
Supercomputing
Frontiers

and Innovations
2018, Vol. 5, No. 1

Scope

• Enabling technologies for high performance computing

• Future generation supercomputer architectures

• Extreme-scale concepts beyond conventional practices including exascale

• Parallel programming models, interfaces, languages, libraries, and tools

• Supercomputer applications and algorithms

• Distributed operating systems, kernels, supervisors, and virtualization for highly scalable

computing

• Scalable runtime systems software

• Methods and means of supercomputer system management, administration, and monitoring

• Mass storage systems, protocols, and allocation

• Energy and power minimization for very large deployed computers

• Resilience, reliability, and fault tolerance for future generation highly parallel computing

systems

• Parallel performance and correctness debugging

• Scientific visualization for massive data and computing both external and in situ

• Education in high performance computing and computational science

Editorial Board

Editors-in-Chief

• Jack Dongarra, University of Tennessee, Knoxville, USA

• Vladimir Voevodin, Moscow State University, Russia

Editorial Director

• Leonid Sokolinsky, South Ural State University, Chelyabinsk, Russia

Associate Editors

• Pete Beckman, Argonne National Laboratory, USA
• Arndt Bode, Leibniz Supercomputing Centre, Germany
• Boris Chetverushkin, Keldysh Institute of Applied Mathematics, RAS, Russia
• Alok Choudhary, Northwestern University, Evanston, USA

• Alexei Khokhlov, Moscow State University, Russia
• Thomas Lippert, Jülich Supercomputing Center, Germany
• Satoshi Matsuoka, Tokyo Institute of Technology, Japan
• Mark Parsons, EPCC, United Kingdom
• Thomas Sterling, CREST, Indiana University, USA
• Mateo Valero, Barcelona Supercomputing Center, Spain

Subject Area Editors

• Artur Andrzejak, Heidelberg University, Germany
• Rosa M. Badia, Barcelona Supercomputing Center, Spain
• Franck Cappello, Argonne National Laboratory, USA
• Barbara Chapman, University of Houston, USA
• Yuefan Deng, Stony Brook University, USA
• Ian Foster, Argonne National Laboratory and University of Chicago, USA
• Geoffrey Fox, Indiana University, USA
• Victor Gergel, University of Nizhni Novgorod, Russia
• William Gropp, University of Illinois at Urbana-Champaign, USA
• Erik Hagersten, Uppsala University, Sweden
• Michael Heroux, Sandia National Laboratories, USA
• Torsten Hoefler, Swiss Federal Institute of Technology, Switzerland
• Yutaka Ishikawa, AICS RIKEN, Japan
• David Keyes, King Abdullah University of Science and Technology, Saudi Arabia
• William Kramer, University of Illinois at Urbana-Champaign, USA
• Jesus Labarta, Barcelona Supercomputing Center, Spain
• Alexey Lastovetsky, University College Dublin, Ireland
• Yutong Lu, National University of Defense Technology, China
• Bob Lucas, University of Southern California, USA
• Thomas Ludwig, German Climate Computing Center, Germany
• Daniel Mallmann, Jülich Supercomputing Centre, Germany
• Bernd Mohr, Jülich Supercomputing Centre, Germany
• Onur Mutlu, Carnegie Mellon University, USA
• Wolfgang Nagel, TU Dresden ZIH, Germany
• Alexander Nemukhin, Moscow State University, Russia
• Edward Seidel, National Center for Supercomputing Applications, USA
• John Shalf, Lawrence Berkeley National Laboratory, USA
• Rick Stevens, Argonne National Laboratory, USA
• Vladimir Sulimov, Moscow State University, Russia
• William Tang, Princeton University, USA
• Michela Taufer, University of Delaware, USA
• Andrei Tchernykh, CICESE Research Center, Mexico
• Alexander Tikhonravov, Moscow State University, Russia
• Eugene Tyrtyshnikov, Institute of Numerical Mathematics, RAS, Russia
• Roman Wyrzykowski, Czestochowa University of Technology, Poland
• Mikhail Yakobovskiy, Keldysh Institute of Applied Mathematics, RAS, Russia

