach

where values of power inducing hardware performance counters are propagated within different

subsystems in order to simulate the total power. The model they have built was accurate within

9%.
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The work presented in [23] considers two processor configurations at the opposite ends of a

performance spectrum: a low power processor and a high performance processor. The authors

have found that there exists a subset of hardware performance counters, which allows evaluating

dynamic power consumption for each architecture with an average error of 5%.

The study presented in [2] demonstrates that it is possible to estimate power consumption

on HPC architectures for workloads with very high CPU utilisation ( all cores are utilised at

more than 90% ) with an average error within 5%.

Machine learning–based modelling has been gaining popularity for optimising power and

energy consumption. It has been used for power and energy modelling on HPC kernels with

different code variants [27] and for predicting a user’s demands from the usage history for

managing idle servers [12]. Genetic algorithm has been used to predict power using a wide range

of hardware activity counters [17]. Neural Network has been used to minimise the cooling energy

consumption [1] of a server. Borghesi et al. [8] have proposed a machine learning approach, which

relies on resource requests from a user and an application to estimate power consumption of HPC

workloads. Their model was able to handle cases when CPUs were not fully utilised.

However, all previous models were dealing with a particular micro architecture. In this

paper, we present in–depth study on power consumption evaluation using hardware performance

counters within three different micro–architecture implementations: Intel 64 Broadwell, IBM

POWER8 and Cavium ThunderX ARMv8.

2. Motivation

2.1. Linear Regression Model

As the starting point for predicting power consumption, we used the model introduced

in [2]. The model’s equation for power consumption of a given application as a function of CPU

frequency f is the following:

P(f) = A(f)× P(f0) +B(f)× TPI(f0) + C(f). (1)

In equation (1), power consumption P of an application running with CPU frequency f is

estimated by measurements performed at reference frequency f0. In order to use equation (1), we

need to measure, power and transactions per instruction (TPI) for each application at frequency

f0. Transactions per instruction are defined as a ratio of the number of cache lines written to

and read from memory (C) to a number of instructions executed (I) :

TPI(f) =
C(f)

I(f)
.

Coefficients A(f), B(f) and C(f) are system-specific. They are used for characterising

power on a given HPC system at CPU frequency f . It is important to note that for every

new microarchitecture implementation, it is always necessary to obtain new A(f), B(f) and

C(f) coefficients as they are not transferable.

Equation (1) assumes that we have a way to measure power consumed by an application at

a specific frequency. This is not always possible as described in the Section . Furthermore, the

majority of power sensors expose power lag and distortion where power consumption lags behind

the actual benchmark activity and the shape of power consumption does not actually match the

benchmark activity [9]. Therefore, we need to modify equation (1) to use measurements obtained
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from hardware performance counters. The new equation is:

P(f) = A(f)× GIPS(f0) +B(f)× GBS(f0) + C(f). (2)

In equation (2), GIPS is the instruction rate, which is defined as a number of giga instruc-

tions executed per second, and GBS is the memory bandwidth, which is defined as a number of

gigabytes written to and read from the memory per second. With such metrics, coefficients A,

B and C at frequency f have the following meaning:

• A is the power consumed by all executed instructions.

• B is the power consumed by data transfers.

• C is the power consumed statically.

Table 1. Intel Xeon E5 v4, IBM Power System S822LC and Cavium ThunderX characteristics

Architecture POWER8 Intel x86-64 ARMv8 64bit
Processor IBM Power System S822LC Intel Xeon E5-2698 v4 Cavium ThunderX

Core Frequency 3.5 GHz 2.3 GHz 2.0 GHz
# of cores 10 16 48
# of threads 80 32 48

Execution unit Type out-of-order out-of-order in-order
# of issue/commit 10 / 8 8 / 4 2 / 2

L1D Cache Policy NUCA Write-allocate Write-through
Type Private Private Private
Size 64 KB/core 32 KB 32KB
Associativity 8-way 8-way 32-way

L1I Cache Size 32KB/core 32KB 78 KB
Associativity 8-way 8-way 39-way

L2 Cache Policy NUCA Write-back Write-back
Type Private Private Shared
Size 512KB/core 256KB 16MB
Associativity 8-way 8-way 16-way

L3 Cache Policy NUCA Write-back N/A
Size 8MB/core 40MB N/A
Type Shared Shared N/A

SMP Interconnect Bus Type Integrated SMP interconnect QPI CCPI
Bus speed 9.6 GB/s per channel 9.6 GB/s 10.3 GHz

Memory Type DDR4 1600 DDR4 2133 DDR4 2133
# of channels 8 4 4
Access speed 1600 MHz 2133 MHz 2100 MHz

2.2. Methodology

In order to estimate power as given in equation (2), we need to read hardware performance

counters for the total number of instructions that have been executed (or retired) and the total

number of bytes that have been read and written to a memory controller.

Tab. 1 shows relevant characteristics of three different microarchitecture implementations

that we are using throughout the paper. Tab. 2 shows hardware performance counters that were

used to measure events that are required to calculate GIPS and GBS for equation (2) for the

model described in Section 2.1. We used architecture-independent libpfm library [14] to read

performance counters for events listed in Tab. 2. This approach allowed us to run our profiled

benchmarks unmodified on both architectures.

To find coefficients A, B and C, we ran a set of compute kernels as in [2] that provide a broad

spectrum of GIPS and GBS characteristics. We used NAS Parallel Benchmarks (NPB) [3] and

STREAM [19], which have been designed to test the performance of HPC systems. NPB suite

is a mix of workloads that has been derived from computational fluid dynamics, unstructured
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Figure 1. Correlation between the total node power and the power consumed by cores and

memories

adaptive mesh, parallel I/O, multi-zone applications and computational grids, whilst STREAM

is a simple synthetic benchmark that is used to measure sustainable memory bandwidth and

corresponding computation rate for straightforward compute kernels. We used the OpenMPI [24]

version of benchmarks with different classes/problem sizes in order to cover a wider range of

workloads. As for the NPB suite convention, benchmark class is appended as a suffix to the

benchmark’s name; for example, ft.C stands for discrete 3D fast Fourier Transform, class C..

Firstly, we studied which part of an HPC node contributes the most to power consumption.

For brevity, results presented in this section were obtained on Intel Xeon E5 v4 microarchi-

Table 2. Hardware performance counters used on Intel Xeon E5 v4, IBM POWER8 and Cav-

ium ThunderX microarchitecture implementations to calculate GIPS and GBS provided in

equation (2)

Microarchitecture Memory Instructions

Intel Xeon E5 v4 UNC CBO CCACHE LOOKUP.I

UNC CBO CCACHE LOOKUP.ANY REQ EVEN INSTR RETIRED

UNC ARB TRK REQUEST.EVICTIONS

IBM POWER8 PM MEM READ

PM MEM PREF PM RUN INST CMPL

MEM RWITM

Cavium ThunderX ARM L2D CACHE REFILL LD

L2D CACHE REFILL ST CPU CYCLES

L2D CACHE WB VICTIM

L2D CACHE WB CLEAN
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Figure 2. Accuracy of power consumption estimation of NPB and STREAM benchmarks using

equation (2) on IBM POWER8

tecture, but we has the same observations on IBM POWER8 micro-architecture. In order to

measure power consumption on IBM POWER8 (S822LC model) server, we used an On-Chip

Controller (OCC) that collects temperature and power data from various sensors. This data

is available either from a Baseboard Management Controller(BMC) via IPMI protocol or from

the system memory via kernel module [5]. We used a power interface board (PIB) to get to-

tal power consumption on an Intel-based server. The PIB has a hot-swap controller (HSC), TI

LM25062 [25] that measures and reports power. It works by having a shunt resistor and an I-

sense/V-sense circuit. Thus, it is possible to position HSC with the sense circuit between the 12V

DC power connector and the on-board voltage regulators to monitor the total power consumed

by the attached HPC node. In addition to total power of the HPC node, we also measured power

consumed only by processor and the memory. This was measured by reading information from

model-specific registers (MSR) that are used for the Running Average Power Limit (RAPL)

future. If there is high correlation between these two measurements for NPB benchmarks, then

we can deduce that it is sufficient to only model cores and memory performance events in order

to estimate total power as it can be calculated from cores and memory power using the fitted

line. Fig. 1 shows the results we have obtained.
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Figure 3. Actual instantaneous power (blue) and mean power (red) used by the model to rep-

resent power consumption of the application

There is almost perfect correlation between RAPL and PIB values that can be approximated

by a quadratic fit4. The outliers are three benchmarks integer sort (is.C), STREAM and multi-

grid (mg.C). These three benchmarks are using uncore events that are not covered by RAPL.

Secondly, in order to calculate coefficients A, B and C on Intel Xeon E5 v4, we ran NPB

and STREAM benchmarks at CPU frequencies ranging from 1.2 GHz to 2.3 GHz in steps of

0.1 GHz and performed a linear regression using the obtained results and equation 2. We used

the nominal frequency of 2.0 GHz as a baseline frequency (f0). For IBM POWER8 we have

used CPU frequencies ranging from 2.5 GHz to 4.0 GHz and nominal frequency of 3.4 GHz.

Since Cavium ThunderX does not support power gating, we eliminated implementation of this

microarchitecture in this test. As soon as we obtained the coefficients, we estimated accuracy

of the model by comparing estimated and actual power consumption for the benchmarks used

by regression analysis. Figure 2 shows the difference between the estimated power consumption

using a linear regression model and actual power reading from IBM POWER8 for all NPB and

STREAM benchmarks and frequencies from 2.5 GHz to 4.0 GHz.

If the model is good, we expect most of benchmarks under various frequencies to be in one

of the shades of green or light blue because in this case the difference between estimated and

actual power is close to zero. This is applicable for such benchmarks as unstructured adaptive

mesh (ua.C), lower-upper Gauss-Seidel solver (lu.C) and block tri-diagonal solver (bt.C). On

the other hand, for such benchmarks as data cube (dc.B) and mg.C, accuracy depends on the

CPU frequency. At higher frequency, the model overestimates the consumed power, while at

lower frequencies it underestimates it. It also should be noted that for benchmarks ft.C and

embarrassingly parallel (ep.D) the model estimates power quite accurately at high frequencies

while it overestimates it at lower frequencies. Both of these behaviours could be caused by

choosing the nominal frequency (namely, 3.4 GHz) as a baseline frequency. Furthermore, we can

also notice on Fig. 2 that NPB and STREAM benchmarks do not cover the whole spectrum of

possible combinations. For example, we can see that none of the benchmarks are in the top-right

corner, where there is a high TPI and high average power consumption; and also, none are in

the bottom-left corner where there is a low TPI and mid- to low-power consumption. This shows

that some benchmarks might be over- or underestimated because they belong to an uncovered

region.

Thirdly, the model provided in [2] uses power consumption averaged over the application’s

runtime. This approximation works well when there is no significant power variability during its

4The model of quadratic fit is −0.0003 × x2 + 1.2614 × x + 12.3405
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(a) Regression model (b) Neural Network-based model

Figure 4. Power estimation accuracy of SPLASH2 benchmark suite on IBM POWER8

operation. But that is not always the case. Shown in blue in Fig. 3 is the shape of the running

power during execution of the benchmarks, and shown in red is the constant power that is used

for building the model. While comparing Fig. 3 with Fig. 2, We noticed that that model is fairly

accurate for such benchmarks as ep.D, where there is an overlap between the blue and the red

lines. Benchmarks such as bt.C, lu.C and ua.C belong to this category as well. For benchmarks

in which it is not the case, such as dc.B and STREAM, we noted significant differences. This can

have a significant impact on accuracy of the estimation.

Finally, in order to conduct further testing of the model, we ran all benchmarks from the

SPLASH2 [28] benchmark suite. None of the results from these benchmarks were used by the

linear regression model to find coefficients. Figure 4 shows results for POWER8 at the frequency

of 4.0 GHz. The red bar is the whole benchmark run (including sequential and parallel regions

of the code); the blue bar indicates that only parallel region of the code is measured. With only

parallel region measured, the CPU utilisation is higher and, as a result, we expect to see higher

accuracy of the power estimation model.

Figure 4 (a) shows that the model based on equation (2) provides accuracy of power eval-

uation only between 30% and 40%. It is a clear indication that the linear regression model has

difficulty in covering a broader range of application with different execution profiles. Figure 4 (b)

shows that the NN-based model is accurate within 5% for exactly the same range of parameters.

In the next Section, we will discuss in details how to use the Neural Network-based approach

to improve accuracy of power estimation. In order to improve the accuracy as shown in analysis

in this Section, it is not enough just to focus on performance counters that account for executed

instructions and data transfers. If we apply the Neural Network-based model developed in the

next Section on hardware performance counters from Tab. 2, we drop power consumption mis-

prediction to a further extent than the one shown in Fig. 4 (b). Furthermore, it is necessary to
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increase the number of benchmarks in the training set in order to cover the wide spectrum of

future application characteristics. In this regard, we start the next Section by describing addi-

tional hardware performance counters that we sampled in order to improve accuracy. We also

review an extended benchmark set before describing the Neural Network model that utilities

them.

3. The Neural Network Model

In this Section, we provide details of our Neural Network–based power consumption predic-

tion model, as well as the training sets used and the model’s validation. Our model improves

linear regression model predictions while using the same hardware performance counters, and

extends the model by taking into account a wider range of counters.

Our model is a proof–of–the-concept prototype that can make fine–grained power predic-

tions. We used the same hardware given in Section 2 as described in Tab. 1. The MATLAB

Neural Network Toolbox [11] is used for the modelling.

3.1. Hardware Performance Counters and Benchmarks

It is possible to reveal plenty of power consumption information by monitoring hardware

performance counters because they directly measure events that correlate with the energy used

during the application execution. The aim of our work is to find the minimum set of hardware

performance counters that highly correlate with the amount of power consumed. As in [23], we

looked at a large number of available hardware performance counters across three different micro

architecture implementations and selected the following counters:

• Instructions Per Cycle (IPC) – it was previously shown that power consumption of a

processor is highly dependent on this metric.

• Dispatched/Fetched Instructions (IFETCH) – the previous metric (IPC) only ac-

counts for instructions that have been retired, but it doesn’t take into account instructions

that have been speculatively executed. These instructions still consume power. Therefore,

we keep track of them using this counter.

• Stalls (STALL) – due to multiple issues and out-of-order execution, contemporary pro-

cessors stall due to dependencies such as data and resource conflicts. The conflicts draw

power and are not accounted by any of the previous counters.

• Branch hit ratio (BR) – in order to find contribution to power consumed of speculatively

executed instructions due to branch misprediction, we also measure percentage of correctly

predicted branches during the application execution and use that information to further

refine the results from IFETCH and STALL hardware performance counters.

• Floating point instructions (FLOPS) – for HPC applications, the largest contributor

towards power consumption are instructions that are utilising the floating point unit as

they represent the majority of executed instructions.

• Cache and memory hit and miss – once there is a miss, the processor needs to bring

data from the memory in order to operate on it; the power is required to move this data.

Due to the fact that with the previous counters we only measured power that is consumed

within the processor, we also measure the number of hits in local cache (L1) and the

number of misses in the shared last level cache (LCCM).
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Table 3. Hardware performance counters used on Intel Xeon E5 v4, IBM POWER8 and Cavium

ThunderX microarchitecture implementations to record metrics as described in Section 3.1

Event Intel Xeon E5 v4 IBM S822LC Cavium ThunderX

IPC EVENT CPU CLK UNHALTED PM RUN CYC CPU CYCLES

EVENT INST RETIRED PM RUN INST CMPL INST RETIRED

IFETCH EVENT ISSUED PM INST DISP ISSUE

STALL EVENT RESOURCE STALLS PMU CMPLU STALL STALL BACKEND

BR EVENT BR INST EXEC PM BR CMPL BR RETIRED

EVENT BR MISP EXEC PM BM MPRED CMPL BR MIS RETIRED

FLOPS FP ARITH INST PM FLOP ASE SPEC

VFP SPEC

L1 MEM LOAD RETIRED L1 HIT PM DATA FROM L2 L1D CACHE REFILL

L1D CACHE

LCCM UNC CBO CCACHE LOOKUP.ANY REQ PM MEM READ L2D CACHE REFILL LD

UNC CBO CCACHE LOOKUP.I PM MEM PREF L2D CACHE REFULL ST

UNC ARB TRK REQUEST.EVICTIONS PM MEM RWITM L2D CACHE WB VICTIM

L2D CACHE WB CLEAN

The hardware performance counters that we have obtained are intuitive. Power consumption

of the processors depends on the number of directly executed instructions (IPC). The power

used to move data and instructions from memories before execution is accounted by L1 and

the IFETCH counter, while moving data from further away is modelled by LCCM and the

processor stalls (STALL) whilst it is waiting for data to become available. Furthermore, the

accuracy of the processor stalls is improved by tracking correctly predicted branches (BR) as

well. Finally, since the focus of this work lies on HPC–like workloads, we are also tracking

the floating point instructions (FLOPS) since they represent the majority of instructions in

these types of workloads. Table 3 shows the events that we sampled for each of the three

microarchitecture implementations shown in Tab. 1.

In order to increase the size of the training set for our model, we have used extra four

benchmark suites in addition to the NPB benchmark suite. The first two benchmark suites are

Splash-2 [28] and the Princeton Application Repository for Shared–Memory Computers (PAR-

SEC) [6]. Splash2 is a mature benchmark suite that contains a wide range of HPC and graphic

applications, while PARSEC consists of benchmarks which are representatives of emerging work-

loads found in domains of data mining and media processing. We used 12 benchmarks from each

of Splash2 and Parsec suites . The third benchmark suite is Mantevo [15]. Mantevo pioneered

the concept of using miniapps to drive hardware/software co–design. The miniapps are proxies

which combine some or all aspects of dominant computational kernels into standalone appli-

cations. We used 12 miniapps from Mantevo benchmark suite, which cover domains of finite

elements, molecular dynamics, contact detection and electrical circuits. The fourth benchmark

suite is a set of proxy applications from LLNL [16] that represent Monte Carlo particle transport,

radiation diffusion and Livermore Loops. We used 7 benchmarks from this suite.

3.2. Model Description and Validation

The computational neural network (NN) is inspired by biological neural networks to predict

or approximate functions that can depend on a large number of inputs. There are two phases

when in using a neural network: training and deployment. During the training phase, neurons in

each layer are adjusted iteratively using the training data. Then, the trained neurons are used to

predict the new output in the deployment phase. Fig. 5 shows our neural network design. First,
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Figure 5. Neural Network–based prediction approach

input data is pre-processed to obtain steady-state power. Second, pre-processed input data is

fed to the input layer of the neural network for training.

In our case, the input layer consists of processor activity hardware counters and data activity

hardware counters as shown in Tab. 3, which we identified to be the major sources of power

draw. An entire data set was collected for three different microarchitectures using five benchmark

suites. In order to have the same basis for the comparison between the neural network and

a regression model, we updated the regression model from Section 2.1 to take into account

hardware performance counters that we sampled as shown in Tab. 3. We conducted experiments

with different numbers of runs per each benchmark to test the impact of data set size on the

neural network model’s accuracy. As shown in Fig. 6 (a), we noted that if the same benchmarks

are run multiple times, overall accuracy of the NN model increases. Figure 6 (b) shows that

accuracy of the NN model increases as we increase the number of different benchmarks in the

training set.

If we 5 times run each benchmark from each suite on Cavium ThunderX ARM implementa-

tion, the error in power consumption estimation is around 3%, while if each benchmark is ran 20

times, the error drops below 1%. We noticed no further increase in accuracy by increasing the

number of runs beyond 20, which indicates a convergence threshold for the NN model. Neither

accuracy improvement was observed by the regression model (REG) as well.

Accuracy improvement with an increased number of runs of the same benchmark occurs

due to the fact that a benchmark’s profile differs from run to run as illustrated in Fig. 7. For

example, by using the Cavium ThunderX microarchitecture we obtain a different spread of

values for IFETCH counter between different runs of PARSEC benchmarks. Such variance in

data provides additional data points for NN model training, which improves its accuracy. As

mentioned in the previous paragraph, we determined that the ideal number of runs for each

benchmark from each suite is 20. It should be noted that data variance/noise has a negative

impact on accuracy of the linear regression model.

After the training phase, the neural network is deployed to provide node power predictions.