Technical Editors

• Yana Kraeva, South Ural State University, Chelyabinsk, Russia

• Mikhail Zymbler, South Ural State University, Chelyabinsk, Russia

• Dmitry Nikitenko, Moscow State University, Moscow, Russia

Contents

AlgoWiki Project as an Extension of the Top500 Methodology
A. Antonov, J. Dongarra, V. Voevodin . 4

Record-and-Replay Techniques for HPC Systems: A Survey
D. Chapp, K. Sato, D.H. Ahn, M. Taufer . 11

Survey of Storage Systems for High-Performance Computing
J. Lüttgau, M. Kuhn, K. Duwe, Y. Alforov, E. Betke, J. Kunkel, T. Ludwig . 31

The High-Q Club: Experience with Extreme-scaling Application Codes
D. Brömmel, W. Frings, B.J.N. Wylie, B. Mohr, P. Gibbon, T. Lippert . 59

Exploiting the Performance Benefits of Storage Class Memory for HPC and HPDA
Workflows
M. Weiland, A. Jackson, N. Johnson, M. Parsons . 79

A General Guide to Applying Machine Learning to Computer Architecture
D. Nemirovsky, T. Arkose, N. Markovic, M. Nemirovsky, O. Unsal, A. Cristal, M. Valero 95

This issue is distributed under the terms of the Creative Commons Attribution-
Non Commercial 3.0 License which permits non-commercial use, reproduction
and distribution of the work without further permission provided the original
work is properly cited.

AlgoWiki Project as an Extension of the Top500 Methodology

Alexander Antonov1, Jack Dongarra1,2, Vladimir Voevodin1

© The Authors 2018. This paper is published with open access at SuperFri.org

The AlgoWiki project is dedicated to describing the parallel structure and key features of var-

ious algorithms. The descriptions are intended to provide complete information about algorithms’

properties, which are needed to adequately assess their implementation efficiency for any comput-

ing platform. This work sets out the key areas for further development of the project which were

recently developed based on working with the AlgoWiki encyclopedia. We are suggesting an ap-

proach to extend the Top500 methodology, which is commonly used to compare various computing

platforms.

Keywords: AlgoWiki, parallel structure, algorithm’s properties, Top500 methodology, problems,

methods, algorithms, implementations, computing platforms.

Introduction

The computing world is constantly changing, and there are numerous reasons for this. New

problems appear regularly that require increasingly powerful computing platforms. New ideas

appear that are reflected in the computer architecture and help to improve performance or have

a positive impact on energy consumption and cost. Technological progress results in developing

and utilizing new computing environments which, unlike classical computers, can be highly

heterogeneous and distributed. Ultimately these changes result in the need to carefully review

algorithm structure and properties in order to answer the main question: can a problem be

solved within a certain predefined level of efficiency (e.g., within a reasonable time), and if

so, how can this be done? If the answer is obviously positive, all other questions are irrelevant;

otherwise a solution needs to be found. The main question is: does the algorithm have properties

that match well with specific features of the computing system’s infrastructure? Is it possible to

find the minimum spanning tree of a graph with 228 nodes on a vector computer? Is it possible

to effectively solve large sparse linear equation systems in distributed computing environments?

These questions cannot be answered without understanding the algorithm’s properties.

Today, descriptions of various algorithms can be found in numerous books, systems, online

resources and other sources [1–6]. Some focus on a mathematical formulation, others show

a possible software implementation or study serial complexity. However, the main feature of

modern computing platforms is a high degree of parallelism and special memory structure.

This is what should be considered first of all if we wish to talk about efficiently implementing

algorithms on computing systems at any level, from mobile devices to supercomputers.

1. About the AlgoWiki Project

The AlgoWiki project [7–9] is dedicated to describing the structure and key features of var-

ious algorithms. All descriptions follow the same structure (http://algowiki-project.org/

en/Description_of_algorithm_properties_and_structure), which allows for easy compari-

son of various algorithms. The descriptions are intended to provide complete information about

algorithm’s properties, which is needed to ensure their efficient implementation on any comput-

ing platform. Each algorithm description in AlgoWiki is divided into two parts. The first part

1 Lomonosov Moscow State University, Moscow, Russian Federation
2 University of Tennessee, Knoxville, USA

DOI: 10.14529/jsfi180101

4 Supercomputing Frontiers and Innovations

of the description contains information that does not depend on the software implementation

or computing platforms used. This is the theoretical potential of the algorithm determined by

mathematics which we can rely on for implementations on any computing platform. The second

part of the algorithm’s description is oriented towards practical application, as it considers the

interconnection between the algorithm’s properties, specific parallel programming technologies

and various classes of computing systems.