The information flow of the training phase and the deployment phase is shown in Fig. 5 as a

solid blue line and a dotted red line, respectively. In a neural network, each connection between

neighbouring layers has a weight to scale data and a bias that allows shifting the activation

function. Data points from the input layer are inserted as inputs to the next consecutive layers

(hidden layers). Then, the hidden layers sum the data fed to them, scale (weight) the data, and

process it until the data reaches the last layer that outputs the predicted node power:

A Study on Cross-Architectural Modelling of Power Consumption Using Neural Networks
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(a) The number of each benchmark runs (b) The number of benchmarks

Figure 6. Power estimation accuracy as a function of benchmark runs and number of benchmarks

Figure 7. The variance of IFETCH hardware performance counter on Cavium ThunderX

microarchitecture implementation
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(a) Intel 64 (b) Cavium ThunderX

Figure 8. Error in power estimation between regression and neural network model for Intel 64

and Cavium ThunderX ARM microarchitecture implementations

wij(k + 1) = wij(k)− η δek
δwij

, (3)

where η is the learning rate parameter which determines the rate of learning. wij represents the

scalar value of weight on the connection from layer i to j. ek represents the error of NN at kth

iteration. δek/δwij determines the weighted search direction for this iterative method.

The weights and biases of the network are updated only after the entire training set has

been applied to the network. We used 10–fold cross-validation to validate our model where 90%

of randomly selected data is used as a training set and 10% is used as a validation set. The

gradients calculated for each training set are added together to determine the change in weights,

and biases. The weights and biases are updated in the direction of the negative gradient of the

performance function.

For our neural network model we have tried three commonly used back–propagation algo-

rithms: Levenberg–Marquardt [21], Scaled conjugate gradient [20], Resilient [22], and Bayesian

Regularization. The Bayesian Regularization algorithm performs the best in terms of accuracy

(showing the minimum mean error) but has more computational overhead (showing higher train-

ing time). Scaled conjugate gradient and Resilient perform the best in terms of computational

overhead, showing less time for training than the other algorithms. As a result of this analysis,

we decided to use the well-balanced Levenberg–Marquardt back propagation algorithm for all

our experiments. However, the Bayesian Regularization back–propagation can be used provided

the model’s accuracy is a constrain. Scaled conjugate gradient or resilient algorithms can be

used provided the learning overhead is a constraint.

Figures 8 and 9 show results that we have obtained on three micro-architectures. For each

microarchitecture, the NN model provides higher accuracy compared to the regression model.

The largest improvement in accuracy was observed for Cavium ThunderX ARM architecture

as it is the simplest architecture to model with an in–order processor and a simplified two–

level cache hierarchy. Even though this microarchitecture is the simplest of the three studied,

the linear regression model is less accurate than the neural network model. Note that both

models are least accurate on Intel 64 microarchitecture, while they are the most accurate on

IBM POWER8 microarchitecture. This is due to the fact that performance counters which we

identified in Section 3.1 are better indicators of power consumption on IBM POWER8. As part

of our further work, we are planning to research which counters are better suited for Intel 64 and

A Study on Cross-Architectural Modelling of Power Consumption Using Neural Networks
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Figure 9. Error in power estimation between LR and NN models for POWER88 micro-

architecture implementation
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Figure 10. Importance of each hardware performance counters in power consumption estimation

using the neural network model

Cavium ThunderX architectures. It is also important to note that significant improvements in

accuracy for all three different microarchitectures stop around the fifth most important hardware

counter. Figure 10 shows importance of each hardware performance counter from Section 3.1 for

power consumption estimation.

Figure 10 suggests that it would be very difficult to use a neural network model devel-

oped for one architecture in order to estimate power consumption on the other architecture.

Importance of different hardware counters for power consumption estimation is different for

different microarchitectures. For example, Intel 64 and Cavium ThunderX microarchitectures

are of similar importance to the same hardware performance counters except for STALL and

FLOPS. STALL is more important for Cavium ThunderX micro-architecture because it is an

in-order processor, and once there is a stall, instructions throughput and power consumption

drop significantly. On the other hand, the floating point unit on Intel 64 is optimised for a very

high throughput, and as a result, it consumes plenty of power on the floating-point heavy code.

IBM POWER8 micro-architecture implementation behaves differently from Intel 64 and Cavium

ThunderX. Since IBM POWER8 has been optimised for a high throughput, the counters that

reflect the number of executed instructions and correctly predicted branches are the most im-

portant. Also, since the power cost of a cache that is missing and/or shared in a local is high, the

access to remote memory (LLC) is very important when measuring power consumption. Note
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Table 4. The error in estimating power on IBM POWER8 S822LC and Cavium ThunderX ARM

when using the neural network model trained on Intel 64 microarchitecture implementation

Microarchitecture Implementation IBM POWER8 S822LC Cavium ThunderX ARM

Error in power estimation (%) 77% 64%

that due to a very well-developed pre-fetching mechanism on IBM POWER8 microarchitecture,

local cache hits (L1) do not contribute to power consumption estimation on this architecture.

Nevertheless, we tried to apply a model trained on results from Intel 64 to estimate power

of benchmarks’ ran on Cavium ThunderX and IBM POWER8 microarchitecture implemen-

tations. The results are shown in Tab. 4. As expected, since Intel64 and Cavium ThunderX

give similar importance to the same hardware performance counters, the power estimation on

Cavium ThunderX microarchitecture implementation in Tab. 4 is more accurate then on IBM

POWER8. Unfortunately, the accuracy is significantly worse when compared to Fig. 8 and 9.

This is mainly due to the difference in importance of the same hardware performance counters

that each microarchitecture implementation assigns. Furthermore, since the regression model

is better off then the neural network model in both cases, there is space for improvement in

the training phase of the neural network model in order to improve prediction accuracy. As

part of the further work, we are planning to add results from Tab. 4 as part of training to

the neural network model in order to make the neural network aware of different weights that

each microarchitecture implementation assigns to the semantically same hardware performance

counters.

Conclusions and Future Work

We demonstrated how to use hardware counters to develop models of power consumption

for a broad range of HPC applications on three different microarchitecture implementations:

Intel 64, IBM POWER8 and Cavium ThunderX ARMv8.

We demonstrated 2× to 3× better accuracy predictions using the NN model for power

consumption compared to the LR model.

We provided a comparative analysis of the importance of different hardware counters for

power consumption across three microarchitectures. We believe that results of our work can

contribute to software/hardware co–design efforts towards developing unified, cross-architectural

models to predict power consumption.

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-

mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work

without further permission provided the original work is properly cited.
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M. Puzović, E.K. Lee, V.V. Elisseev

2018, Vol. 5, No. 4 39



14. Eranian, S.: Perfmon2: a flexible performance monitoring interface for Linux. In: Proceed-

ings of the Ottawa Linux Symposium. pp. 269–288 (2006), http://perfmon2.sourceforge.

net/ols2006-perfmon2.pdf

15. Heroux, M.A., Doerfler, D.W., Crozier, P.S., Willenbring, J.M., Edwards, H.C., Williams,

A., Rajan, M., Keiter, E.R., Thornquist, H.K., Numrich, R.W.: Improving Performance

via Mini-applications. Tech. Rep. SAND2009-5574, Sandia National Laboratories (2009),

DOI: 10.2172/993908

16. Heroux, Michael A and Neely, Rob, and Swaminarayan, Sriram: ASC Co-Design Proxy

App Strategy. Tech. Rep. LLNL-TR-592878, Los Alamos National Laboratory (2013),

DOI: 10.2172/1055856

17. Huang, W., Lefurgy, C., Kuk, W., Buyuktosunoglu, A., Floyd, M., Rajamani, K., Allen-

Ware, M., Brock, B.: Accurate Fine-Grained Processor Power Proxies. In: Proceedings

of the 2012 45th Annual IEEE/ACM International Symposium on Microarchitecture. pp.

224–234. IEEE (2012), DOI: 10.1109/micro.2012.29

18. Li, T., John, L.K.: Run-time Modeling and Estimation of Operating System Power Con-

sumption. In: Proceedings of the 2003 ACM SIGMETRICS International Conference on

Measurement and Modeling of Computer Systems. pp. 160–171. SIGMETRICS ’03 (2003),

DOI: 10.1145/781047.781048

19. McCalpin, J.D.: Memory Bandwidth and Machine Balance in Current High Performance

Computers. IEEE Computer Society Technical Committee on Computer Architecture

(TCCA) Newsletter pp. 19–25 (1995)

20. Moller, M.F.: A scaled conjugate gradient algorithm for fast supervised learning. NEURAL

NETWORKS 6(4), 525–533 (1993), DOI: 10.1016/s0893-6080(05)80056-5

21. More, J.J.: The Levenberg–Marquardt Algorithm: Implementation and Theory. Numerical

Analysis, ed. G. A. Watson, Lecture Notes in Mathematics 630, Springer Verlag pp. 105–116

(1977), DOI: 10.1007/bfb0067700

22. Riedmiller, M., Braun, H.: A direct adaptive method for faster backpropagation learning:

the RPROP algorithm. In: Neural Networks, 1993., IEEE International Conference on. pp.

586–591 (1993), DOI: 10.1109/icnn.1993.298623

23. Rodrigues, R., Annamalai, A., Koren, I., Kundu, S.: A Study on the Use of Performance

Counters to Estimate Power in Microprocessors. IEEE Trans. on Circuits and Systems 60-

II(12), 882–886 (2013), DOI: 10.1109/tcsii.2013.2285966

24. Intel: OpenMPI. https://www.open-mpi.org/ (2017), accessed: 2018-08-31

25. Texas Instruments: System Power Management and Protection IC With PMBusTM.

Texas Instruments (2013)

26. The Green500: The Green Lists. https://www.top500.org/green500/lists/2017/11

(2017), accessed: 2018-08-31

A Study on Cross-Architectural Modelling of Power Consumption Using Neural Networks

40 Supercomputing Frontiers and Innovations



27. Tiwari, A., Laurenzano, M.A., Carrington, L., Snavely, A.: Modeling power and energy

usage of HPC kernels. In: Parallel and Distributed Processing Symposium Workshops

& PhD Forum (IPDPSW), 2012 IEEE 26th International. pp. 990–998. IEEE (2012),

DOI: 10.1109/ipdpsw.2012.121

28. Woo, S.C., et al.: The SPLASH-2 Programs: Characterization and Methodologi-

cal Considerations. In: Proceedings of the 22nd Annual International Symposium on

Computer Architecture. pp. 24–36. ISCA ’95, ACM, New York, NY, USA (1995),

DOI: 10.1109/isca.1995.524546
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We present an autotuning approach applied to exhaustive performance engineering of the

EM-ICP algorithm for the point set registration problem with a known reference. We were able to

achieve progressively higher performance levels through a variety of code transformations and an

automated procedure of generating a large number of implementation variants. Furthermore, we

managed to exploit code patterns that are not common when only attempting manual optimization

but which yielded in our tests better performance for the chosen registration algorithm. Finally, we

also show how we maintained high levels of the performance rate in a portable fashion across a wide

range of hardware platforms including multicore, manycore coprocessors, and accelerators. Each

of these hardware classes is much different from the others and, consequently, cannot reliably be

mastered by a single developer in a short time required to deliver a close-to-optimal implementation.

We assert in our concluding remarks that our methodology as well as the presented tools provide a

valid automation system for software optimization tasks on modern HPC hardware.

Keywords: portable performance engineering, point set registration, autotuning with code generation,

combinatorial optimization.

Introduction

Many aspects of computer vision commonly uses algorithms for registration of point sets in

three-dimensions (3D). But in many areas of science, these methods can be used for analyzing 3D

data arriving from experimental hardware instruments. In particular, this is necessary in order to

produce unambiguous descriptions of atomic-scale structures from large data sets originating in

Atomic Probe Tomography (APT) [15, 19] and multimodal electron microscopy (EM) [14, 24]. In

the study and design of High Entropy Alloys (HEAs), APT can generate data sets that include

from 106 to 107 atoms in a single frame. Work is underway for electron microscopes to relay

time-resolved frames, resulting in an explosion of data that truly puts the analysis of the output

of these analytical techniques of registration squarely within the realm of “big data” analytics.

The ultimate goal, when processing APT data sets, is to be able to resolve both atomic identity

and atom position. The incoming instrument data is in the form of sets of atomic coordinates

(x, y, z) in three-dimensional (3D) space accompanied by identification of the atom type. Such

data is in many ways similar, in its basic form, to visualization tasks but the registration of the

points will be followed by derivation of physics, chemistry, or material science profiles that inform

the scientists of emergent properties of the analyzed samples. This serves as a motivation for fast

and accurate implementations of the registration algorithms that are the subject of this paper.

In order to arrive at novel properties such as resistance to high-temperature, corrosion,

fracture and fatigue [8, 26], large amount of work has been performed to evaluate various

techniques for characterizing local atomic environments [1]. To a significant extent, we follow

here a similar approach and adopt tools from image reconstruction and pattern analysis in the
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4Oak Ridge National Laboratory, Oak Ridge TN, USA
5School of Computer Science and School of Mathematics, The University of Manchester, Manchester, UK

DOI: 10.14529/jsfi180404
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generic field of machine vision in order to construct detailed atomic structures with highly-

resolved locations from often defective data sets, especially those coming from APT experiments.

Mathematically, of most importance is the minimization of the Frobenius norm: ‖ · ‖F ; computed

for a set of matrices representing the difference between a model reference configuration, m,

denoting the true, average local structure, and the local configuration (data), di, around atom i,

where for an APT experiment, i ranges from 1 to k ≈ 107:

min
Ri,Pi

k∑

i=1

‖m− PidiRi‖2F , (1)

where each configuration has a unique permutation, Pi, and rotation, Ri, matrix (both real and

orthogonal) in order to make it invariant to the arbitrary orientation and numbering generated

by the experimental process.

A formulation of the problem that is based on Bayesian principles is under development and

it explores Markov chain Monte Carlo scheme. A more classic approach is taken here to espouse

benefits of autotuning whereby automation is applied to efficient evaluation of a large variety of

implementation variants. In particular, we use Expectation-Maximization (EM) Iterative Closest

Point (ICP), or EM-ICP for short. EM-ICP is a stochastic method for registration of surfaces. It

improves issues found in other algorithms related to minimizing non-convex cost function. Other

registration algorithms are given in Section 1.

In a simplified yet generic mathematical form, registration of point sets X = {xi|xi ∈ Rd}
and Y = {yi|yi ∈ Rd} may be expressed as:

min
f∈T
‖f(X)− Y ‖, (2)

where the point sets come from a 3D space (rather then a space of arbitrary dimension d):

X = {x1, x2, . . . , x`}, Y = {y1, y2, . . . , ym} with xi, yj ∈ R3 (3)

and the function f , drawn from the eligible set of transformations T , is in our case a simple

linear transform chosen to represent a combination of rotation, scaling, and translation:

f : X 7→ R×X + t ≡ Y (4)

these restrictions result in a transformation that is called rigid registration and is the primary

focus of this manuscript. However, a more general non-rigid registration is possible and it allows

the transformation to be affine. For such a case, it is possible to include anisotropic scaling and

skews. Furthermore, a generalization is possible which allows as input an unknown point set.

This is close to the APT data sets which by their very nature cannot account for all atoms in

the sample. Note also the noise resilience whereby the original formulation is often assumed to

be robust to input measurement errors in the sense that it can handle a distribution of errors

imposed on input data with either outliers or some points missing or both. Again, this caters

directly towards APT-generated point clouds.

A much-simplified overview of the EM-ICP algorithm is depicted in Fig. 1. Starting with the

initial guesses for the components of the transformation as an identity rotation and zero scaling

matrix R(0) and zero translation matrix t(0) which consequently get updated in an iterative

fashion by minimizing Mean Square Error (MSE).
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• Step 1: Start with the initial guess of identity rotation and zero translation:

R(0) ← I,

t(0) ← 0

• Step 2: Iterate until convergence:

• Step 2.1: Find closest point

~yi∗ ∈ Y for each ~xi ∈ X

in:

i∗ = arg minj=1,...ny

∥∥∥~xi −R(k−1)~yj + ~t(k−1)
∥∥∥

• Step 2.2: Build the ordered correspondence

Y ∗ = {y1∗, . . . , ynx∗}

• Step 2.3: Find rigid transform such that

min
MSE(X,Y ∗)

{R∗,~t∗}

to minimize overall error

• Step 2.4: Update the current transformation with the newly found one:

Rk ← R∗, ~tk ← ~t∗

Figure 1. Outline of the algorithmic steps of EM-ICP (MSE = mean square error)

The rest of the article is organized as follows. Section 1 is devoted to a short survey of

the related work. In Section 2, we present performance profiles of the implementations of the

registration algorithm under consideration. Section 3 contains detailed performance results on

various hardware platforms. Section 4 discusses in more detail some the important aspects of

the results. The conclusion section summarizes the study and points to potential directions for

further work.

1. Related Work

The algorithm called Iterative Closest Point (ICP) [2, 27] has two important properties:

simple implementation structure and the low levels of computational cost. This characterization

on both counts has resulted over time in increased popularity and both of these aspects have

contributed to proliferation of numerous variants [7, 22] including the one we consider here in more

detail called EM-ICP [10]. The Expectation Maximization (EM) algorithm for Gaussian Mixture

Model (GMM) may be shown [3] to be equivalent to Robust Point Matching (RPM) algorithm [9]

that alternates soft-assignment of correspondences and transformation. Multiple versions of RPM

have been developed [4, 5, 21]. Finally, there is Coherent Point Drift (CPD) algorithm [20] which

performs the so called non-rigid registration while using a suitable regularizer.

Implementations of these methods is the primary focus of the following sections. Reference

codes are available in multiple forms but most often they may be characterized as sequential
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Table 1. Performance profile of EM-ICP implementation in

CUDA running on NVIDIA Kepler accelerator

Kernel symbolic name Percentage of time spent

normalize 49%

update 31%

SGEMV 16%

SGEMM 3.0%

SDOT 0.5%

implementations. Parallel counterparts based on OpenMP or explicit multithreading for multicore

processors are rare. Even more so are enhancements for hardware accelerators and we attempt

to breach that gap. For example, some support for ICP is available, in the Point Cloud Library

(PCL) [23] as part of a larger set of methods. Some of these codes may be used as the basis for

our implementations but they require changes for efficiency. Additionally, we perform updates to

make them adhere to the modern software stack [18]. More specifically, we needed to introduce the

current version of CUDA which is better than what is available in the code with CUDA version

5 being the last supported release. Additionally, by adding utilization of the GPU hardware

platforms, we expanded test results. Some implementations6 could potentially be adapted with

cosmetic adjustments to allow them to use more recent versions of CUDA such as version 6.5 but

this is not a guarantee of good performance. In summary, the implementations we generate are

highly customized and target the most recent versions available and supported by NVIDIA: 7.5

and 8.0 with initial work towards compatibility with even newer releases of CUDA 9.0 and 10.0.

Unfortunately, these latest versions of CUDA were not widely available to the public during the

initial test runs.

2. Analysis of Bottlenecks based on Code Profiling

Our survey of existing codes for EM-ICP revealed that the freely available implementations7

focus on visualization tasks and image processing workflows that are often optional in case of

scientific instruments. Our focus is to provide very high ingest rates of the data coming from the

hardware sensors. Our goal is to automatically derive an implementation that is able to process

them in time before the long-term storage system becomes overwhelmed. Based on a survey of

available solutions, we concluded that their support for High Performance Computing (HPC)

techniques is poor and we faced the choice of retrofitting the codes for multithreading, modern

accelerator libraries, and performance profiling or write our own version from scratch. We chose

the former and used this updated code as a reference point that we optimized on a variety of

modern HPC platforms.

As the first step in the performance engineering, we acquired an application profile and

identified the bottleneck portions of the code that may then be targeted with our autotuning

methodology in order to maximize the potential speedup benefits. Table 1 shows a typical

performance profile on one of the tested devices. It is representative of the time breakdown that

6One such implementation is ICPCUDA available at https://github.com/mp3guy/ICPCUDA.
7We did not consider commercial implementations for this study but only the codes that can be obtained under

open source or educational license.
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Table 2. Autotuning parameter space used for optimization

of performance through OpenMP parallelization and

directives

Parameter Possible values

Compiler: GNU gcc, Intel icc

Threading runtime: GNU gomp, Intel iomp

Number of threads: 1, . . . , 40, . . . , 70, . . .