The project has been implemented using Wiki technologies, similar to the Wikipedia project:

existing algorithm descriptions are available to everyone, and at the same time all experts can

contribute their knowledge to AlgoWiki by adding descriptions of new algorithms or by making

the information more exact for the existing ones.

2. The AlgoWiki Project and Top500 Methodology

The project currently presents a multitude of algorithms from various areas: linear algebra,

graph algorithms, sorting algorithms, quantum system modeling algorithms, etc. The project is

continually growing, covering more and more new areas including descriptions of new algorithms.

Whenever a scientist works on an algorithm, he or she creates a new article in AlgoWiki, which

contains a description of the algorithm’s theoretical potential and particular features regarding

its implementation on various computers.

In this regard, AlgoWiki offers a good basis for the natural extension of the Top500 method-

ology used to compare computing systems today. Linpack [10] was historically the first widely

adopted approach which led to the creation of the list of the most powerful supercomput-

ers (http://top500.org/). However, Linpack only reflects one aspect of computing platforms.

That is why other tests were suggested later which became the basis for the Graph500 [11] and

HPCG [12] benchmarks. All three ratings use the same technique: a basic algorithm is chosen

and its software implementation is written and executed on each computing system in ques-

tion, which results in a number that is used to judge the computer’s properties. The number

helps easily compare different computers to one another, including a compilation of the ratings

described above.

The AlgoWiki project can be used to extend on this methodology. In fact, AlgoWiki offers

a multitude of descriptions for very diverse algorithms, for which we have execution data on

multiple computing platforms. The underlying algorithms for Linpack, Graph500 and HPCG,

among others, are represented in AlgoWiki and correspond to three points out of the total

multitude of algorithms in the project. Giving the computing community an opportunity to

save the execution results for any algorithm, we can substantially extend the possibilities for

comparing computing platforms. Using the AlgoWiki potential, we can move from three points

(corresponding to Linpack, Graph500 and HPCG) to an analysis based on dozens, if not hun-

dreds of various algorithms. We do not have to select every AlgoWiki algorithm for a detailed

analysis and comparison; instead we can focus on the most interesting ones. If the corresponding

algorithm is missing from AlgoWiki, it can be added, establishing the first step for formulating

the respective new rating.

This extension of the Top500 methodology within AlgoWiki encyclopedia has several im-

portant implications. We can not only compare the results of various algorithms on different

computers, but also analyze and understand the reasons behind these results: detailed descrip-

tions of all algorithms are always at hand in AlgoWiki. It is also important that AlgoWiki can be

used to store more than just the results obtained for record-setting computer configurations and

A. Antonov, J. Dongarra, V. Voevodin

2018, Vol. 5, No. 1 5

very large sets of input data: lesser values can be of substantial practical interest and are also

available for analysis. In this respect, ratings like the Top500 following any AlgoWiki algorithm

are just the tip of the iceberg representing the entire multitude of data stored in AlgoWiki for

each specific algorithm.

3. Problems, Methods, Algorithms, Implementations,

Computing Platforms

In practice, the possibilities enabled by AlgoWiki for analyzing the Algorithm–Computer

combinations are much wider. The classification of algorithms in AlgoWiki is structured

to support the clear identification of three levels: problem, method, algorithm (http://

algowiki-project.org/en/Algorithm_classification). These three levels are marked with

special icons in the classification, but in reality AlgoWiki has five levels:

Problem → Method → Algorithm → Implementation → Computing platform.

When data on an algorithm’s execution on a particular computing system are submitted to

AlgoWiki, information about the entire chain is stored, from Problem to Computing Platform.

This gives extra freedom to perform comparisons and analyses. In particular, a researcher armed

with the data structure in this manner can query the AlgoWiki database to make the following

comparisons:

• computer performance achieved using different methods to solve the same problem;

• computer performance achieved using different methods to solve the same problem with

fixed data size;

• the time to solve a problem of fixed size using different methods to address the problem;

• computer performance achieved using different implementations of the same method to

address the same problem;

• the time to solve a problem of fixed size using different methods to address it in clusters

containing, for example, up to 128 nodes;

• methods that demonstrate the maximum/minimum/predefined efficiency for a given class

of computers; and many others.

In addition to analysis based on parameters like time, performance and efficiency, it is also

possible to conduct a different kind of qualitative analysis within AlgoWiki, in particular to find:

• algorithms used to solve a given problem;

• problems a given algorithm is used to solve;

• algorithms that are used to solve a given problem with serial complexity below O(n2);

• all method-computer pairs used to solve a given problem, where the method used has serial

complexity below O(n2) and parallel complexity below O(n), while the implementation

efficiency on a computer exceeds 40%.

For any elements of the chain indicated above: Problem, Method, Algorithm, Implementa-

tion and Computing Platform, the relevant values can be set as constants, while the others can

be variable; this allows new ratings to be built or to find combinations that best suit required

conditions. For example, the data in Tab. 1 show the performance of various computers (in

MTEPS) when solving the “Strongly Connected Components Search” problem for two graph

sizes with 218 and 220 nodes. Each line in the AlgoWiki table additionally contains a detailed

description of the computer environment from which this data were obtained: a link to the

implementation (executable file or source code), the number of compute nodes and cores, the