Speculation code and hinting: yes, no

Hyper-threading: yes, no

enabled with OpenMP or kernel affinity of threads

Thread affinity: compact, spread, round-robin

Main memory page mapping: round-robin, application-specific

(first touch, randomized, . . . )

Software-exposed parallelism: collapse(2), collapse(3), . . .

Thread scheduling selection: static, chunk-based, dynamic, . . .

Parallel grain selection (chunk size): 1, 2, 3, . . .

Vectorization length: 2, 4, 8, 16

we observed on the other machines used in tests. Note that this represents less computationally-

intensive variant of the ICP method than has been reported by approaches that used Singular

Value Decomposition (SVD) at each iteration [6]. The codes for point set registration require

32-bit floating-point arithmetic for computation and hence most of the code uses single-precision

float data types and the profile from the figure uses that precision and changes to this will

be explicitly noted. Also, the experimental hardware such as APT generates data that can be

accurately represented in 32-bit floating-point digits.

The common technique for efficient implementations is to off-load the compute-intensive

parts of the code to highly tuned numerical libraries. In the case of results from Tab. 1, the calls

to NVIDIA CUBLAS make optimal use of the compute units (SGEMM) and the available memory

bandwidth (SGEMV and SDOT). Unfortunately, once these sections of the code achieve the state

close to hardware-optimal performance, the other parts of the code become the main sources of

slowdown. These two slowdown parts are named update and normalize. In terms of the operations

from algorithm in Fig. 1, they represent updates and normalization of the correspondence and

error metrics throughout the iterations. Focusing on these two portions exclusively targets nearly

90% of the execution time across our tested hardware.

Once we identified the code sections that are important for performance engineering, we pro-

ceeded with defining the parameter space of available configurations that need to be explored for

generating code that would execute efficiently. Table 2 shows a summary of that space for multicore

hardware (GPU-specific considerations are presented below) with open source8 and commercially

developed9 software stack. The search space for autotuning optimization is multidimensional and

heterogeneous in the sense that it includes different categories of parameters, namely: binary

8Due to the fact that the GNU and LLVM compilers share the OpenMP runtime, we only considered GNU gomp

but a LLVM-specific solution is under development.
9We only considered one commercial compiler but other choices are also possible, for example the PGI Group or

Microsoft Visual Studio compilers that support a version of the OpenMP standard.
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compiler = ("gcc", "icc")

runtime = ("gomp", "iomp")

omp num threads = range(1, 75)

speculation = (False, True)

hyper threading = (False, True)

kmp affinity = ("disabled", "compact", "scatter")

gomp cpu affinity = ("1-75:1", "1-75:2", "1-75:3", "1-75:4")

omp palces = ("none","threads","cores", "sockets")

omp proc bind = ("close", "master", "spread","none")

memory affinity = ("round robin", "random", "first touch")

collapse = (1, 2, 3)

schedule = ("default", "static", "chunk", "dynamic")

schedule size = range(0, 64+1)

simd length = (2, 4, 8, 16, 32)

Figure 2. Definition of the autotuning space for multicore and manycore CPUs

values (for example use, hyperthreading or not use it), ordinal/categorical/enumeration values

(for example, compiler-version pairs: gcc 6.0, gcc 7.0, icc 2016, icc 2017), integer values (for

example, an integer range of loop blocking parameter values), and continuous variables (for

example, cache reuse ratio). Theoretically, the entire search space may be represented by a

Cartesian product of these variables which would result in combinatorial explosion in the size of

the search space. In practice, the search space is much less regular due to a number of software

and hardware constraints. Some examples include:

• The problem to be optimized might be solved for the GNU compiler but is an issue for the

Intel compiler due to unknown internal issues.

• The output results might be changing depending on the version of the compiler: of-

ten a newer version produces binaries whose results are an improvement but sometimes

performance regressions may also occur.

• The interactions that are internal to the compiler, its OpenMP runtime implementation,

OS version, and finally the processor firmware could further complicate the produce

optimization results.

We have developed Domain Specific Language (DSL) to assist the autotuning processes. It

is called LANAI (LANguage for Autotuning Infrastructure) [16]. It deals primarily with the

definition of search space for optimal implementation. While further details certainly go beyond

the current scope, for completeness, we feel compelled to include some information how the

symbolic description of the parametric space from Tab. 2 translates into a LANAI description that

we present in Fig. 2. Due to the way we presented the search space constraints in the table, the

code from the figure may be considered self-explanatory. However, the full complexity of LANAI

is beyond the scope of this manuscript and includes parsing of the autotuning specification

(ranges, constraints, and their mutual dependence), multiple stages of optimization that reduce

the autotuning time, and code generation that allows search space exploration to take place at

the speed of a native code without the need to ever write such a code by hand.

2.1. Optimizations specific to NVIDIA GPUs and CUDA Software Stack

So far, we discussed the autotuning optimization space with the focus on multicore hardware

that may be, in a generic form, characterized by multipurpose compute cores with a deep memory

hierarchy of caches and complex main memory structures. Hardware accelerators such as compute-

oriented GPUs differ from multicore hardware in a number of important ways including higher

number of floating-point units, higher bandwidth to/from the main memory, and higher latency

P. Luszczek, J. Kurzak, I. Yamazaki, D. Keffer, J. Dongarra

2018, Vol. 5, No. 4 47



Table 3. Optimization space for a single kernel based on

CUDA parallelization features

Parameter description Possible values

Read coalescing for input points X Yes / No

Write coalescing for output points Y Yes / No

Thread grid shape Gi×j i, j ∈ {1, . . . , 1024}
Thread block shape TR×C R,C ∈ {1, . . . , 1024}
Amount of Shared Memory used {0, 210, 211, . . . , 216}
SM or SMX streaming unit utilization {1, 2, . . . , 80}
(number of CUDA streams)

Active threads per thread {8, 16, 32}
Data affinity for grid-block: Gi×j × TR×C → RX×Y row/column-wise, mixed

Floating-point precision 16-bit, 32-bit, 64-bit

Verification criteria Allowed values

GPU occupancy‡ 30%÷ 95%

‡ NVIDIA provides occupancy calculator for users. Good performance is not necessarily equivalent

to good occupancy but there exist occupancy thresholds that are almost always well correlated

with achieving sufficiently high levels of performance based on a relevant metric (bandwidth or

compute intensity).

coalesce input = (True, False)

coalesce output = (True, False)

grid x = range(1, 1024+1)

grid y = range(1, 1024+1)

block x = range(1, 1024+1)

block y = range(1, 1024+1)

shared memory = range(0, 2**16+1, 2**10)

BLK = (8, 16, 32)

precision = (16, 32, 64)

Figure 3. Definition of the autotuning space for GPUs

to the main memory. The memory hierarchy of GPUs is shallower and often features smaller

caches that are shared on a per-device basis. Despite these differences, the breakdown of execution

time from Tab. 1 is generally applicable to both types of compute platforms. Furthermore, this

similarity applies across multiple GPU devices and compiler tool chains which might feature, for

example, different approaches to instruction predication and branch removal algorithms. Such

details depend on availability of Special Function Units (SFUs) on the target device and the

hardware’s predication window length. As a practical example, consider the difference between

NVIDIA’s Kepler and Maxwell architectures: the former features a high end compute cards and

has full support for 64-bit precision floating point arithmetic while the latter only targets gaming

and rending markets with 32-fold slowdown of 64-bit instructions.

The profiling on the NVIDIA hardware is done through either the nvprof command line tool

or the nvvp GUI application. They are assisted by the hardware counters for minimal overhead

on the running code. They were used to gather the profile and bottleneck information from the

reference code.
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To maximize the bandwidth achieved by our implementation, we aim at efficient use of

global and shared memory banks as well as enforcement of coalesced reads through stride-1

accesses. This is done explicitly since the GPU compilers often do not automatically handle

Instruction-Level Parallelism (ILP). Also by design, CUDA shifts the burden of exposing the

Thread-Level Parallelism (TLP) to the user as the threads must be explicitly created and managed

by the user code inside kernel functions. These considerations result in a modified search space

for the GPU-optimized autotuning that is shown in Tab. 3.

As was the case for CPUs, Tab. 3 may be translated almost directly into LANAI specification

shown in Fig. 3. There is a number of important issues worth noting. Because the grid and

block dimensions are specified independently, for some combinations of dimensions the thread

counts will exceed what’s allowed on the GPU hardware. This may be counteracted with the

LANAI’s so called constraint or it may be left to the CUDA compiler and runtime: one of them

will indicate insufficient resources for launching a kernel. Clearly, the former solution is preferred

because it limits the overall size of the search space and consequently speeds up the autotuning

process. On the other hand, GPU occupancy is much more vague criteria to meet as it needs

to be calculated in a more complicated way and, additionally, it never had a very well-defined

relation with achieved performance across a wide range of codes [25]. Nevertheless, it can still be

used in the optimization process to either prune the search space or terminate the performance

tests early when they fail to meet a predetermined occupancy requirement.

2.2. Using Limited Precision Arithmetic

2.2.1. Hardware Landscape for 16-bit Floating-Point

A new type of hardware extension for 16-bit floating-point precision arithmetic (FP16) has

become much more main stream in the past few years. Initial experiments in deep network

training with limited floating-point accuracy [11, 12] validated this for machine learning methods.

Since then, a numerous hardware vendors and supercomputing sites have been involved with the

trend that links computational Artificial Intelligence and HPC. Consider the announced AMD

GPUs MI5, MI8, MI25 whose model number corresponds to the peak performance of the card in

FP16: 5 Tflop/s, 8 Tflop/s, and 25 Tflop/s, respectively. Softbank’s subsidiary ARM, announced

publicly an extension to its NEON Vector Floating Point (VFP) to include FP16 in the V8.2-A

architecture specification. NVIDIA GPUs that feature FP16 are widely available starting with

Tegra TX1 and Pascal P100 cards. NVIDIA’s Volta-based V100 and DG100 and the Xavier

car platform feature further extensions of the FP16 support. TSUBAME 3 is one of the first

supercomputers to prominently feature FP16 but other sites with NVIDIA Pascal hardware can

fully utilize this new functionality. This is in line with our experiments in using FP16 in HPC

benchmarking [17]. The ISO C++ standard is slated to add short float primitive data type that

will likely be also added the C standard document following the IEEE 754-2018 specification and

current support of Float16 primitive data type.

2.2.2. FP16 Considerations for Point Set Registration

FP16 precision is officially defined by the IEEE 754-2008 standard. Its features are compared

with the other floating-point precisions in Tab. 4. Note that FP16 was not meant as a format for

compute but as a storage-only representation. This was reflected, among others, by the choice of

the execution semantics of the Tensor Core unit in NVIDIA’s Volta architecture that internally
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Table 4. FP16 and Its Hardware Support IEEE 754 (2008)

Precision Width Exponent Mantissa Epsilon Max

Quadruple 128 15 112 O(10−34) O(104932)

Extended 80 15 64 O(10−19) O(10308)

Double 64 11 52 O(10−16) O(10308)

Single 32 8 23 O(10−7) O(1038)

Half† 16 5 10 O(10−3) 65504

† defined only for storage

Table 5. Summary of hardware platforms used in the

performance tests

Architecture Manufacturer Model Name

Xeon x86 Intel 2620 Haswell

Xeon Phi Intel 7280 Knights Landing

Tesla K40c NVIDIA GK110B Kepler

Tesla P100 NVIDIA GP100 Pascal

compute in FP32 arithmetic but consume FP16 operands. This is similar to the common practice

of the way the Fused-Multiply-Add (FMA) instruction is implemented with higher precision for

the intermediate results.

From the perspective of point set registration, FP16 has a potential benefit of increased

bandwidth and vastly improved compute intensity. The former affords a 2-fold increase on the

NVIDIA Pascal cards. The primary consideration is the limited range of the FP16 values as

shown in Tab. 4. At the basic algorithmic level, the use of limited precision in most calculations

may serve as a opportunistic regularization scheme which, among other things, could prevent

overfitting the model to noisy input data as is the case in some scenarios.

3. Performance Results

3.1. Description of the Tested Hardware Platforms

Our autotuning experiments were performed on a number of hardware platforms including

multicore, manycore, and GPU accelerators. A quick summary of these machines is given in Tab. 5.

Out of the computers shown in the table, Intel Phi KNL could potentially be the newest and

might be the least familiar to the reader. As an alternative to the superscalar x86, it represents

a new architecture10 from Intel that is solely based on low-power Atom Silvermont cores with

the maximum of 72 cores in a chip connected with a mesh interconnect and divided logically

into 4 so called quadrants with NUMA-like characteristics as far as data affinity is concerned.

However, further details on cache and memory hierarchy with on-chip specification is out of scope

of this article. Initially planned for two major hardware versions as either self-boot (self-hosted)

or leveraged-boot (accelerator) units. Currently, only self-boot units are commercially available.

10Note that for the most part Xeon and Xeon Phi processors are binary compatible with the exception of the

extra AVX512 instructions which made x86 debut in Intel Xeon Skylake Silver, Gold, and Platinum.
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Table 6. Detail characteristics of the Intel Xeon Phi

Knights Landing platform a manycore CPU used in the

tests with the performance numbers coming from hardware

specification or the vendor testing

Specification or Metric name Peak or measured value

Core count 68

Hardware thread count 272

Vector FPUs length 512 bits

Main memory RAM DDR4

Max DDR4 RAM 384 GiB

DDR4 latency ≈140 ns

Fast RAM 16 GiB MCDRAM

Max MCDRAM 16 GiB

MCDRAM latency ≈170 ns

MCDRAM configuration modes flat, cached, mixed

Level 3 cache 0

Peak FP32 6093 Gflop/s†
SGEMM 4065 Gflop/s

Peak FP64 3046 Gflop/s‡
DGEMM 2070 Gflop/s

LINPACK Benchmark 2000 Gflop/s

STREAM MCDRAM 490 GB/s

STREAM DDR4 90 GB/s

† 68 × 1.4 GHz × 2 VPUs × FMA × 16 AVX lanes

‡ 68 × 1.4 GHz × 2 VPUs × FMA × 8 AVX lanes

The relevant details on the Intel Xeon Knights Landing (KNL) machine are given in Tab. 6 as

they are available from public sources.

3.2. Application-Specific Performance Metric for Cross-Platform

Comparisons: Derivation of the Performance Rate

We would like first prepare to for a more exhaustive comparison across both multiple

hardware platforms and a wide range of input data sizes. We recognize the importance of using

absolute timing for measuring performance. Here it would quickly become problematic if used

in isolation. Time-to-solution is, by many accounts, a widely used metric relevant to the end

user but we would also like to be able to attempt comparisons in a much more applicable

fashion when there are many parameters that are not constant across the tested hardware and

the input data sets. At the same time, we want our new metric to be close or even equivalent

to the time-to-solution measurement as long as the data size remains constant. The common

performance metric commonly used in HPC codes is Gflop/s which has important advantage

that it is one metric to use across all input data sets and even applications. However, among

many downsides is the fact that Gflop/s rating assumes that there is uniform (preferably linear)

relationship between Gflop/s and the essential application speed (commonly time-to-solution).

This particular downside results in multiple negative consequences such as artificial efforts to
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maximize the number of floating-point instructions that often come free as long as they are

executed on data residing in Level 1 cache. Unfortunately, such operations contribute very little

to the applications’ ultimate goal that need faster execution for large memory footprints that do

not fit in any cache level all at once. Instead, we derive an application-relevant metric based on

the asymptotic performance theory [13].

For registration problems in particular, the performance metric we choose as relevant is the

number of points in the cloud registered per second. Using this provides with a rate and we

can quickly compare either images, scenes or surfaces that contain different number of points.

Simultaneously, we are still able to map the rating back to time-to-solution when we know the

exact point-count. We use Giga-points-per-second (Gpts) as the unit for the execution rate that

is defined as:

r =
t

nXnY
10−9 Gpts,

where nX and nY represent the number of the input and output points, respectively. The scaling

factor of 10−9 is a standard SI prefix that allows all of the rates measured in this article to fall

within the range of small numbers that are less than 50 that are familiar and human readable.

The charts in the right of Fig. 4, Fig. 5, and Fig. 6 show this new metric applied to the timing

charts shown in the left of the respective figures. As an added advantage, we are able to see

subtleties of the optimal configurations. It turns out that in Fig. 5 the asymptotic performance

rate is nearly 6 Gpts but the cache effects may be observe all the way until point clouds of size

5000 points when the working set fits in highest levels of the cache hierarchy and the performance

rate is higher due to the much higher cache bandwidth and lower access latency of fetch image

data.

Finally, rather than presenting a speedup, we only show all the performance results of all

tested configurations without specifying the reference and most optimal ones. This enables the

reader to see the range of results that may be observed in practice. Due to the automated way

of obtaining the results, we can guarantee minimal human intervention while obtaining a fast

implementation.

3.3. Timing and Performance Rate Results for GNU and Intel Compilers on

the x86 Machine

In the first set of results, which are coming from the Intel x86 Haswell machine, we present

ability of the GNU and Intel compilers to generate optimized code and it is shown in Fig. 4 and

Fig. 5, respectively. To limit the total number of points present in the chart, we only included

the most representative configurations and others are not shown. Specifically, the orig-no-omp

configuration is treated as the reference measurement that may be considered sequential because

the OpenMP parallelization was disabled for that run. Inclusion of this configuration in the

charts allows us to show how the GCC compiler struggles to parallelize the registration loop

nest as almost all other parallel configurations run generally at the same speed except for only

one that is marked opt-omp-noif-collapse. Finally, that last configuration may be seen as clearly

outperforming all the others because it enables far greater levels of parallelism and enables

optimization as well better cross-thread work assignment for the GNU compiler. Regrettably,

none of the optimizations tested allowed the GNU compiler to dip below 1 second running time

for the largest point cloud size (40000 points). The Intel compiler had no such problem and ran

under one second for quite a few optimization configurations. Regarding the weak results from
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Figure 4. Point set registration timing and performance results on the x86 Haswell machine with

the GNU compiler for various OpenMP configurations and the colors on left and right charts

represent the same configurations
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Figure 5. Point set registration timing and performance results on the x86 Haswell machine with

the Intel compiler for various OpenMP configurations and the colors on left and right charts

represent the same configurations

the GNU compiler, we did not conduct any further experiments to understand whether this may

be related to either the generated instruction mix or more efficient OpenMP runtime. We leave

this and other questions of such sort for future work based on similar hardware and software

stacks. Also, we will no longer present GNU compiler results due to low observed performance. A

detailed analysis of the instruction stream generated by GNU and Intel compilers is beyond the

scope of this manuscript and we only attempted to use for both compilers similar flags including

highest possible optimization level and relaxed floating point model to make aggressive code

generation possible.

3.4. Timing and Performance Rate Results on Many-core KNL System and

GPU Device Cards

Figure 6 presents the timing and performance rate results on the Intel Xeon Phi KNL

machine. Two clear differences may be observed when comparing against x86 results:

• the cache effects are mostly not present for the point clouds with small data sizes as

compared to all other x86 runs (originating either from GNU or Intel), also
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Figure 6. Point set registration timing and performance results on the Xeon Phi Knights Landing

machine with the Intel compiler for various OpenMP configurations and the colors on left and

right charts represent the same configurations

0 5000 10000 15000 20000 25000 30000 35000 40000
Point cloud size

0

10

20

30

40

Gi
ga

 p
oi

nt
s p

er
 se

co
nd

All runs combined

Figure 7. Point set registration performance rate results on the NVIDIA Pascal P100 card with

the NVIDIA nvcc compiler for all loop blocking configurations and these results are shown for

reference only to give the reader an idea of how many runs were performed, how they cluster,

and range across point cloud sizes

• the variability of timing measurements is not present on KNL and the graphs are much

more smooth especially for the data sizes when the working set exceeds the cache size and

the data has to be streamed from the main memory. This may be attributed to the short

speculative execution window in the KNL’s execution unit design.

First, Fig. 7 shows all data points collected from running on the P100 card in FP32. Clearly

presented in that manner, it is hard to discern specific properties that contributed to the achieved

performance levels. We do so in the analysis that follows by taking into account the various

hardware features that are specific to GPUs and how they affect the performance of various

point set registration implementations.

In Fig. 8, we show our first attempt at more guided measurement of performance on the

NVIDIA Kepler K40c GPU which has a feature of not using coalesced reads from the main
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Figure 8. Point set registration performance rate results on the NVIDIA Kepler K40c card with

the NVIDIA nvcc compiler for various loop blocking configurations with non-coalesced reads
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Figure 9. Point set registration performance rate results on the NVIDIA Kepler K40c card with

the NVIDIA nvcc compiler for various loop blocking configurations with coalesced reads

memory. This clearly goes against the common optimization guidance that is taught to GPU

novice users. To show the effect of the problem and how it helps to fix it, Fig. 9 shows the

configuration when the coalescent reads were used. The performance increase is nearly 2-fold

which confirms the importance of this optimization for the registration code and for our tested

implementations.

An arguably more counter-intuitive result occurs when we forgo the use of the shared memory

which is a user-controlled scratchpad cache. This special buffer is often used for complex memory

patterns which on occasion lead to very high performance improvements. To a limited extent, this

may be observed for the tested registration algorithm and we evaluated it for our implementations

to find out if it happened to be the case for our tests. Figure 10 presents the results to show that
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Figure 10. Point set registration performance rate results on the NVIDIA Kepler K40c card with

the NVIDIA nvcc compiler for various loop blocking configurations without the use of shared
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Figure 11. Point set registration performance rate results on the NVIDIA Pascal P100 card

with the NVIDIA nvcc compiler for the best and worst autotuning configurations using FP16

arithmetic

it is possible to gain a percentage point or more in terms of performance if the shared memory is

not used and the main memory is accessed directly.

3.5. Limited Precision Implementation

Finally, we close the results section with tests that measure the influence of low-precision

hardware on the performance of our EM-ICP implementations. To that end, we use an NVIDIA

Pascal GPU card with the P100 chip. From our perspective, that accelerator features dedicated

FP16 units in each Streaming Multiprocessor (SM). These units perform the arithmetic instruc-

tions at twice the rate of the corresponding FP32 instructions. Also, the data size needed for the
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Figure 12. Point set registration performance rate results on the NVIDIA Pascal P100 card with

the NVIDIA nvcc compiler for the best and worst autotuning configurations using either FP16

or FP32 arithmetic

#pragma omp parallel for

for (i← 0; i < nX ; i← i+1)

for (j ← 0; j < nY ; j ← j+1)

. . .

#pragma omp parallel for collapse(2)

for (i← 0; i < nX ; i← i+1)

for (j ← 0; j < nY ; j ← j+1)

. . .

Figure 13. Optimal Configuration for GNU Compiler on x86

FP16 instructions is twice as small and, consequently, it would be obvious to expect about a

two-fold increase in performance for both compute-bound and bandwidth-bound codes. Both of

these are present in the registration methods tested here.

To give the reader an idea as to what number of autotuning tests we conducted in an

automated manner, and the number of the generated code variants from the eligible parameter

configurations, we used Fig. 7 with all measurements. But to more clearly indicate the possible

range of performance metrics, Fig. 11 shows the best and the worst performance rate when FP16

arithmetic is used. At first, it may seem somewhat underwhelming especially when compared

with all the prior results presented so far in previous sections. To identify in detail how FP16 and

FP32 arithmetic results compare against each other, we focus in Fig. 12 on just the most relevant

data. The figure attempts to indicate how the FP16 arithmetic performs when compared with

FP32 and whether it is faster in absolute terms. Unfortunately, the improvement is not as high

as the 2-fold higher performance rate suggested by the raw hardware specification (2-fold faster

execution and twice as much bandwidth) are not realized in practice in our experiments. We will

examine this particular result next in greater detail by looking at low-level artifacts including as

assembly-level code and the instruction mix that we believe contributes to the observed effect.
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// FP16-FP32 conversions contribute additional

// overheads and hit against hardware limit

cvt.f32.f16 f, r // convert from FP16

sqrt.approx.f32 f, f // compute in FP32

cvt.rn.f16.f32 r, f // convert to FP16

Figure 14. A Glance at PTX (NVIDIA’s Pseudo-Assembly)

4. Discussion on GNU and FP16 Results

Figure 4 singled out the GNU gcc compiler’s issues with generating optimized instruction

mix for the registration code. Despite our efforts to enable optimized parallelization levels we saw

the lack of efficiency in the use of multi-threading as it exhibited low core utilization rates which

resulted in inferior execution speed. This potentially may be remedied by merging deep loop

nests into a combined index set. That set is then divided (in some fashion) among the available

OpenMP threads. This is done manually by inserting specifically crafted pragma directives.

OpenMP standard specifies collapse clause to have this loop-nest merging performed by the

GNU compiler. Such an optimization may be applied as shown in Fig. 13. Our autotuning

framework easily allows the user to introduce the clause conditionally in the generated code

variants and then tests the resulting binaries with a number of loop-collapsing parameters. In the

end, this allows the autotuning process to find out the optimal setting for the tested hardware

platform and the software stack combination.

Also somewhat surprising result was uncovered during the autotuning process and may be

observed in Fig. 12. What is shown is comparatively small difference between the performance

obtained from the implementation variants that use either FP16 and FP32 floating-point arith-

metic. As our analysis indicates, this may be fully attributed to the overhead of conversion

instructions. We confirmed this information by analyzing the PTX assembly-level code produced

by the NVIDIA nvcc compiler and PTX code generator. The PTX code in question is shown

in Fig. 14 in a simplified style to focus on relevant code and with majority the extra details

removed. Mixing FP16 and FP32 data on the same GPU engages the hardware conversion

units on the NVIDIA Pascal chips and those are limited in number. Much fewer of these units

are available when compared, for example, with floating point units in either FP16 and FP32

floating-point precisions. These conversions slow down the overall execution within a single GPU

thread warp and contributes to the overall slowdown of the code. Clearly, any performance

gains are squandered and we loose what might have been obtained from using FP16 precision if

only enough hardware units were available. We observed this phenomenon while we performed

autotuning procedure and otherwise it might have not been exposed if it was obstructed by

other bottlenecks. It might have also been missed in an non-optimized or manually optimized

code. This kind of effects occur mostly in automatically generated code and are otherwise hidden

due to a limited exposure of the compiler to the large variety implementation variants that are

possible through autotuning.

Concluding Remarks and Future Work

In this article, we presented an application of the autotuning approach to the EM-ICP

algorithm. EM-ICP is a stochastic method used for the point set registration problem and we
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used it for 3D point clouds. In our tests, we applied a variety of automated transformations which

resulted in an improved performance. We also used an automated process of generating a set of

implementation variants. First, this allowed us to largely exceed the performance achieved by the

reference code that was only optimized manually. Second, we searched the large parameter space

of potential performance-oriented implementations to arrive at stable and portable performance

levels. Those made the resulting EM-ICP codes available not on one but across a large range of

hardware platforms and software stacks. In particular, our methodology and autotuning framework

generated implementations for multicore, many-core, and accelerator-equipped machines.

We plan on extending this work to a wider range of algorithm that are available for the

variants of the registration problem. Creating efficient codes for these methods is a natural future

direction for us. We also intend to pursue more experimental approaches. However, due to a

large number of algorithms and algorithmic variants for the point set registration problem, we

intend to guide our selection of the promising method by the need of the relevant scientific fields.

There are many such fields in need of point set registration implementations for analysis of large

data sets such as APT experiments. These computational science fields benefit the most from

our efforts in the performance engineering domain that we presented above. This is because

we manage to achieve high execution rates which clearly contribute to ability to process large

volumes of data coming from the experimental instrumentation tools such as Atomic Probe

Tomography microscopes in material science and HEA material design.
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Quantum chemistry methods are applied to obtain numerical solutions of the Schrödinger

equation for molecular systems. Calculations of transitions between electronic states of large

molecules present one of the greatest challenges in this field which require the use of supercomputer

resources. In this work we describe the results of benchmark calculations of electronic excitation

in the protein domains which were designed to engineer novel fluorescent markers operating in

the near-infrared region. We demonstrate that such complex systems can be efficiently modeled

with the hybrid qunatum mechanics/molecular mechanics approach (QM/MM) using the mod-

ern supercomputers. More specifically, the time-dependent density functional theory (TD-DFT)

method was primarily tested with respect to its performance and accuracy. GAMESS (US) and

NWChem software were benchmarked in direct and storage-based TDDFT calculations with the

hybrid B3LYP density functional, both showing good scaling up to 32 nodes. We note that conven-

tional SCF calculations greatly outperform direct SCF calculations for our test system. Accuracy

of TD-DFT excitation energies was estimated by a comparison to the more accurate ab initio

XMCQDPT2 method.

Keywords: quantum chemistry, multi-scale approaches, parallel algorithms, fluorescent pro-

teins.

Introduction

Over the past few decades, advancements in supercomputer technology led to a dramatic

rise of computational resources available to scientists in chemistry and physics. Modern compu-

tational chemistry methods achieve numeric solution of the Schrödinger equation for molecular

systems with different kind of approximations. The ultimate goal is to have an accurate enough

description of a very large molecular system with as little computational effort as possible. Com-

plexity of the computational chemistry methods ranges from O(N) to O(N !) where N is the

size of a molecular system, while usually the most accurate methods are the most expensive

ones. A popular compromise which allows conducting a routine study of large biomolecules is

the use of fragmentation techniques and the density functional theory approach. Such methods

are available in a wide number of modern quantum chemistry software which is more or less

adapted to efficient use of modern computer clusters of multicore nodes.

In this communication, performance and accuracy of the time-dependent density functional

theory (TD-DFT) in calculations of electronic excitation in a complex molecular model system

(described in the next subsection) were studied. The TD-DFT implementations in two popular

open-source quantum chemistry packages were used for benchmarking, namely NWChem [5] and

GAMESS (US) [4, 7]. Both timings and the computed vertical excitation parameters (energies

and oscillator strengths) were collected for analysis.

1Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Russia
2N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia

DOI: 10.14529/jsfi180405
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1. Methodology

The scaling and performance benchmarks were carried out on “Lomonosov-2” [3] supercom-

puter (1696 nodes, single-socket Intel Haswell-EP E5-2697v3, 64 Gb RAM, NVidia Tesla K40M).

We used the NWChem v6.6 package installed on the supercomputer. The GAMESS (US) 2016r1

package was compiled manually using Intel Parallel Studio 2015. Both packages were linked with

OpenMPI 1.8.4 message-passing library.

The model chemical system shown in Fig. 1 was used for benchmarking of quantum chemical

calculations of electronic excitations.

Figure 1. Molecular model of the near-infrared fluorescent protein (left) and the protein-bound

biliverdin (BV) chromophore BV (right inset). Carbon atoms are shown in green, oxygen in red,

nitrogen in blue, sulfur in yellow, hydrogen in white

Infrared and near-infrared fluorescent proteins are highly in demand for in vivo imaging

because their absorption and emission bands fall into the optical transparency window of bi-

ological materials [2]. These proteins are engineered from the bacterial phytochrome domains.

Detailed characterization of structural and spectral properties of the chromophore-containing

protein domains is a necessary step when designing novel variants of these efficient fluorescent

markers in living cells.

The equilibrium geometry parameters of this model system were computed using the quan-

tum mechanics/molecular mechanics (QM/MM) approach. All QM/MM calculations were car-

ried out using NWChem quantum chemistry package [5]. The QM subsystem of the optimized

protein structure was used in TD-DFT benchmarks. The B3LYP functional [6] and a cc-pVDZ

basis set were used in these TD-DFT calculations.

2. Results and Discussion

Each single point TD-DFT calculation has two steps. The first step is a regular ground-state

DFT calculation. On this step the Kohn–Sham equations are solved through the usual iterative

Vl.A. Mironov, B.L. Grigorenko, I.V. Polyakov, A.V. Nemukhin
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self-consistent field (SCF) procedure. The computed density is used on the second step which is

actual TD-TFT calculation. Results of the second step are excitation parameters.

There are two algorithms of the SCF procedure. According to the storage-based SCF algo-

rithm, all the required intermediate data are computed prior the first SCF iteration and reused

on each following iterations. However, the amount of these data is usually very high. According

to another SCF algorithm (“direct” SCF), the intermediate data are not stored at all but re-

computed on every SCF iteration. In this case the overhead of recomputing intermediate data

increases linearly with the number of iterations. The amount of SCF iterations required to solve

the Kohn–Sham equations for the BV chemical system is quite large: it is ≈ 50 for both pack-

ages. Thus, it it not surprising that the storage-based SCF algorithm outperforms the direct one

(see Tab. 1). The drawback of the storage-based SCF algorithm is its high demand for storage

Table 1. Strong scaling of single-point TD-DFT (B3LYP) calculation of the BV

chemical system in NWChem quantum chemistry package. The data is applicable for

both direct and storage-based SCF algorithms

Number of

nodes

Time, s Scaling efficiency

direct
storage-

based

direct,

rel. to 1 node

direct,

rel. to 8 nodes

storage-based,

rel. to 8 nodes

NWChem

1 16 455 - 100% - -

4 7344 - 56% - -

8 3907 2310 53% 100% 100%

16 2204 1288 47% 89% 90%

24 1619 1047 42% 80% 74%

32 1487 995 35% 66% 58%

GAMESS (US)

1 10 738 - 100% - -

4 2776 - 97% - -

8 1446 959 93% 100% 100%

16 788 539 85% 92% 89%

24 581 414 77% 83% 77%

32 474 349 71% 76% 69%

bandwidth and capacity. In this study, a tmpfs in-memory partition was used to hold intermedi-

ate data. The calculations were therefore limited by the number of nodes used and the amount of

system memory on each node. In the particular setup of BV chromophore benchmark, the limit

was 8 nodes having 32 GB memory per node. Additionally, the lack of I/O in direct SCF results

in a somewhat better scaling when compared to the storage-based algorithm. It is especially

important for the NWChem package when the SCF step in a storage-based calculation is up to

4 times faster than a direct SCF step (Tab. 2). We cannot directly compare the performance of

the NWChem and GAMESS (US) quantum chemistry packages because they use different setups

of exchange-correlation functional integration, different convergence criteria and other hidden
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Table 2. The timings of SCF and excitation calculation

steps in TD-DFT (B3LYP) benchmark for direct and

storage-based SCF algorithms. The benchmark is for 16

nodes, wall clock time is given in seconds

Algorithm Step NWChem,s GAMESS,s

direct

SCF

SCF 1175 357

excitation 1029 431

total 2204 788

storage-based

SCF

SCF 236 135

excitation 1052 404

total 1288 539

parameters. However, when using the default configuration in both packages, GAMESS (US)

runs faster than NWChem on “Lomonosov-2” supercomputer on he same amount of nodes.

The recent paper [1] compares the results obtained using the TD-DFT and the more accurate

ab initio XMCQDPT2 method.

Conclusion

TDDFT benchmarks show good scalability for the test system for up to 32 nodes, while

GAMESS (US) significantly outperforms NWChem in both single node performance and in

scaling. Conventional SCF calculations greatly outperform direct SCF calculations for our test

system, and thus conventional SCF procedure should be used whenever a fast-enough storage is

available.
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Formation of the platelet plug represents a primary response to the vessel wall injury, but

may also result in vessel occlusion. The decrease of the local blood flow due to platelet thrombus

formation may lead to serious complications, such as ischemic stroke and myocardial infarction.

However, mechanisms responsible for regulation of thrombus dynamics are not clear. In order to

get a deeper insight into the role of blood flow and platelet interactions in the formation of the

primary platelet plug we developed a particle-based model of microvascular thrombosis using quasi-

steady flow approximation. In order to simulate thrombus dynamics at physiologically relevant

timescales of several minutes, we took advantage of the supercomputer technologies. Our in silico

analysis revealed the importance of platelet size heterogeneity for describing experimental data on

microvascular thrombus formation. Thus, our model represents a useful tool for the supercomputer-

aided computational analysis of thrombus dynamics in the microvessels on physiologically relevant

timescales.

Keywords: cfd, particle-based model, biorheology, thrombosis, program profiling.

Introduction

Despite many decades of both fundamental and clinical research, complications associated

with arterial thrombosis — such as myocardial infarctions and ischemic strokes — still represent

a greater cause of mortality and morbidity in developed countries [7]. The reason why some of

the vessel wall injuries result in the formation of stable occlusive thrombus, which compromises

a local blood flow, while the others not — is one the greatest unresolved issues in the field

of hemostasis and thrombosis. Thrombus formation at the site of a vascular injury is a highly

complex process, which involves platelet adhesion, aggregation, plasma coagulation and takes

place under conditions of the blood flow [6]. An enormous number of mechanical and biochemical

interactions occurring within the growing thrombus represent a serious challenge for elucidation

of the governing mechanisms and justify the relevance of computational models. During the last

decade, various models of thrombus formation have been described, each focused on different

aspects of the process [1]. However, a clear understanding of mechanisms responsible for complex

dynamics of thrombus observed in vivo is still missing. In order to clarify the role of reversible

platelet-platelet interactions and platelet-flow interactions in thrombus dynamics, we have devel-

oped a novel particle-based in silico model of microvascular thrombus formation. In this paper,

we show that our model reproduces complex dynamics of thrombus observed after laser-induced
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injury of arterioles in mice [11]. In order to simulate thrombus dynamics on the physiologically

relevant timescales, we used quasi-steady flow approximation and took advantage of supercom-

puter technologies. Our approach involves stochastic modeling. Thus, multiple simulations are

required for a statistically valid analysis of thrombus dynamics even for a single combination of

model parameters. Such a computational demand can be satisfied by the supercomputer which

allows performing multiple simulations in parallel. We performed such computations in several

weeks using the resources of the Lomonosov-2 supercomputer.

In this paper, we describe the model in the Section 1. Section 2 is devoted to the model

validation and Section 3 embodies evaluation of the model performance. Conclusion summarizes

the study and points directions for further work.

1. Materials and Methods

In order to get an insight into complex dynamics of thrombus observed in vivo, including

disruptions of external thrombus layers, we developed a particle-based model, which accurately

describes platelet-platelet interactions. To address thrombus dynamics in silico on physiologi-

cally relevant timescales of several minutes, we restricted the model complexity by considering a

two-dimensional case. Our particle-based model considers platelets as discs with certain radius,

which may interact with vessel wall (considered as elastic boundary), other platelets and blood

flow. Blood is considered as a Newtonian, incompressible fluid, described with Navier–Stokes

and the continuity equations.

The model consists of two main modules. The first one describes the particle (platelet)

dynamics in a given flow field, which is considered stationary during the given period of time.

The second module is responsible for computation of the velocity and pressure fields in case the

platelet dynamics, inferred by the first module, results in the change of the thrombus shape.

Platelet dynamics module. The model takes into account two types of inter-platelet inter-

action: primary reversible (glycoprotein-Ib-mediated) and secondary, which intensifies with the

increase of platelet activation (integrins-mediated). The first type of interaction was described

by stochastically associating and dissociating springs, while the second type was represented by

deterministic Morse potential. Platelet activation was described as a time-dependent process.

Parameters of platelet interaction models were acquired based on experimental data. We

inferred stochastic springs model parameters using experiments on platelet rolling over adhesive

surface [3]. Parameters of Morse potential were obtained by fitting experimental data on forces

between single activated platelets [8]. The Newtonian equations of motion for each particle were

solved numerically with a modified version of the Verlet algorithm [12]. The hydrodynamic

force, acting on a freely flowing particle, was described by the Stokes law, while forces acting

on platelets within the aggregate were calculated using numerical solution of the continuity

Navier–Stokes equations, provided by the CFD module. Platelets were randomly generated at

the inlet according to local velocity values and mean platelet concentration profile inferred from

experimental data on platelet margination effect [13].

Computational fluid dynamics module. If platelet dynamics calculated using the first

module resulted in the change of the aggregate structure (e.g. attachment or detachment of the

platelet to or from the aggregate, respectively, or significant displacement of platelets within the

aggregate), then CFD module was initialized with new boundary conditions. All platelets, which

form the aggregate, were considered as solid impermeable barriers with no-slip boundary con-

dition on their surface (contours). In order to account for fluid motion inside the aggregate, the
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effective hydrodynamic radius of these platelets was considered two times smaller than the corre-

sponding value used for the calculation of platelet interactions in the platelet dynamics module.

The continuity equation and Navier–Stokes equations were solved numerically using the Open-

FOAM simpleFoam solver [9], based on Semi-Implicit Pressure Linked Equations (SIMPLE)

algorithm, with parabolic inflow boundary condition on the inlet and zero pressure condition on

the outlet.

No-slip boundary conditions were chosen for the vessel walls and platelets within the ag-

gregate. The unstructured mesh was generated using a gmsh generator [4]. When primary cal-

culation is performed, the flow velocities and local pressure values are recalculated based on

rescaled boundary conditions corresponding to a constant pressure drop, which better describes

the hydrodynamic conditions observed in vivo [2].

The computational domain represented a rectangle with the length of 200 µm and height

of 35 µm and mimicked a fragment of the arteriole. An injury was modeled as a row of firmly

adhered platelets on the lower side of the vessel wall (Fig. 1). The viscosity equaled 10−3 Pa · s,
while maximum flow in the inlet was taken 8.75 mm/s in order to provide surface shear rate of

1000 s−1, a typical scale for arterioles.

2. Results

In order to validate the model, we performed the analysis of thrombus dynamics obtained in

silico and compared it to the corresponding data derived from in vivo experiments of thrombus

formation in the presence of coagulation inhibitor [11]. In order to account for platelet size

heterogeneity, the radius of each disk was generated from the Gaussian distribution, which fits

experimental data on platelet size distribution [10]. We compared the dynamics of this model

with a simple model variant where all platelets have the same radius of 1 micron.

Figure 1 shows a typical shape of thrombus and typical dynamics of thrombus height in the

model with different platelet sizes.

(a) The typical view of thrombus: the layer of circles

at the bottom — the injury, other circles — platelets,

the lines between the surfaces of the platelets — the

springs-mediated interactions

(b) Example of the thrombus height

dynamics showing principal parameters used

for analysis

Figure 1. Platelet aggregate structure and dynamics of its formation

The results of 12 simulations, each corresponding to 90 seconds of physiological time were

analyzed. Thrombus disruption was determined as a sharp decrease in the number of platelets
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within the thrombus. We analyzed the following parameters of thrombus dynamics (Fig. 1):

thrombus surface (Smax and Smin) and thrombus heights (hmax and hmin ) before and after

disruption, respectively. We also analyzed the relative size of disruptions, defined as [Smax −
Smin]/Smax. The statistics for these parameters with the number of disruption events is given

in the Tab. 1.

Table 1. Thrombus dynamics parameters inferred from in

silico and in vivo experiments. Data presented as mean ±
standard error of mean

Parameter

type

Model with platelets of

equal size (12 simula-

tions, 27 disruptions)

Model with platelets of

the different size (12

simulations, 24 disrup-

tions)

Experimental data(1

experiment, 3 disrup-

tions) [11]

Smax, µm
2 609± 19 666± 16 540± 40

Smin, µm
2 320± 16 415± 22 380± 40

∆S, µm2 289± 22 251± 25 163± 14

∆S/Smax 0.47± 0.04 0.37± 0.04 0.30± 0.05

hmax, µm 15.2± 0.4 14.6± 0.3 16± 1

hmin, µm 7.4± 0.2 9.4± 0.6 10± 1

Our in silico results demonstrate that taking into account platelet size heterogeneity results

in thrombus dynamics which better reproduces experimental data. Interestingly, this result

indicates that variations in platelet sizes lead to decrease in both absolute and relative size

of the disrupting parts (embolus size) of the thrombus and thus seem to increase its stability

against the flow.

3. Evaluation and Analysis of Application Behavior

The described approach was implemented in C++ language using OpenFOAM, gmsh and

boost libraries. The experiments were conducted on the Lomonosov-2 supercomputer in compute

partition (based on Intel Xeon E5-2697 v3 processors with 14 cores). For each parameter set

the computations were performed on one node. In order to get the statistics, 14 simulations

with different random seeds were initialized, each at a single thread mode, therefore utilizing all

available physical cores in the node.

To estimate the increase of calculation time associated with quasi-steady hydrodynamics

computations, we compared the mean time required to calculate 60 seconds of physiological

time in a stationary model (when the flow is stationary and no CFD simulations are performed)

and quasi-steady model. The obtained values for n=10 runs are the following: for stationary

model, the calculation time (M ± SE) is 560 ± 50 min.; the time for quasi-steady model is

1960 ± 180 min.

In order to find out the most computationally intensive parts of our implementation (that are

mostly responsible for the significant increase in execution time), we have performed program

profiling using Intel VTune Amplifier [5]. It should be noted that in these experiments we

calculated a much smaller time period — only 500 milliseconds of physiological time. This was
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done due to two reasons: 1) the profiling process requires a large number of experiments and

therefore is very time-consuming; 2) we have chosen an interval of physiological time that reflects

a representative as well as computationally expensive part of the simulation.

The results have expectedly shown that the CFD module tends to consume most of the

execution time (∼60% in general), leaving only 40% to the platelet dynamics module. The most

computationally intensive function in CFD module is responsible for infering the indexes of the

edges which surround the given point in space for further calculation of the interpolated values of

pressure and velocity — it takes up to 9.4% of the overall execution time. Next time-consuming

steps in CFD part are marking particles which belong to the aggregate as well as calculation of

distance between particles, since they consume ∼4% and 3.5%, correspondingly.

The interesting part was to discover that a significant part of the execution time is spent on

performing useful arithmetic operations — sin/cos, simple arithmetic and exponent calculations

(15.1%, 8.7% and 5.1% of execution time, correspondingly). Moreover, performing sin/cos op-

erations is the overall most computationally intensive function. All these operations are called

from one major function that calculates the interactions between particles within the aggregate,

which makes this function one of the primary candidates for further optimization. Another way

of optimization, which seems to be more preferred in our case, is to try parallelizing this program.

According to the analysis results, it seems that the most suitable opportunity for parallelization

is to perform a recalculation of particle dynamics in parallel (e.g. using OpenMP), since this

part is performed in a nested loop with almost independent iterations where the program spends

40% of execution time.

Conclusions

In this paper we describe a novel in silico model of thrombus formation and its implemen-

tation, which allows studying thrombus dynamics on the physiologically relevant timescales of

several minutes. Using this new instrument we demonstrate the importance of platelet size het-

erogeneity for describing experimental data on thrombus dynamics and embolization. To perform

mass experiments based on this model, we have used computing resources of the Lomonosov-2

supercomputer. In order to find out the performance bottlenecks of our implementation, we have

performed program profiling using Intel Vtune software. The analysis results showed us the most

computationally intensive parts of our program and allowed us to identify possible directions for

optimization.
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New Binding Mode of SLURP Protein to α7 Nicotinic

Acetylcholine Receptor Revealed by Computer Simulations
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SLURP-1 is a member of three-finger toxin-like proteins. Their characteristic feature is a set

of three beta strands extruding from hydrophobic core stabilized by disulfide bonds. Each beta-

strand carries a flexible loop, which is responsible for recognition. SLURP-1 was recently shown

to act as an endogenous growth regulator of keratinocytes and tumor suppressor by reducing

cell migration and invasion by antagonizing the pro-malignant effects of nicotine. This effect is

achieved through allosteric interaction with α7 nicotinic acetylcholine receptors (alpha-7 nAChRs)

in an antagonist-like manner. Moreover, this interaction is unaffected by several well-known agents

specifically alpha-bungarotoxin.

In this work, we carry out the conformational analysis of the SLURP-1 by a microsecond-long

full-atom explicit solvent molecular dynamics simulations followed by clustering, to identify repre-

sentative states. To achieve this timescale we employed a GPU-accelerated version of GROMACS

modeling package. To avoid human bias in clustering we used a non-parametric clustering algo-

rithm Affinity Propagation adapted for biomolecules and HPC environments. Then, we applied

protein-protein molecular docking of the ten most massive clusters to α7-nAChRs in order to test

if structural variability can affect binding. Docking simulations revealed the unusual binding mode

of one of the minor SLURP-1 conformations.

Keywords: molecular dynamics, gromacs, clustering, affinity propagation, protein docking,

biomolecules.

Introduction

Three-finger proteins of the Ly6 family have multiple functions across the organism: from

lignd-binding domains of growth factors receptors (myostatin receptor) to regulation of nico-

tinic receptor (nAChR) expression and function in the brain (Lynx1). Most mammalian Ly6

proteins have a GPI anchor at the C-terminus attaching them to the membrane while others

do not have it and are secreted. Among the latter is SLURP-1 functioning as a water-soluble

paracrine/autocrine messenger molecule which binds nicotinic acetylcholine receptors and reg-

ulates keratinocyte growth and angiogenesis. Such properties of SLURP-1 make it a valuable

object to study as an endogenous cholinergic ligand similar to snake venom neurotoxins that

played a crucial role in the nAChR research for decades [8, 10].

The purpose of the research was to find out alternative SLURP-1 complexes with nAChRs

conformation patterns exist. Can there be different options for binding? It was previously

shown that SLURP-1 does not compete with alpha-Bgt for the binding to α7 nAChRs. There

were data, including NMR data, on the binding of SLURP-1 variants without N- and C-terminal

tags and labels. But there is still no evidence about the binding mechanism. SLURP-1 fusion

constructs bearing unnatural tags and labels show properties drastically different from those

described for recombinant SLURP-1 which has only one additional N-terminal Met residue

(PDB ID: 2MUO). Noteworthy, no experimental spatial structure of fusion SLURP-1 proteins
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were described. Fusion proteins demonstrated positive allosteric modulation of α7 nAChR while

recombinant SLURP-1 act as an inhibitor of the receptor [8].

Since no competition with alpha-bungarotoxin is observed, some alternative binding sites of

SLURP-1 should exist. In this work, the hypothesis was tested by molecular modeling methods.

Molecular dynamics simulations were used to detect stable SLURP-1 conformations, and protein-

protein docking was performed to identify prospective binding sites. In the course of the study,

several characteristic patterns appeared that did not always correspond to NMR data. Changes

in the secondary structure of one of the fingers were observed. Also, more than one variant of

nACHRs binding model was found, and they depended on the conformation of SLURP.

Without experimental verification, it is difficult to determine the correctness of the predic-

tion and unequivocally confirm or disprove the hypothesis.

1. Methods

Molecular dynamics simulation of SLURP-1 NMR conformation (1st model) (PDB ID:

2MUO) was performed in GROMACS [7]. Protein part was described with amber99sb-ildn

forcefield [6] and explicit water model tip3p was used as a solvent. Computational resources

of Lomonosov supercomputer in conjunction with GPU acceleration allowed us to reach total

trajectory length of 2 mks.

The trajectory was clusterized with non-parametric clustering algorithm affinity propaga-

tion [5]. The secondary structure was predicted with DSSP [4, 9].

Protein-protein docking for 10 largest clusters was performed with ZDOCK [3] and replicated

10 times. The number of output complexes was set to 1000 and sorted by ZRANK. Top 10 hits

from each replicate were selected producing 100 in total. Contacts at a distance less than 3.6

angstroms were calculated, and several models were selected for visual analysis with PyMol [2].

2. Results

2.1. Conformational Landscape of SLURP-1

During the visual analysis of the simulation of molecular dynamics, SLURP-1 underwent a

change in the course of the backbone during the molecular dynamics toward the formation of the

alpha helix like motif by the residues SER12, ALA13 and SER14. DSSP analysis of secondary

structure over the whole trajectory confirmed formation 3-10 alpha helix for these residues Fig. 1

(a). Alpha helices are colored in red, beta-strands in yellow and unstructured areas in green.

On Fig. 1 (b) the probability of participation of each amino acid in the formation of a certain

secondary structure is presented, “∼” – unstructured sections, “E” remains involved in the

formation of beta strands, “B” – the situation where only one amino acid forms a hydrogen

bond characteristic of the beta-strand, “S” and “T” – turns, “H” – alpha helix, “G” – 3-10

alpha helix.

With clustering analysis, 54 clusters were found and only 10 can be formally designated

to two groups: with and without 3-10 alpha helix. Additionally, 10 replicas of the molecular

dynamics simulation were performed for 100 nanoseconds each, showing reproducibility of the

clusters.
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(a) The difference observed in loops and the

presence or absence of a 3-10 alpha-helix

site

(b) Secondary structure distribution over amino

acids

Figure 1. SLURP-1 can form 3-10 alpha-helix by 12-17, amino acids and its loops dynamics

RMSD values were measured for all possible pairs of 20 simulation clusters and 20 NMR

models Fig. 2. Remarkably, simulation data generally reproduced the conformation set from the

NMR experiment.

(a) Comparison of MD clus-

ters with NMR models

(b) Typical position of

SLURP-1 (blue) and

bungarotoxin (red)

(c) Atypical position of

SLURP-1

Figure 2. Heatmap of MD clusters vs NMR models. Positions of SLURP-1 and bungarotoxin

with two subunits of α7 nAChRs (grey)

2.2. Protein-Protein Docking of SLURP-1 to 7 nAChRs

Well-known ligand of α7 nAChRs receptor – alpha-bungarotoxin binds at the interface

between subunits in pentamer. Results of protein docking of SLURP-1 conformations to α7 re-

ceptor presented two major binding modes. The first mode overlaps with the alpha-bungarotoxin

binding site. Ligand interacts with the receptor by “fingers”– loop II and III regions without

secondary structure involving residues 134-144 and 157-167 Fig. 2. The second binding mode

does not overlap the alpha-bungarotoxin site, and SLURP-1 continued to have stable contact

through the “fingers”.

Disussion and Conclusions

According to simulation results SLURP-1 has two binding modes for various conformations.

First binding mode overlaps with bungarotoxin site while the second one does not. Our data
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provide clear directions for experimental support of newly proposed mode of interaction of

SLURP-1 with α7 nAChRs.
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Supercomputer Simulations of Fluid-Structure Interaction
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The paper describes a supercomputer application in simulations of fluid-structure interaction

problems. A compressible flow solver based on a high-accuracy scheme for unstructured hybrid

meshes is considered. It combines an immersed boundary method with a dynamic mesh adaptation

method in order to represent motion of solid objects in a turbulent flow. The use of immersed

boundaries allows you to dynamically adapt the mesh resolution near moving solid surfaces without

changing the mesh topology. Multilevel MPI + OpenMP parallelization of these components fits

well with the architecture of modern cluster systems. The proposed implementation can engage

thousands of CPU cores in one simulation efficiently. An example application is presented in which

a high-speed turbulent flow around a cavity with a deflector is simulated.

Keywords: Parallel CFD, immersed boundary method, unstructured mesh, turbulent flow,

MPI+OpenMP.

Introduction

Mathematical modeling of the fluid-structure interaction (FSI) problems is crucial for fluid

mechanics engineering, as well as for design of structures and reliability control. At the same time

scale-resolving simulation of turbulent flows in dynamic geometrically complex configurations

imposes high computing demands.

An immersed boundary condition (IBC) method is used in combination with a dynamic mesh

adaptation method in order to reduce computing costs and increase efficiency of simulation

as compared to traditional body-fitted approaches. Originally IBC methods were created for

modeling of flows around arbitrary-shaped obstacles using structured cartesian grids. In the

present work the Brinkman penalization method [1] is used within a high-accuracy compressible

flow solver on unstructured hybrid meshes. The dynamic mesh adaptation technique based on

variational principles [2] significantly reduces the required number of mesh nodes and improves

the accuracy of the solid surface representation.

In contrast to a body-fitted approach, when solid surfaces are represented by exterior mesh

faces, the use of IBC allows to easily track a solid surface by adding an external force field.

Thanks to the ability of nodes to pass through solid objects, the mesh adaptation becomes

much easier, affecting only coordinates of the nodes while the mesh topology remains constant.

This makes recalculation of control volumes much cheaper. Furthermore, in this case there is no

workload imbalance, which would otherwise appear when adding and removing mesh nodes.

1. Mathematical Model and Numerical method

The mathematical model is based on the compressible Navier–Stokes (NS) equations. At the

fluid-solid interface the no-slip condition is imposed using the Brinkman penalization method [1],

which does not require matching of the mesh nodes to the solid boundary. The special penalty

functions are added as source terms into the NS system. These functions differ from zero only at

the mesh nodes inside obstacle. In order to model the FSI problems, the NS system is coupled

with the obstacle motion equation.
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The NS system is descretized on an unstructured hybrid mesh using the high-accuracy edge-

based scheme EBR [3]. This scheme provides high accuracy (up to 5-th order on translationally

invariant meshes) at about the same computing cost as a basic low-order scheme.

The time integration is performed using an implicit second-order scheme based on the New-

ton linearization. The corresponding Jacobi system of linear equations is solved using a precon-

ditioned Bi-CGSTAB solver [4].

The algorithm of the time integration step consists of several stages. Firstly, the motion

equation is solved in order to update the coordinates and velocities of the mass centers of the

solid bodies. Then the positions of solid surfaces are updated and tracked by the mesh adaptation

method. Finally, new penalty functions are determined, and the penalized NS system is solved.

2. Parallel Implementation

The proposed method was implemented in the CFD code NOISEtte [5]. It has

MPI+OpenMP parallelization for supercomputers made of multi- and manycore processors.

A multilevel mesh partitioning is used for workload distribution among supercomputer nodes

and among CPU cores inside nodes. A detailed description of the parallel algorithm can be found

in [5].

The immersed boundary penalization method was implemented following the same paral-

lelization approach. The calculation of penalty functions produces no significant load imbalance

since it is not computing intensive.

The dynamic mesh adaptation follows MPI+OpenMP parallelization as well, but it intro-

duces notably more complexity to the parallel algorithm. It involves a different parallel iterative

solver [6] for a linear system of equations represented with another sparse matrix format.

3. Verification and Validation

Various test cases with available experimental and numerical data were considered in order

to validate the accuracy of FSI modeling using Brinkman penalization method coupled with

dynamic mesh adaptation.

The oscillations of 2D and 3D obstacles, such as a cylinder or a sphere, caused either by

a given external force or by vortex-induced forces were investigated. The computational results

are in a good agreement with the reference data.

A flow around a flapping foil represents more complex geometry and motion law. In this test

case the NACA0012 foil oscillates with plunging and pitching mechanisms. The instantaneous

vorticity magnitude for different phase angles is shown in Fig. 1. An example of the automatic

mesh adaptation that tracks the surface of the foil is shown in Fig. 2.

Figure 1. Instantaneous vorticity magnitude for different phase angles of the flapping foil
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A good agreement between numerical and experimental results was observed in comparison

of the measured and calculated mean thrust and power coefficients. Further details on comparison

with experimental data and body-fitted numerical results can be found in [7].

Figure 2. Example of automatic mesh adaptation that tracks motion of the foil

4. Industry-Oriented Applications

The immersed boundary method can be efficiently combined with a body-fitted approach.

Static objects that require accurate boundary layer resolution can be represented with a body-

fitted mesh. At the same time, moving objects or static objects that allow less accurate resolution

can be represented with IBC. For instance, if we study a helicopter main rotor using a body-

fitted mesh and want to account for effect of the helicopter fuselage on the flow, then we can

simulate the fuselage using IBC. Deployment of spoilers on a wing, opening doors of a gear bay,

deployment of landing gears, release of a payload, etc., can be simulated with this combined

approach.

The proposed method was applied in a simulation of a flow over a deflector mounted at the

upstream side of a cavity (Fig. 3).

a) domain scheme b) example of deflector’s shape c) comparison of acoustic load

at the rear wall with and

without deflector

d) instantaneous turbulent flow

fields without deflector

e) instantaneous turbulent flow

fields with deflector

Figure 3. Flow over a cavity with a deflector

Supercomputer Simulations of Fluid-Structure Interaction Problems Using an Immersed...

80 Supercomputing Frontiers and Innovations



The flow parameters correspond to a flight regime of a high-speed aerial transport vehicle.

The aim of the study was to reduce acoustic and vibration load on the surface of the cavity

by improving the shape of the deflector. Multiple configurations of the complex shape deflector

were numerically studied using IBC. The use of IBC allowed us to easily change the shape with

a given surface parametrization, and to use one spatial mesh for all the configurations. The

computational results demonstrated that the deflector considerably reduces the mean pressure

coefficient and the overall pressure fluctuation level at the cavity bottom and on its rear wall.

Further details on this study can be found in [8]. IBC applicability tests were performed for

static meshes with up to one billion elements using up to 10,240 CPU cores of Lomonosov

supercomputer with parallel efficiency of doubling the number of cores above 90%.

Conclusions

The developed approach can be applied for supercomputer modeling of FSI problems on

unstructured meshes. The immersed boundary method allows to efficiently handle moving obsta-

cles. Parallel dynamic mesh adaptation provides it with necessary resolution near solid surfaces.

All the components fit well with MPI+OpenMP parallelization and can be easily implemented

in the existing parallel CFD codes.
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High-level procedures (MP2, CCSD, CCSD(T)) and reliable experimental data have been

used to assess the performance of a variety of exchange-correlation functionals for the calculation

of structures and energies of small models of thiolate-protected gold clusters. Clusters represent

rather complicated objects for examination, therefore the simple models including Au2, AuS were

considered to find an appropriate method to calculate Au-Au and Au-S interactions in protected

clusters. The mean unsigned errors of the quantum chemical methods were evaluated via reliable

experimental bond distances and dissociation energies of Au2 and AuS. Based on the calculation,

the SVWN5, TPSS+D3, PBE96+D3, and PBE0+D3 were found to give the most reliable results

and can be recommended for calculation of the structure and properties of thiolate-protected gold

clusters. The influence of the relativistic corrections calculated in Dirac-Coulomb-Breit framework

and inclusion of dispersion corrections on the structure and energy of thiolate-protected gold

clusters have been analyzed.

Keywords: density functional theory, parallel calculation, cluster, gold, dispersion correction,

relativistic effects, computational chemistry.

Introduction

Supercomputer simulation based on quantum chemical methods is effectively applied to

predict and examine the structure and properties of different compounds including nanoclusters,

materials, metal-organic systems, and drugs [1, 2]. Thiolate-protected gold clusters, Aun(SR)m,

are popular objects in theoretical and nano science. The quantum chemical study of clusters has

a number of challenges: (i) To describe Au-Au and Au-S interactions correctly, the approach

should take into account relativistic effects, dispersion interactions, and others features; (ii)

High-level ab initio procedures are not feasible for Aun(SR)m, since they become very resource-

intensive; (iii) Application of the Aun(SR)m data in solid or liquid phases as a benchmark of

theoretical methods is difficult due to that a majority of quantum chemical methods are related

to a gas phase. The problem of an extensive global search of potential energy surface to locate

global minima can be solved by the genetic algorithm with DFT calculation [3].

We propose new insights to choose the quantum chemical protocol of calculation of gold

protected clusters and similar metal-organic systems performing benchmark study of the simple

fragments of cluster. Clusters represent rather complicated objects for examination, therefore

the simple models including Au2, AuS were considered.

1. Calculation Details

Calculated interatomic distances (Re) and bond energies (D0) of the fragments were com-

pared to available experimental spectroscopic data [4, 5] and values obtained by high-level ab

initio methods (MP2, CCSD, CCSD(T)) to assess the performance of exchange-correlation func-

tional (LSDA, GGA, meta-GGA, global-hybrid GGA, global-hybrid GGA, global-hybrid meta-
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GGA, range-separated hybrid GGA functionals). Effective core potential formalism using the

cc-pVDZ/cc-pVDZ-PP [6, 7], 6-31G*/SBKJC [8], 6-31G*/LANL2DZ [9] (further referred to

BS-1, BS-2, and BS-3) was applied.

The Dirac-Coulomb-Breit Hamiltonian (DCB) with separate spin-free and spin-dependent

components [10] was employed. The energy-optimized extended Gaussian basis set of triple-

polarized quality of the large component, and the corresponding kinetically balanced basis for

the small component [11] was used (BS-4). The dispersion corrections with the Becke-Johnson

damping (DFT+D3) [12] was also calculated.

For each protocol mean unsigned errors (MUEs) were established. The DFT MUEs were

compared with the MP2, CCSD, and CCSD(T) MUEs and divided into three groups: (i) accu-

rate procedure if MUE is less than CCSD(T)/BS-1 MUE; (ii) less accurate procedure if MUE

is in the range between CCSD(T)/BS-1 and CCSD(T)/BS-2; and (iii) erroneous procedure if

MUE is more than MUE of CCSD(T)/BS-2.

All calculations were performed with NWChem [13] and PRIRODA [14] codes. Server 1:

HP DL160G6 server with 2 Intel Xeon E5504 (quad-core, 2.0 GHz) processors, 24 GiB DDR3

ECC RAM, 1.8 TiB HP P410/512MB based RAID 1+0 of 4 Seagate ST1000NM0033-9ZM

disks. Servers 2 and 3: virtual machines with 8 processor cores (2.53 GHz), 24 GiB RAM and

300 GB VHDD, running on VMware vSphere 5.5 platform (M.V. Lomonosov Moscow State

University Datacenter). All servers are running CentOS 6.7 Linux 64-bit, NWChem 6.6 64-bit

built with Intel Compilers, MKL and Intel MPI from Intel Parallel Studio 2016 Cluster Edition).

The calculation capacity offered by Supercomputing Center of M.V. Lomonosov Moscow State

University has been also used [15].

2. Results and Discussion

The calculated Re values of Au2 molecule are compared to the experimental data 2.4719

[4]; the MUEs are shown on Fig. 1. Evidently, CCSD(T)/BS-1 and MP2/BS-1 protocols give the

most accurate Au-Au distance amongab initio methods. For all ab initio methods, the MUEs

increase in the order BS-1 <BS-2 <BS-3. Thus, the expanding of a basis set slightly improve the

distance calculated at CCSD(T) level only. In contrast, the Re calculated by different functionals

slightly varies from the basis sets. The first group of the high accurate functionals contains

SVWN5/BS-1, SVWN5/BS-2, SVWN5/BS-3, and M11/BS-1. The homogeneous electron gas

approximation to XC energy could be provided the advance of SVWN5. The second group

is represented by PW91, PBE96, BP86, TPSS, PBE0, BHandH, MPW1K, B3P86, B3PW91,

HSE06, TPSSh. Other functionals including BLYP, B3LYP, M06, M06L, M11L have high MUEs,

more than 0.08 , and failed to describe the experimental Au-Au distance. It should be noted that

the majority of protocols tend to overestimate Re in Au2, except MP2/BS-1 and SVWN5/BS-1.

Dispersion corrections slightly effect the Re. The Au-Au distance calculated by DCB framework

is equal to 2.530 ; MUE=0.058 .

Among ab initio methods, CCSD(T)/BS-1 and MP2/BS-1 successfully predict the dissoci-

ation energy of Au2 (Fig. 1). The errors of MP2/Def2-TZVPP and CCSD(T)/Def2-TZVPP are

large and equal to 0.13 eV and 0.23 eV, respectively. Some of the functionals have less MUEs

than ab initio methods. The PW91, PBE96, BP86, TPSS, M06L form the first group of accurate

methods (MUE ¡ 0.1 eV). The SVWN5 and BHandH functionals, which have exactly predicted

Re, calculate D0( Au2) with large MUE, as well as HCTH, B3PW91, B3LYP, HSE06, M11, M06.
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a

b

Figure 1. Mean unsigned errors in calculation of ∆R (A) and ∆D0 (B) of Au2 (a – range-

separated hybrid GGA functional; b – range-separated hybrid meta-GGA functional)

The dispersion corrections slightly influence the results. Relativistic DCB dissociation energy

(2.30 eV) is completely in line with the experimental ones.

The equilibrium distance and dissociation energy of AuS are calculated using CCSD,

CCSD(T), MP2, DFT, DCB. The experimental value of Re, 2.156 [5] was used as a benchmark.

MP2/BS-1 accurately predicts the Au-S distance among the considered ab initio methods. For

MP2, CCSD, CCSD(T) the error increases in the order BS-1 <BS-2 <BS-3. The Au-S distance

calculated using DFT also depends on the basis set and a functional type. The first group of

accurate procedure (with MUEs less than 0.06 ) contains all considered functionals with BS-1

excluding BLYP, HCTH, M11L, BHandH, B97, B98, B3P86, B3LYP, M06. The dispersion and

relativistic corrections slightly influence Re value. For instance, the Au-S distance calculated in

DCB approximation has the same error (0.07 ) as the first group of the DFT methods.

All ab initio methods accurately predict a dissociation energy of AuS excluding MP2/BS-2

procedure (MUE = 0.41 eV). The errors of MP2/Def2-TZVPP and CCSD(T)/Def2-TZVPP are

larger than BS-1 and equal to 0.56 eV and 0.63 eV, respectively. Among DFT, MPW1K/BS-

1 protocol calculates D0 more accurate than CCSD(T)/BS-1. For PBE96+D3, BP86+D3,

HCTH, TPSS+D3, M06L, M06L+D3, M11L, PBE0, PBE0+D3, B97, B98, B3P86, B3PW91,

B3LYP, B3LYP+D3, HSE06, M06, M06+D3, TPSSh, TPSSh+D3 with Lanl2DZ, MUEs are

less then MUEs obtained by SBK and cc-pVDZ basis sets. It should be noted that PBE96/BS-
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3, TPSS/BS-1, M11L/BS-3, PBE0/BS-3, MPW1K/BS-1, B98/BS-3, B3LYP/BS-3, M06/BS-3

could be recommended for AuS calculations. The dispersion corrections improve the calculated

value in most cases excluding M06. Dissociation energy calculated by DCB approximation is

2.67 eV (MUS=0.08 eV) and in line with the experimental data.

The calculation of Au-Au and Au-S distances in Au2 and AuS reveals the functionals

which are close in accuracy to high-level ab initio procedures and experimental data. Due to

SVWN5, B3PW91, PBE96, PBE0, B3LYP, TPSS, TPSSh, M06, M06L, M11, M11L, PW91,

BP86 procedure have the least errors in the predicted properties of Au2 and AuS, they are

further applied to benchmark calculation of the cyclic gold-thiolate complexes.

Finally, the Au20(SR)16 structure is calculated by SVWN5, PBE96, TPSS, PBE96+D3,

TPSS+D3, PBE0, PBE0+D3 methods using BS-2, BS-3 basis set and by DCB framework

with BS-4 basis set to understand the accuracy and time of the DFT procedure to predict the

interatomic distances in real thiol protected gold cluster. The main interatomic distances and

average calculation time of one optimization step of calculation are collected in Tab. 1.

Table 1. The main interatomic distances () in Au20(SR)16 and average calculation time of one

optimization step (t, min)

Method Basis set Au(1)-Au(2) Au(2)-Au(3) Au(3)-Au(4) Au(2)-Au(5) t

X-ray - 2.717 2.870 2.982 3.120 -

SVWN5 BS-2 2.720 2.854 2.795 2.996 95

BS-3 2.727 2.880 2.860 3.013 61

TPSS BS-2 2.776 2.883 2.960 3.090 76

BS-3 2.774 2.899 2.959 3.150 55

TPSS+D3 BS-2 2.750 2.849 2.836 2.965 83

BS-3 2.740 2.872 2.845 3.013 67

PBE96 BS-2 2.810 2.967 3.123 3.232 79

BS-3 2.801 2.944 3.034 3.256 60

PBE96+D3 BS-2 2.774 2.830 2.905 3.120 86

BS-3 2.771 2.898 2.946 3.153 64

PBE0 BS-2 2.792 2.901 2.991 3.081 75

BS-3 2.765 2.909 2.968 3.142 63

PBE0+D3 BS-2 2.772 2.894 2.951 3.098 78

BS-3 2.749 2.882 2.934 3.156 69

PBE96+DCB BS-4 2.810 2.952 3.063 3.204 142

The structure obtained at TPSS/BS-2 method proved to be more close to the experimental

one than the structure predicted in PBE96/BS-2 and SVWN5/BS-2 approaches. It should be

noted that dispersion corrections improve convergence of the calculated interatomic distances

and the experimental ones using the PBE96 functional. The account of relativistic effects in DCB

framework also improves the geometrical parameters, but the average calculation time of one

optimization step is sufficiently longer than time of PBE96/BS-2 and PBE96/BS-3 protocols.
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Conclusions

The structures and energies of small models of thiolate-protected gold clusters were calcu-

lated by ab initio methods (MP2, CCSD, CCSD(T)) and different exchange-correlation func-

tionals including dispersion and relativistic corrections. To find the accurate method for the

study of Au-Au and Au-S interactions, the diatomic Au2 and AuS molecules were considered.

All calculated Au-Au bonds in the Au20(SR)16 are slightly larger than the corresponding

values in crystal structure. The account of dispersion corrections and relativistic effects improves

the geometrical parameterizes. So, SVWN5, TPSS+D3, PBE96+D3, PBE0+D3 using BS-2 and

BS-3 could be recommended for Aun(SR)m calculation, because they describe Au-Au and Au-S

interactions more accurately.

The obtained results illustrated the complications of Aun(SR)m for theoretical investigation

and provide new information to theorists and chemists studying structure and properties of pro-

tected gold clusters or other complicated chemical systems including self-assembled monolayers,

ligand-protected metal clusters, and organometallic complexes.
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(AChE) Inhibition
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Molecular docking is one of the most popular tools of molecular modeling. However, in cer-

tain cases, like development of inhibitors of cholinesterases as therapeutic agents for Alzheimer’s

disease, there are many aspects, which should be taken into account to achieve accurate docking

results. For simple molecular docking with popular software and standard protocols, a personal

computer is sufficient, however quite often the results are irrelevant. Due to the complex biochem-

istry and biophysics of cholinesterases, computational research should be supported with quantum

mechanics (QM) and molecular dynamics (MD) calculations, what requires the use of supercom-

puters. Experimental studies of inhibition kinetics can discriminate between different types of

inhibition—competitive, non-competitive or mixed type—that is quite helpful for assessment of

the docking results. Here we consider inhibition of human acetylcholinesterase (AChE) by the

conjugate of MB and 2,8-dimethyl-tetrahydro-γ-carboline, study its interactions with AChE in

relation to the experimental data, and use it as an example to elucidate crucial points for reliable

docking studies of bulky AChE inhibitors. Molecular docking results were found to be extremely

sensitive to the choice of the X-ray AChE structure for the docking target and the scheme selected

for the distribution of partial atomic charges. It was demonstrated that flexible docking should

be used with an additional caution, because certain protein conformational changes might not

correspond with available X-ray and MD data.

Keywords: acetylcholinesterase, Alzheimer’s disease, molecular docking, atomic charges.

Introduction

Therapy of Alzheimer’s disease (AD) involves inhibition of brain AChE to restore acetyl-

choline (ACh) levels. [9]. In addition to hydrolyzing ACh, AChE promotes aggregation of β-

amyloid peptide through its interaction with the AChE peripheral anionic site (PAS). Thus,

dual-site inhibitors of the active and PAS sites are expected to be disease-modifying agents [10].

To develop dual-site anti-AD drugs, we combined two known pharmacophores, methylene

blue (MB) and carbolines into single conjugates (MBC) [14], see Fig. 1, and demonstrated that

they were effective inhibitors of AChE capable of displacing propidium from the AChE PAS [1].

Docking and other computational methods have been used in drug design for decades.

However biophysical constraints can hamper the predictive power of these approaches [2]. For

example, AChE contains a gorge with a midpoint constriction (“bottleneck”) that separates the

PAS and active site regions [15]. Consequently, inhibition is determined not only by geometric

and interaction energy factors, but also by binding dynamics [7]. In the present work, we analyzed

the results of different molecular docking approaches for MBC into AChE and compared them

to kinetic data, demonstrating mixed-type inhibition (Fig. 2). Thus, the compound should bind

competetively to the active site and noncompetitively to the PAS, and docking should provide

poses of the ligand both above and below the bottleneck.
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Figure 1. Structure of compound MBC, a conjugate of MB (colored blue) and 2,8-dimethyl-

tetrahydro-γ-carboline (colored red)

Figure 2. Steady state inhibition of AChE by this compound; Lineweaver-Burk double-reciprocal

plots of initial velocity and substrate concentrations in the presence of the inhibitor, showing

mixed-type inhibition

1. Methods

The carboline part of MBC contains a piperidine ring condensed with an aromatic system

that implicates conformers and enantiomers. Using OpenEye OMEGA 2.5.1.4: OpenEye Scien-

tific Software, Santa Fe, NM. http://www.eyesopen.com [5], 4 configurations of MBC were

generated (Fig. 3).

pKa values were calculated with Schrödinger Jaguar QM DFT pKa module [16]. Geometries

were optimized with Gamess-US [11] software (B3LYP/6-31G*). For docking, optimized ligand

structures were used with Gasteiger partial atomic charges and those derived from QM results

according to Mulliken and Löwdin schemes. Additionally, Schrödinger QM-Polarized Ligand

Docking (PLD) [4] was used with extra precision docking and redocking; charges were calculated

using the Jaguar accurate QM method. Five X-ray structures of human AChE (PDB IDs 4EY4-

4EY8, [3]) were used for docking. Rigid docking was performed with AutoDock 4.2.6 [8] as

described earlier [12]. For flexible docking, Schrödinger Glide Induced Fit [13] was used with

AChE as a target. The docking volume included the entire gorge, and extra precision docking
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(a) The carboline ring is perpendicular to the

viewing plane
(b) A general side view

Figure 3. Overlaid configurations of the piperidine fragment of the γ-carboline ring of MBC

and scoring were employed. MD simulations were done in 0.15 M NaCl solution with previously

published methods [6, 17].

2. Results

The PDB (http://www.rcsb.org) contains X-ray structures of apo-AChE (4EY4) and

co-crystallized with different compounds: (-)-Huperzine A (4EY5); (-)-Galantamine (4EY6);

Donepezil (4EY7); and fasciculin-2 (4EY8) [3]. The absence or presence of ligands affects the

conformation of principal amino acids lining the gorge, e. g., Tyr337 and Tyr341 [15], see Fig. 4.

We have previously reported significant differences in estimated binding energies for the same

compounds with these targets [12]. Here, we show that the target X-ray structure determines

whether or not ligand poses reflect mixed-type inhibition.

The QM-calculated pKa value for the piperidine nitrogen was 7.84. Thus, under experimen-

tal conditions mimicking physiological pH 7.4, both protonated and non-protonated forms could

be present. For this reason, both states were used for the docking study and analysis of results.

Partial atomic charges are crucial for docking results from the algorithms used in our study,

as the charge distribution calculation scheme defines the estimated binding energies and ge-

ometries of complexes [4]. With respect to MBC docking into AChE, the influence of partial

atomic charges was even more pronounced. In the case of apo-AChE as a target, poses below

the bottleneck were obtained only for structures with partial charges derived from QM calcula-

tions according to the Löwdin scheme (Fig. 5). The results obtained with the Gasteiger scheme

and derived from QM data according to the Mulliken scheme and Shrödinger QM PLD docking

showed poorer occupation of the active site compartment for other targets (Fig. 5).

Only in the case of the AChE structure co-crystallized with Donepezil was MBC docked in

full correspondence with experimental data (below and above the bottleneck) regardless of the

partial atomic charges scheme (Fig. 5). This is ensured by the Tyr337 side chain, which forms

the bottleneck, being rotated so that it does not block the gorge.

For AChE structures co-crystallized with Huperzine A and fasciculin-2 (Fig. 6), the MBC

ligand could be found only in the PAS, which corresponds to non-competitive inhibition, and

thus does not agree with experimental data.
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Figure 4. Overlay of X-ray structures of apo-state AChE (magenta); or AChE co-crystallised

with (-)-Huperzine A (yellow), (-)-Galantamine (blue), Donepezil (salmon), and fasciculin-2

(orange). Principal amino acids of the gorge (Tyr341, Tyr337 and Tyr24) and ligands are shown

The Schrödinger Glide Induced Fit protocol for molecular docking of MBC provided posi-

tions similar to those obtained by rigid docking to 4EY7 as a target. The major difference in the

compound’s position was a flipped MB fragment, achieved through appreciable displacement of

Phe297 and Tyr124, while conformational changes for other principal residues of the gorge were

less significant (Fig. 7).

Conformations of Phe297 and Tyr124 side chains, namely, the χ1 torsion angle for induced fit

docking complexes, could be compared with conformations found in X-ray structures of human

and mouse AChE and along MD trajectories for apo-AChE and AChE in complex with another

bulky inhibitor [6]. We found side chain conformations from flexible docking different from those

found in X-ray data or during MD simulations even with a bulky inhibitor in the gorge (Fig. 8).

This suggests that results of the Induced Fit protocol of Glide should be compared with other

available data and certain torsion angles should be fixed for redocking.

Conclusions

The results of kinetic and docking studies demonstrate the importance of choosing the

right target structures. For bulky ligands, the structure of AChE co-crystallized with Donepezil

(4EY7) gave the best agreement with experimental data. The use of different partial atomic

charges also leads to markedly different docking results; the use of charges derived from QM cal-

culations is advisable. Induced-fit docking should be used with caution; conformational changes

of protein residues should be related to protein dynamics data (X-ray and MD) to avoid arti-

facts. Overall, to achieve reliable results, docking studies require the support of computationally

demanding QM and MD calculations, as afforded by supercomputing facilities.
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(a) Target 4EY4,

Gasteiger/Mulliken/Löwdin
(b) Target 4EY4,QM-PLD

(e) Target 4EY7,

Gasteiger/Mulliken/Löwdin

(f) Target 4EY7,QM-PLD

Figure 5. Molecular docking results of conjugate MBC into AChE, corresponding to experi-

mental data. Carbon atoms of the target AChE amino acids are colored according to Fig. 4;

catalytic residues are colored violet. In the left columns, cyan color shows poses obtained with

partial atomic charges derived from the Gasteiger scheme, red—derived from QM calculations

according to the Mulliken scheme, and green—derived from QM calculations according to the

Löwdin scheme. Results of Schrödinger QM-PLD for each X-ray AChE structure are shown

separately in the right column—ligand poses are colored pink
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(c) Target 4EY5,

Gasteiger/Mulliken/Löwdin

(d) Target 4EY5,QM-PLD

(g) Target 4EY8,

Gasteiger/Mulliken/Löwdin (h) Target 4EY8,QM-PLD

Figure 6. Molecular docking results of conjugate MBC into AChE, not reflecting experimental

data. Coloring according to Fig. 5
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Figure 7. Protein-inhibitor complex obtained as a result of Induced Fit procedure

(Schrödinger/Glide). The MBC ligand carbon atoms are green and protein carbon atoms are

cyan. The docked complex is overlaid with the apo-AChE X-ray structure (carbon atoms are

magenta)

(a) Phe297 (b) Tyr124

Figure 8. Distribution of values of χ1 torsion angle over MD trajectories for apo-AChE (black

line), total length 350 ns and 50 ns with the bulky inhibitor C-547 [6] (green line). Corresponding

values for X-ray structures of human and mouse AChE available in the PDB are overlaid on the

distribution plot with red points, and Induced Fit docking results are overlaid with blue stars
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Supercomputer Simulations of Dopamine-Derived Ligands

Complexed with Cyclooxygenases
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Igor I. Lyubimov4, Andrey V. Golovin1,2,5,6
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An in silico approach was adopted to identify potential cyclooxygenase inhibitors through

molecular docking studies. Four potentially active molecules were generated by fusion of

dopamine with ibuprofen or ketorolac derivatives. The binding mode of the considered ligands

to cyclooxygenase-1 and cyclooxygenase-2 isoforms was described using Autodock Vina. Prelim-

inary docking to full cyclooxygenase isoforms structures was used to determine possible bind-

ing sites for the described dopamine-derived ligands. The following more accurate docking itera-

tion to the described binding sites was used to achieve better conformational sampling. Among

the studied molecules, IBU-GABA-DA showed preferable binding to cyclooxygenase active site

of cyclooxygenase-1, while IBU-DA bound to peroxidase site of cyclooxygenase-1, making these

ibuprofen-comprising ligands a base for further research and design of selective cyclooxygenase-

1 inhibitors. Keterolac-derived ligands KET-DA and KET-GABA-DA demonstrated binding to

both cyclooxygenase isoforms at a side pocket, which does not relate to any known functional site

of cyclooxygenases and needs to be further investigated.

Keywords: molecular docking, non-steroidal anti-inflammatory drugs, ibuprofen, dopamine,

cyclooxygenase.

Introduction

Cyclooxygenases (COX), or prostaglandin-endoperoxide synthases, are a family of

membrane-bound isozymes located on the lumenal surfaces of the endoplasmic reticulum and

on the inner and outer membranes of the nuclear envelope. There are two human COX isoforms,

COX-1 and COX-2, which mediate basic housekeeping functions in various tissues and play

key roles in inflammation process. Non-steroidal anti-inflammatory drugs (NSAIDs) are COX

inhibitors that exhibit analgesic, antipyretic, and anti-inflammatory actions [1]. Most NSAIDs

are known to inhibit COX enzymes by binding at the cyclooxygenase active site, but several

NSAIDs have alternative binding locations on COX surface [3]. Development of selective COX-1

inhibitors might be highly relevant for diseases, such as neuro-inflammation, atherosclerosis and

gastrointestinal toxicity, while COX-2 selective NSAIDs are needed for treatment of rheumatoid

arthritis and as a preventative agent for colon cancer [1].

Dopamine, one of the major neurotransmitters in the central nervous system, is involved

in regulation of the immune system and host defense. Dopamine-derived drugs are a largely

unexplored but promising class of mediators involved in the regulation of neuroinflammation,

exhibiting reduction of prostaglandin E2 level in primary microglial cells without alteration of

COX-2 gene expression [9].
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An established technique of developing new COX inhibitors is modification of existing non

selective inhibitors, such as ibuprofen. Ibuprofen and other NSAIDs esterified from their carboxyl

group showed higher binding affinity and good selectivity for COX-2 in both in silico and in vitro

studies [2]. In this study we investigate the binding mode to COX isozymes for four potential

dopamine-derived COX inhibitors designed by ibuprofen and ketorolac esterficaton (Fig. 1).

The preferable binding sites were determined by the estimated binding affinities using molecular

docking approach. IBU-GABA-DA is selected as a lead molecule for further design of COX-1

selective inhibitors.

Figure 1. Chemical structures of chosen dopamine-derived COX inhibitors on base of ibuprofen

From left to right: IBU-DA, IBU-GABA-DA, KET-DA, KET-GABA-DA

1. Methods

3D structures for four dopamine-derived ligangs (DDLs), the cyclooxygenase substrate

arachidonic acid (AA) and NSAID ibuprofen (IBU) were generated from SMILES strings using

Open Babel 2.3.2 [5]. The AutoDock Tools 1.5.6 software was used to assign atomic partial

charges [4].

Three crystal structures of COX-1 and COX-2 bound to AA (PDB ID 1DIY for COX-1, 3HS5

for COX-2), ibuprofen (1EQG for COX-1, 4PH9 for COX-2) and other inhibitors (flurbiprofen -

2AYL for COX-1, naproxen - 3NT1 for COX-2) were used to sample ligand binding to different

COX conformations. The macromolecules were treated to be rigid.

We first performed 140 docking iterations per COX structure of AA to box containing the

whole protein structure (95.21Å x 96.96Å x 121.05Å) with exhaustiveness=8, using Autodock

Vina [8]. AA:COX complexes were clustered with Affinity Propagation method implemented

in Affbio python package [6]. The centroids of the resulting clusters were used as new centers

of docking boxes (20Å x 20Å x 20Å). 140 docking iterations with exhaustiveness=256 per

docking box per ligand per protein structure were performed.

2. Results

As NSAIDs are known to target various binding sites, we performed docking of AA to search

space covering the whole COX isoform structure. Despite the fact that AA poses bound to active

sites in both COX isoforms had highest binding scores (-7.9 kcal/mol in COX-1, -8.2 kcal/mol in

COX-2), they represent only 4.8% and 6.7% of poses for COX-1 and COX-2. Thus, we performed

docking of DDLs to smaller boxes formed around AA-located sites in order to achieve better

pose sampling.

As a control study, we compared poses for AA and IBU with crystal structures by docking to

all the selected boxes. The best binding energy was observed at active sites. The root mean square
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deviation (RMSD) to the crystal structures were 0.98Å and 0.92Å in COX-1 and COX-2 for AA,

0.56Å and 1.27Å for IBU, indicating the obtained poses correspond to actual conformations.

All four DDLs were then docked to all the selected docking boxes. For COX-1, IBU-GABA-

DA demonstrated the best binding energy (-9.4 kcal/mol) at the subunit A cyclooxygenase

active site (Fig. 2 (a)). Most interactions in this binding had hydrophobic character, except

for hydrogen bonds with ASN-375 (see Fig. 2 (b)). For COX-2, IBU-GABA-DA had the best

binding energy (-10.1 kcal/mol) at the side pocket on the subunit B lumenal surface. The pose

of IBU-DA with the best binding energy (-9.3 kcal/mol) binds closely to peroxidase (POX) site

of subunit A in COX-1 (Fig. 2 (a, c)). In COX-2, IBU-DA best binding site (-9.6 kcal/mol)

was located on the subunit B membrane surface. In COX-2 both KET-DA and KET-GABA-

DA bound better (-10.6 kcal/mol and -11.6 kcal/mol, for KET-DA and KET-GABA-DA) at

the same side pocket on the subunit B lumenal surface as IBU-GABA-DA, and in COX-1 they

demonstrated the highest binding score (-10.6 kcal/mol and -10.4 kcal/mol) at the corresponding

site.
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V344

V349

Y348 A527

L531

L534
G533

L352 I523

W387 Y385

S530

F381

F209
F205
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(a) Possible binding sites on

COX-1 surface, green - POX

site of subunit A, cyan - ac-

tive site of subunit A, ma-

genta - a pocket on the sub-

unit B lumenal surface

(b) IBU-GABA-DA bound

at active site of COX-1

(c) IBU-DA bound at the

POX site of COX-1

Figure 2. Possible binding sites of DDLs on COX-1 surface

3. Discussion

Molecular docking is a powerful instrument for prediction of binding conformations for

enzyme inhibitors. Autodock Vina is one of the most widely used tools for this task. Note that

while the software provides a valuable insight into the geometry of intermolecular interactions,

its binding affinity estimates should be treated with care [8].

Among the DDLs considered in this study, only IBU-GABA-DA shows preferable binding

to one of the cyclooxygenase active sites of COX-1. The preferable pose interacts with the same

set of COX-1 aminoacids as AA in the crystal structure, yet the estimated binding energy for

IBU-GABA-DA is lower, -9.4 kcal/mol versus -7.9 kcal/mol for AA. As it does not demonstrate

preferable binding to the active site of COX-2, we may suggest that IBU-GABA-DA can serve

as a base for further design of COX-1 selective inhibitors.

The predicted IBU-DA pose interacts with Heme molecule bound to the POX site of COX-1.

Such interaction may affect the activity of COX-1, as several other NSAIDs, such as resveratrol,
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bind at the POX site [3]. The binding energies for the POX site, active site and a pocket on

the lumenal surface of COX-1 have a difference of 0.2 kcal/mol, indicating that IBU-DA may

have different modes of action. The predicted binding mode of this ligand to COX-2 may not

be functional, as the top scoring pose interacts with the membrane part of COX-2.

KET-DA and KET-GABA-DA bind to both COX isoforms at a side pocket, which does not

relate to any known functional site. Despite the fact that the binding energy of these potential

inhibitors is lower than the other DDLs’ considered in this study, we can not state whether this

binding would affect the activity of any COX isoform.

Conclusion

In this study we have described the binding mode of four dopamine-derived potential COX

inhibitors using molecular docking. Among the candidates, IBU-GABA-DA is predicted to bind

selectively at the active site of COX-1, making it a possible target for further drug development.

IBU-DA is predicted to have a set of equivalent target sites on COX-1. A putative functional site

was located with KET-DA and KET-GABA-DA docking experiments, however further research

is needed to prove its significance.
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High Performance Computing of Magnetized Galactic Disks

Sergey A. Khoperskov1, Yulia A. Venichenko2, Sergey S. Khrapov3,

Evgenii O. Vasiliev4,5
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A parallel implementation of the magneto-hydrodynamical code for global modeling of the

galactic evolution is reported. The code is parallelized by using MPI interface, and it shows

ideal scaling up to 200–300 cores on Lomonosov supercomputer with fast interconnect. In the

benchmarking of this code, we study the dynamics of a magnetized gaseous disk of a galaxy

with a bar. We run a high-resolution 3D magnetohydrodynamic simulation taking into account

the Milky Way-like gravitational potential, gas self-gravity and a network of cooling and heating

processes in the interstellar medium. By using this simulation the evolution of morphology and

enhancement of the magnetic field are explored. In agreement to hydrodynamical models, when

the bar is strong enough, the gas develops sharp shocks at the leading side of the bar. In such a

picture we found that when typically the magnetic field strength traces the location of the large-

scale shocks along the bar major axis, the magnetic field pressure weakens the shocks and reduces

the inflow of gas towards the galactic center.

Keywords: magnetohydrodynamics, galactic dynamics, galactic magnetic field, parallelization.

Introduction

In recent observations it has been established that magnetic fields in galaxies have very

complex structure [1]. Moreover, the energy enclosed in galactic magnetic fields is of the same

order as the thermal energy of the interstellar gas. Then, magnetic fields are believed to play a

significant role in global galactic evolution [2]. Magnetic fields are mainly locked in the plane of

the galactic disk, where the magnetic induction is maximum. However, they embrace the entire

disk of the galaxy and reach galactic halos due to galactic fountains and winds. In spiral galaxies

like our Galaxy, the magnetic fields are mainly frozen into the gas and follow its flows. So that

to understand the energy exchange between magnetic fields and gas in galaxies, a self-consistent

modeling of galactic evolution is required. A significant advance in numerical techniques closely

related to a rapid growth of computational resources allow to construct three-dimensional high-

resolution numerical simulations of global galactic magnetic field evolution in more realistic

conditions.

In this paper, we consider the global evolution of magnetized galactic disks using our

MPI-parallelized magneto-hydrodynamical code and study the parallel efficiency of this code

on Lomonosov supercomputer [11].

1. Methods and Model

To investigate the global gas dynamics in magnetized spiral galaxies, we have conducted a

set of the numerical simulations using our three-dimensional code based on TVD MUSCL (Total

Variation Diminishing Multi Upstream Scheme for Conservation Laws) scheme. For magnetic

field divergence cleaning, we adopt the constrained transport technique for magnetic field trans-

port through the computational domain [5]. In this approach the magnetic field strength is

1 Institute of Astronomy, Russian Academy of Sciences, Moscow, Russia
2 Heidelberg University, Heidelberg, Germany
3 Volgograd State University, Volgograd, Russia
4 Southern Federal University, Rostov-on-Don, Russia
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Figure 1. Evolution of gas surface density (top row) and magnetic field strength (bottom row)

at 5, 50, 100, 150, 200 Myr

defined at faces of a cell, while the other gas dynamical variables are calculated at the center of

a cell [9]. The code has successfully passed the standard tests for magnetic gas dynamics and

has been already utilized for several galactic-scale simulations [6, 8].

We carry out 3D hydrodynamic simulations (Cartesian geometry) of a galactic disk in the

computational box of size 20×20×4 kpc with spatial resolution of 4, 096×4, 096×256 grid zones

in the x-, y-, and z-directions, respectively, that corresponds to a physical cell size of ≈ 4 pc.

Such cell size is high enough to resolve molecular clouds at galactic scales.

To parallelize our code, the Message Passing Interface (MPI) software library is applied. The

parallelization strategy is based on two-dimensional domain decomposition into cubic blocks,

which are distributed across nodes. In our code, we use the third-order approximation of prim-

itive gas dynamical variables, then two ghost cells are exchanged between nodes for boundary

conditions. Despite the fact that our method of solving of the Poisson equation requires ineffi-

cient all-to-all communication, fast interconnect implemented on the Lomonosov cluster allows

to reach good scaling on several tens of nodes or several hundred cores. To gain better scaling

in the Riemann solver, we combine several scalar values into vector ones, that is favorable for

using Advanced Vector Extensions (AVX2) instructions without complication of the code.

The gas density radial profile is distributed exponentially with a radial scale of 6 kpc and

central density value equal to 10M� pc−2. The gaseous disk in the vertical direction is set in the

hydrostatic equilibrium with a scale height of ≈ 100 pc. The equilibrium state of the gaseous disk

is found according to the radial balance between the gas rotation versus radial gradient of gas

pressure, gravitational forces (external potential and self-gravity) and magnetic field pressure.

To mimic the turbulent structure of the magnetic field in the disk plane, its components are

established as a superposition of two modes with (pseudo-) random location in the disk and

various amplitudes [7].

2. Results

Global galactic disk evolution is driven by self-gravity, thermal instability, and rotation of the

bar. These processes inevitably lead to the fragmentation of gaseous disk and formation of small-

scale isolated clumps – giant molecular clouds, which may collide and merge with each other. A

detailed description of this picture can be found in [3, 4, 10]. Figure 1 shows the distributions of
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Figure 2. Parallel efficiency and speedup for the parallel code described in Section 1

gas density (top row) and magnetic field strength (bottom row). One can find that the magnetic

field strength closely correlates with the gas density in the bar region, r < 5 kpc, where the

field strength follows to gas adiabatically compressed when it moves through the spiral arms or

bar. In our simulations the mean magnetic-field strength is consistent with that measured in the

galactic disk, then we believe that the magnetic field inside clouds selected from the simulation

should be similar to that in real giant molecular clouds. Mean magnetic energy is close to the

equipartition with mean thermal and kinetic energies averaged over the whole galactic disk.

Figure 1 demonstrates that the global magnetic field has a toroidal configuration.

The parallel code was benchmarked on Lomonosov supercomputer [11]. The number of cores

in our runs has varied from 8 to 103 cores. We have rescaled our measurements in the way that

the efficiency is equal to unity for a run on eight CPUs. Figure 2 shows how efficiency (left panel)

and speedup (right panel) depend on the number of cores. One can find that both efficiency and

speedup are ideal sat up to 200–300 cores. The efficiency remains higher than 0.8 till up to 103

cores. It is worth noting that the measured parallel efficiency depends on the load balance of

processors, that in turn is determined by physical parameters of a simulated task.

Conclusions

In this paper we have studied the parallelization efficiency of the magneto-hydrodynamical

code for global modeling of the galactic evolution. This code is parallelized by using MPI in-

terface. A technique for more efficient use of AVX2 instructions has been applied. The code

shows almost ideal scaling up to 200–300 cores. This code has been mainly developed to study

the global evolution of disk galaxies. It can be used for modeling generation of spiral structure

and evolution of interstellar medium taking into account self-gravity, thermal processes, mag-

netic fields, chemical kinetics, and so on. Here the evolution of the galactic magnetic field in

barred galaxies is studied. In particular, we have found that the magnetic field strength closely

correlates with the gas density in the bar region.
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Regional Climate Model for the Lower Volga: Parallelization
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We have deployed the regional climate model (RCM) RegCM 4.5 for the Lower Volga and

adjacent territories with a horizontal spatial resolution of 20 km. The problems of choosing the

computational domain in the RCM RegCM version 4.5 are considered. We demonstrate the influ-

ence of this factor on the forecast of rainfall distribution in the numerical simulations. The study

of rainfall and snowfall is a more demanding test in comparison with temperature or pressure dis-

tributions. We investigate dependencies of calculation time, parallel speedup and parallelization

efficiency on the number of processes for different multi-core CPUs. Our analysis of the efficiency

of parallel implementation of RegCM for various multi-core and multi-processor systems show a

strong dependence of the simulation speed on the CPU type. The best effect is achieved when the

number of CPU threads and the number of parallel processes are equal. The parallel code speedup

is in the range of 1.8 – 11 for different CPUs.

Keywords: regional climate model, domain size, simulations, parallelization.

Introduction

The solution to the problem of improving the accuracy of the climate changes forecast for a

specific region is based on the massive use of regional climate models (RCMs) for calculations [7].

There are a number of reasons for the general interest in climate forecasts. In addition to the

increasing global warming, which is investigated on the basis of general circulation models,

we observe multidirectional trends of regional changes that are very important for engineering

infrastructure, agricultural production, recreational projects, evaluation of the state of natural

landscapes and especially river systems [2]. The study of extreme weather phenomena is at the

forefront of climate sciences. RCMs allows to take into account the region-specific orographic

features [1].

It is important to emphasize that it is not enough to increase only the spatial resolution of

RCM in order to improve the quality of simulation results [6, 7]. We must successfully configure

a large set of parameters describing heterogeneous subgrid processes for the study area. Parame-

terization of physical subprocesses, data reanalysis, radiation models, methods of meteorological

parameters downscaling, boundary conditions, and choice of the calculation domain are crucial

for the results of climate modeling [5]. In this work, our main efforts are aimed at analyzing the

efficiency of parallel computing for the regional climate model RegCM 4.5. We examined several

various multi-core processors for climate modeling.

1. Regional Climate Model for Low Volga

When performing calculations, we used the standard set of parameters recommended by the

Weather and Climate Physics Group of ICTP for the Caspian region (Fig. 1), and only the sizes

and positions of the computational domain varied. We based our study on the hydrostatic core

with the numerical grid resolution of 20 km and 18 vertical σ-levels and used the topographic

data of GTOPO with resolution of 30 seconds, the data from the global climate model of the

European Center for Medium-Range Weather Forecast’s ERA-Interim (EIN15) for setting the

1Volgograd State University, Volgogorad, Russian Federation
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a) Computational domains for

different models: A is the basic model

with the size of 2, 000 km× 2, 000 km,

the center of what is located in

Volgograd City; models B, C, D, E

were based on the about half the size

of the model A

b) model A c) model B

d) model C e) model D

Figure 1. Examples of rainfall distributions are shown on the right for different computational

domains

initial and boundary conditions in all our numerical experiments. The determination of the sea

surface temperature is based on the reanalysis data of the Indian Ocean Sea Surface Temperature

(IOSST). Our basic computational domain is located between 40◦N – 56◦N and 34◦E – 54◦E.

The size of this domain (Fig. 1a) is typical for regional climate models.

We investigated the occurrence of special meteorological events, in particular, related to the

rainfall formation. This approach seems more suitable, rather than considering the distributions

of temperature or pressure [5]. In Fig. 1, we distinguish three types of events: very weak rainfall

(I < 0.86 mm day−1, symbol “0”), weak or moderate rainfall (symbol “1”, blue color), heavy

rainfall (I > 24 mm day−1, symbol “2”, red color). Fig. 1 b – e show the spatial distributions of

rainfall for the four computational domains on May 19, 2016 and for the initial state on May 1,

2016. The choice of the computational domain significantly affects the results of rainfall model-

ing. For the same area of the computational domain, we have quantitative and even qualitative

differences in the meteorological situation when the center and the orientation of the domain

change. Solving this problem requires expanding the modeling domain, and the computational

resources is the limiting factor.

2. Parallelization Result

The climate modeling demands a large amount of calculation due to the need to vary a

large number of parameters [4, 8]. The construction of very large data cubes is the basis for

climate models. The dependence of the results in RCM on the computational domain requires

the maximum possible sizes of the simulated area while maintaining the minimum scale of the

numerical cell of about 10 km. And the ideal solution would be to use general circulation models

with a resolution of up to 10 km for non-hydrostatic equilibrium. Let us consider the time of
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calculating T for modeling the climate system for 1 month with integration step of ∆t = 150 sec

to evaluate the parallelization efficiency in OpenMP. The time T = T (cal) + T (rw) is determined

by the time of pure integration of the hydrothermodynamics equations T (cal) and the time T (rw),

which is necessary for reading and writing various data. The standard situation is to record the

state of the climate system every 6 hours. We used the MPI2 library to run in parallel mode for

multi-core systems.

Figure 2 shows the dependencies of T on the number of parallel processes n on different

CPUs. Each processor has ncor cores, for example, ncor = 2 for Intel Core i3–7100, ncor = 16 for

Intel Xeon E5–2650V2 2CPU, ncor = 4 for Xeon E–5540, ncor = 12 for Xeon E–2650V4. Intel

Hyper-threading technology doubles the number of logical processes, and we have nth = 2ncor

threads for a particular CPU type. The software using the MPI2 library allows you to specify

an arbitrary number of processes n (Fig. 2), including n� nth. The minimum time T is reached

at n = nth for all the CPUs under investigation, and a very wide extremum is a characteristic

feature. The transition from n = 1 to n = 2 gives the largest decrease of T . The fast growth

of T with increasing n is observed in region n > nth, so that T ((2 ÷ 4)nth) ∼ T (n = 1). These

peculiar properties are due to the significant contribution of T (rw) to T .

a) Dependencies of calculation time T on the

number of processes n for different multi-core

CPUs

b) Parallel speedup S = T (1)/T (n) (left axis,

curves 1–4) and parallelization efficiency

E = S/n (right axis, curves 5–8) for the same

computing systems
Figure 2. Parallelization result

Conclusions

Modeling of climatic changes for the territory of the Lower Volga region was carried out

using the regional climate model RegCM version 4.5. We demonstrated the influence of the

computational domain choice on the forecast of rainfall distribution in the numerical model.

The study of rainfall and snowfall is a more demanding test in comparison with temperature or

pressure distributions and requires a computational domain with a size of at least 3,000 km in

the conditions of the Lower Volga.

The maximum speedup of parallel computing for OpenMP strongly depends on the CPU

Type and varies from 1.8 to 11 for different CPUs. Mass transfer of regional climate models to

GPUs is a priority task in accordance with the general trend of development of computational

fluid dynamics [3].
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All-atom molecular dynamics simulation represents a computationally challenging, but pow-

erful approach for studying conformational changes and interactions of biomolecules and their

assemblies of different kinds. Usually, the numbers of simulated particles in modern molecular

dynamics studies range from thousands to tens of millions, while the simulated timescales span

from nanoseconds to microseconds. For cost and computation efficiency, it is important to de-

termine the optimal computer hardware for simulations of biomolecular systems of different sizes

and timescales. Here we compare performance and scalability of 17 commercially available com-

putational architectures, using molecular dynamics simulations of water and two different protein

systems in GROMACS-5 package as computing benchmarks. We report typical single-node perfor-

mance of various combinations of modern CPUs and GPUs, as well as multiple-node performance

of “Lomonosov-2” supercomputer in molecular dynamics simulations of different protein systems

in nanoseconds per day. These data can be used as practical guidelines for selection of optimal

computer hardware for various molecular dynamics simulation tasks.

Keywords: molecular dynamics, tubulin, microtubule, plastocyanin-cytochrome f.

Introduction

Molecular dynamics (MD) is a powerful method to study conformational dynamics and

interactions of biomolecules, including protein assemblies. Because of a big number of parti-

cles, which make up protein systems, and multiple computational steps, usually required to

achieve meaningful results, MD simulations of proteins represent a major computational chal-

lenge. Therefore, indentification and use of optimal hardware for high efficiency calculations is

important. In this work we systematically compare multiple currently available computer ar-

chitechtures in their MD simulation performance, using two types of biomolecular systems as

computing benchmarks: (i) water boxes of different sizes and (ii) two protein systems. The

selected protein systems include different assemblies of tubulins, the building blocks of micro-

tubules [5], and a photosynthetic electron-transfer complex of plastocyanin and cytochrome f

proteins [4].

1. Methods

All-atom explicit solvent MD was used in all tests. Calculations were performed with the

use of software package GROMACS-5 [3], which allows parallel computing on hybrid architec-

ture with the CHARMM27 force field. All benchmarks were run for 15 minutes. TIP3P water

model was employed. The protein structures were obtained from the Protein Data Bank. We
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used higher plant plastocyanin-cytochrome f complex (PDB id 2PCF) and GMPCPP-bound

tubulin structure (PDB id 3J6E). The size of the virtual cell was chosen in such a way that the

distance from the protein surface to the nearest box boundary was no less than two nanometers.

The particle mesh Ewald method was used for the long-range electrostatics. All-bond PLINKS

constraints and mass rescaling were applied to the tested protein systems. Coulomb and Lennard-

Jones cut-offs were both set to 1.25 nm. Specifications of MD systems used for benchmarking

are summarized in (Tab. 1).

Table 1. Molecular dynamics systems used for benchmarking

MD

systems

MD

system

name

Number

of

atoms

Box

type

System

size

(nm)

Time

step

(fs)

Water box(WB)

WB-10 10,206 cube 4.7x 4.7x 4.7 1

WB-80 80,232 cube 9.3x 9.3x 9.3 1

WB-120 121,527 cube 10.7x10.7x10.7 1

WB-160 159,780 cube 11.7x11.7x11.7 1

WB-200 203,415 cube 12.7x12.7x12.7 1

Plastocyanin-

cytochrome f
Pc-cyt 93,085 dodecahedron 11x11x11 5

Tubulin tetramer Tub-4 315,718 cube 9.9x13.9x23.3 4

Tubulin 18-mer Tub-18 1,119,458 cube 22.8x15.0x33.3 4

2. Results and Discussion

To begin with, we used our first benchmark, the water box, in order to examine performance

of MD simulations as a function of the number of particles in the molecular system. We conducted

MD simulations of water boxes of various sizes using 17 different single-node computer systems

with various CPU/GPU architectures. Data summarized in (Tab. 2) suggest that an increase

of MD system size leads to an unproportional decrease of computer performance. However, the

relative extent of the decrease is almost equal for different computer systems. Not suprisingly,

2×Intel Xeon E5-2695 with four Tesla K80 GPUs shows the highest performance for all the tested

MD systems. However, Intel Core i7-5930K with GTX 980 has the most optimal performance-

price combination out of all hardware configurations we tested, consistent with conclusions of a

previous study [2].

To further address the question of scalability, we used our second type of computing bench-

mark and established the dependence of the supercomputer “Lomonosov-2” performance in MD

simulations on the number of computer nodes used. As expected, we could clearly see that for all

three tested protein systems the performance grew as a function of the number of supercomputer

nodes (Tab. 3). The relative rate of that growth did not significantly depend on the type and

size of the biological system and slowed down gradually, roughly following Amdahl’s law.
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Table 2. Single-node performance (ns/day) depending on various combinations of CPUs

and GPUs tested by MD GROMACS simulations of water boxes of different sizes. Time step

is 1 fs

Processor GPU
System name

WB-

10

WB-

80

WB-

120

WB-

160

WB-

200

Intel Core i7-3820
GTX 680 57.8 8.1 5.3 4.1 3.2

GTX 780 72.9 10.5 6.6 5.1 3.9

Intel Core i5-3570K
GTX 780 64.9 9.7 6.2 4.5 3.5

GTX 980 82.5 10.4 7.1 4.9 3.1

Intel Core i7-4790K
GTX 780 85.9 12.3 7.3 5.7 4.3

GTX 980 106.4 13.4 8.4 6.0 4.7

2×AMD Opteron 6168 GTX 980 61.1 9.9 6.7 5.1 4.0

AMD Phenom II X6

1100T
GTX 780 56.2 7.6 4.8 3.7 2.8

Intel Core i7-5930K

GTX 960 80.5 11.2 7.5 5.7 4.5

GTX 970 103.1 15.0 10.2 7.7 6.1

GTX 980 116.3 17.5 11.4 8.8 6.8

2×Intel Xeon E5-2695

1×Tesla K80 88.4 13.9 9.4 7.2 5.6

2×Tesla K80 140.4 24.3 16.6 12.6 9.9

4×Tesla K80 162.3 36.2 24.4 19.7 15.0

no GPU 88.9 13.3 8.7 6.7 5.1

Intel Xeon 5670

(“Lomonosov-1”)
Tesla X2070 33.4 4.7 3.2 2.4 1.9

2×Intel Xeon E5-2697

(“Lomonosov-2”)
Tesla K40 87.5 13.5 9.0 6.9 5.5

Table 3. Performance of “Lomonosov-2” supercomputer (ns/day), dependending on the number

of computing nodes for MD simulations of different protein systems. System size in atoms is given

in brackets. Time step is 4 fs

1 2 3 4 5 6 7 8

Pc-cyt

(93085)
53.5 93.7 128.6 160.7 186.3 188.1 209.8 256.4

Tub-4

(315718)
16.1 27.2 34.1 43 48.7 51.3 53.4 61.6

Tub-18

(1119458)
4.5 5.4 8.5 12.1 16.3 18.4 21.4 22.5
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Conclusion

Our comparative performance analysis suggests that for relatively small biomolecular sys-

tems, below 100,000 atoms, such as the complex of plastocyanin and cytochrome f proteins, it

is quite practical to use “personal supercomputers”, i.e. single node workstations with a video

accelerator. Such a computer can provide 100 ns/day performance for molecular dynamics cal-

culation of a small biomolecular system with the size of about ten thousand atoms. For larger

biomolecular systems, like a fragment of microtubule or a part of biological membrane with

protein complexes, “personal supercomputers” are not currently fast enough, with typical per-

formance of only several ns/day. Therefore, for large systems usage of modern supercomputers,

like “Lomonosov-1” or “Lomonosov-2” with hybrid architecture is imperative [1]. By employing

dozens of supercomputer nodes, such hardware systems are capable of accelerating calculations

by an order of magnitude, providing up to 22 ns/day performance of GROMACS-5 MD simula-

tion for a system sized more than one million particles.
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Algorithm of the Parallel Sweep Method for Numerical Solution

of the Gross–Pitaevskii Equation with Highest Nonlinearities
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In this paper, we for the first time introduce a numerical scheme the solution of a nonlinear

equation of the Gross–Pitaevskii type (GP) or the nonlinear Schrodinger equation (NLSE) with

highest nonlinearities, which provides implementation of a complete set of motion integrals. This

scheme was parallelly implemented on a non-uniform grid. Propagation of a ring laser beam

with non-zero angular momentum in the filamentation mode is studied using the implemented

numerical scheme. It is shown, that filaments under exposure to centrifugal forces escape to the

periphery. Based on a number of numerical experiments, we have found the universal property of

motion integrals in the non-conservative case for a given class of equations. Research of dynamics

of angular momentum for a dissipative case are also presented. We found, that angular moment,

particularly normed by initial energy during filamentation process, is quasi-constant.

Keywords: nonlinear Schrodinger equation, fast parallel algorithm, fully conservative numeri-

cal scheme, motion integral.

Introduction

A nonlinear parabolic partial differential equation (or a system of such equations) occurs in

many applications [3]. In such equations, their rigorous analytical solutions are often unknown.

Generally, such equations are solved by numerical methods. Correctness of application of these

numerical methods has to be controled, possibly, by comparing the solutions obtained with the

known rigorous properties of these equations. Apparently, for the whole branch of these studies,

such stage has been completed [2]. Indeed, inspite of the fact that for the GP (NLSE) equation

with highest nonlinearities such properties are known, application checks of these properties

were not carried out anywhere, except for [2]. One of special cases of this class of equations is

the nonlinear Schrodinger equation with highest nonlinearities. In [2], a wide range of numerical

schemes used for solution of the GP (NLSE) equation with highest nonlinearities was constructed

by the example of a case with radial symmetry, and it was determined that the simplest and

quite effective numerical method is the method of splitting by physical factors method. At the

same time, discrete difference methods for solving the NLS equation are optimal for tracking

and suppressing numerical imbalances, and the adaptive step along the evolutionary coordinate

should be selected according to the conditions of preserving the Hamilton function on the nu-

merical solution of the GP (NLSE) equation. Usually this step is significantly less compared

to those offered in other works. In case of implementing this requirement on a grid in 2D+1

dimensions, development of methods for numerical solution on the non-uniform grids with the

used parallelization methods becomes urgent. In this paper, we solved this problem.

1. The GP (NLSE) Equation and its Exact Properties

In this paper, we numerically explore the behavior of solutions of the complex Gross –

Pitaevskii (GP) (or non-linear Schrodinger equation (NLSE)) equation with higher nonlineari-
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ties [1]:

∂tψ + i(ε(ψ)− ∂µ∂µ − iα(ψ)/2)ψ = 0, (1)

where xµ are transverse coordinates (in this article, the situation is considered as ~x ∈ R2);

ψ(x) is complex-valued function, which, depending on the context, can have a different physical

meaning; ε(φ) is nonlinear function in the simplest case of a cubic in the field, but we will con-

sider a more complicated situation with higher nonlinearities; α(ψ) is the function of nonlinear

absorption. We will discuss three conservation laws that correspond to three global symmetries:

the outer conservation is a shift in the evolutionary coordinate t → t + a (H-energy), and the

inner law is the phase shift of the complex field ψ → ψeia (the E-number of a particle), and the

symmetry with respect to turn transformation (yµ = Aνµxν Where A ∈ so2) (M-angular momen-

tum). Due to the fact that we consider a model with dissipation of the ratio to be generalizing,

the known conservation laws will take the following form:

∂H

∂t
= −

∫
(iα(ψΦ∗

ψ − ψ∗Φψ))d~x, (2)

where H ≡
∫

(∂µψ
∗∂µ)ψ + Fε)d~x is the Hamilton function; ε ≡ δFε(φ)/δφ is the power in

terms of mechanics or the nonlinear additive to the refractive index of the terms of optics;

Φψ = δH/(δψ)

∂

∂t

∫
ψψ∗d~x = −

∫
αψψ∗d~x, (3)

∂

∂t

∫
md~x = −

∫
αmd~x, (4)

where m ≡ ~P × ~x is the density of angular momentum; Pµ = (φ∂µψ
∗ − ψ∗∂µψ)/2i is the

Poynting vector. Implementation of the given exact relations in the numerical solution, even in

the conservative case, imposes very strict conditions on the numerical grid, which makes the use

of parallel algorithms to be relevant.

2. The Numerical Scheme

Taking into account the initial conditions, we construct an inhomogeneous grid which is

origin-symmetric with the distance between the nodes increasing according to the law of geo-

metric progression xI . The same way, we will implement splitting of the orthogonal coordinate

yI . For simplicity, assume that each processor has the same number of points. The following re-

lation is binding global index J to local index j, which is localized on the processor with number

q:

J = (q − 1) ∗ml + j. (5)

We will enable numerical implementation of a step of diffraction on a three-point “cross” scheme

with the second order of accuracy of approximation by the Laplace operator on the non-uniform

grid. In this case, we need to solve a system of equations of the form:

aJψ
l+1
J−1 − cJψl+1

J bJψ
l+1
J+1 = −f lJ . (6)

We generalize the technique of fast parallelizing [4] to a complex case.
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STATEMENT: Solution of a complex-valued equation can be found by the following re-

lation:

ψJ = gq−1uj + gqνj + wj . (7)

Here ajuj−1−cjuj+bjuj+1 = 0, where conditions are met at the borders u(q−1)ml
= (1, 0);uqml

=

(0, 0), ajνj−1 − cjνj + bjνj+1 = 0 and ν(q−1)ml
= (0, 0); νqml

= (1, 0). And finally, we give the

equations for the internal field ajwj−1 − cjwj + bjwj+1 = −fj . Where conditions are met at the

borders: w(q−1)ml
= (0, 0);wq(ml) = (0, 0). Here, crosslinking coefficients gq can be found by the

following equation:

Aqgq−1 − Cqgq +Bqgq+1 = −Fq, (8)

−C0g0 +B0g1 = −F0, (9)

AMgM−1 − CMgM = −FM , (10)

where C0 = c0 − b0u1, B0 = b0 ∗ ν1,F0 = f0 − b0w1, Aq = aqml
uq(ml−1), Cq = −aqml

νq∗(ml−1) +

cqml
− bqml

uj(ml+1), Bq = bqml
uq(ml−1), Fq = fqml

+ aqml
wq(ml−1) − bqml

wq(ml+1), q = 1..M − 1,

AM = aMml
uM(ml−1), CM = −aMml

νM(ml−1) − bMml
uj(ml+1), FM = fMml

+ aMml
wM(ml−1).

The proof of these results can be provided by direct substitution.

2.1. Results of Numerical Calculations

Results of numerical calculation for a beam with initial condition of the form are given below

(in a radial coordinate system):

ψ0(r, ϕ) = (exp(−0.5(r2))− exp(−2.5(r2))) ∗ exp(−iϕmt) ∗ fnoise, (11)

where mt is the topological charge (in our case, mt = 2 ); n2 = 35, K = 8. The remaining non-

linearity parameters were chosen in the same way as in [5]. Where fnoise is the noise component,

which violates the central symmetry.

z=0 z=0.7 z=1 z=1.6

Figure 1. Distribution of the intensity field at different points of the propagation distance

Examples of distributions |ψ|2 for different distances are shown in Fig.1. This example

demonstrates that compression of beam in a result of the absorption effects has stopped, and,

eventually, the beam’s divergence is completely realized as it takes place and the similar radiative

case [5]. A series of numerical experiments were made. The obtained results allow extending the

findings in [5] on the general case. Namely, as we can see from numerical calculations, value ∆E

is proportional to ∆H̄ with high degree of accurasy, i.e. the following relation is true:

H(z) = H(0) + γ∆E, (12)
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in addition, it was determined that

M̄ ≡
∫
md~x/E ≈ const. (13)

Conclusion

A parallel scheme for numerical solution of the NSE on an irregular grid using the accurate

method for the system of solving of linear equations is proposed. This case is a tridiagonal

system of linear algebraic equations which arises due to a discrete difference approximation of

the GP (NLSE). Generalization of the Yanenko method to the complex case is proposed. By the

example of numerical solution of the GP (NLSE) with topological charge, it is found that in case

of absorption, the linear combination of the number of particles and energy is a constant value;

the normalized number of particles of angular momentum is conserved with high accuracy.
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