AlgoWiki Project as an Extension of the Top500 Methodology

6 Supercomputing Frontiers and Innovations

Table 1. Strongly Connected Components: performance of

various implementations on different computers for two

types of graphs (RMAT and SSCA–2) and number of

nodes equals to 218 and 220

Implementation Computing Platform MTEPS GraphType GraphSize

Ligra Lomonosov-2 (x86) 830.0 RMAT 220

RCC for GPU Lomonosov-2 (NVIDIA P100) 634.0 RMAT 220

GAP Lomonosov-2 (x86) 547.0 RMAT 220

RCC for PU Lomonosov-2 (x86) 418.0 RMAT 220

PBGL MPI IBM BlueGene/P 232.9 RMAT 220

RCC for GPU Lomonosov-2 (NVIDIA K40) 195.0 RMAT 218

RCC for PU IBM Regatta 53.6 SSCA–2 218

PBGL MPI IBM BlueGene/P 45.7 RMAT 220

RCC for PU Lomonosov (x86) 41.0 RMAT 220

RCC for PU IBM Regatta 36.9 RMAT 218

RCC for PU Lomonosov (x86) 32.5 RMAT 220

PBGL MPI IBM BlueGene/P 13.1 SSCA–2 218

RCC for PU Lomonosov (x86) 10.1 SSCA–2 220

RCC for PU Lomonosov (x86) 8.3 SSCA–2 220

PBGL MPI Lomonosov NVIDIA 2090) 2.3 SSCA–2 218

PBGL MPI IBM BlueGene/P 0.2 RMAT 220

PBGL MPI IBM BlueGene/P 0.1 SSCA–2 218

A. Antonov, J. Dongarra, V. Voevodin

2018, Vol. 5, No. 1 7

Table 2. Source Shortest Paths: performance of different

implementations of different algorithms on various

computers for graphs with number of nodes equals to 220

and 221

Method Implementation Computing Platform MTEPS GraphSize

Bellman–Ford RCC for GPU Lomonosov 1309.0 220

Bellman–Ford Ligra Lomonosov–2 1035.0 221

Delta–Stepping PBGL MPI Cluster “Angara” 809.5 221

Delta–Stepping GAP Lomonosov–2 616.0 221

Delta–Stepping GAP Lomonosov–2 512.0 220

Bellman–Ford Ligra Lomonosov–2 511.0 220

Bellman–Ford RCC for GPU Lomonosov 452.9 220

Bellman–Ford RCC for CPU Lomonosov 435.0 221

Bellman–Ford RCC for CPU Lomonosov–2 426.0 221

Bellman–Ford RCC for CPU Lomonosov–2 418.0 220

Bellman–Ford Graph500 MPI Lomonosov 350.0 220

Bellman–Ford RCC for CPU Lomonosov 204.1 220

Bellman–Ford RCC for CPU Lomonosov 183.5 220

Delta–Stepping PBGL MPI Lomonosov 174.0 221

Dijkstra’s PBGL MPI Cluster “Angara” 150.0 220

Delta–Stepping PBGL MPI Lomonosov 124.1 221

Bellman–Ford Graph500 MPI Lomonosov 120.0 220

Bellman–Ford Graph500 MPI Lomonosov 18.0 220

Bellman–Ford Graph500 MPI Lomonosov 11.8 221

Dijkstra’s PBGL MPI IBM BlueGene/P 8.9 220

Dijkstra’s PBGL MPI Lomonosov 5.3 221

Delta–Stepping PBGL MPI IBM BlueGene/P 3.8 220

Dijkstra’s PBGL MPI Cluster “Angara” 2.5 221

Delta–Stepping PBGL MPI IBM BlueGene/P 1.3 220

Dijkstra’s PBGL MPI IBM BlueGene/P 0.6 220

compiler used, compiler options, settings for generating input graphs and other relevant pa-

rameters. Details on the implementations presented in the table can be found here: Ligra [13],

GAP [14], PBGL [15], “RCC for CPU/GPU” correspond to an AlgoWiki user’s own implemen-

tations for CPU/GPU. Table 2 compares different implementations of different algorithms for

solving the “Single Source Shortest Paths” problem on different platforms, for graphs with 220

and 221 nodes.

It should be noted that in these examples, specific performance values are obtained by

AlgoWiki users and are largely determined by their experience and diligence. These are not

necessarily the top performance figures: they show results obtained by people in practice. There

is only one requirement: when submitting data in the AlgoWiki database, users must provide

AlgoWiki Project as an Extension of the Top500 Methodology

8 Supercomputing Frontiers and Innovations

all of the information that would be needed to reproduce and verify the results, and possibly

improve upon them in the future.

Conclusion

The first stage of the AlgoWiki project was geared toward achieving the following two goals:

developing a technology for describing the parallel structure of algorithms, and widening the

project database with descriptions of actual algorithms. These goals have been accomplished,

which enables further project development in a number of new areas. In particular, one of

those areas is to extend the Top500 methodology used to compare high-performance computing

systems. Implementing this will require expanding the project’s functionality, giving AlgoWiki

users a chance to save data on algorithm execution parameters in the project database. As a

result, the project will not only provide detailed algorithm descriptions, but also enable the

review and comparison of algorithm execution results on any computing platform.

Acknowledgements

The results were obtained in Lomonosov Moscow State University with the financial support

of the Russian Science Foundation (Agreement № 14–11–00190). The research is carried out

using the equipment of the shared research facilities of HPC computing resources at Lomonosov

Moscow State University.

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-

mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work

without further permission provided the original work is properly cited.

References

1. Press, W., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C. Cam-

bridge University Press, second edition (1992)

2. Barrett, R., Berry, M., Chan, T.F., Demmel, J., Donato, J., Dongarra, J., Eijkhout, V., Pozo,

R., Romine, C., Van der Vorst, H.: Templates for the Solution of Linear Systems: Building

Blocks for Iterative Methods, 2nd Edition, SIAM (1994), http://www.netlib.org/linalg/

html_templates/Templates.html, accessed: 2018-03-22

3. List of algorithms. https://en.wikipedia.org/wiki/List_of_algorithms, accessed:

2018-03-22

4. Enabling AI in every Application. http://algorithmia.com/, accessed: 2018-03-22

5. ALGLIB. http://www.alglib.net/, accessed: 2018-03-22

6. A Library of Parallel Algorithms. http://www.cs.cmu.edu/~scandal/nesl/algorithms.

html, accessed: 2018-03-22

7. Voevodin, Vl., Antonov, A., Dongarra, J.: AlgoWiki: an Open Encyclopedia of Parallel

Algorithmic Features. In: Supercomputing Frontiers and Innovations, vol. 2, no. 1, pp. 4–18

(2015), DOI: 10.14529/jsfi150101

A. Antonov, J. Dongarra, V. Voevodin

2018, Vol. 5, No. 1 9

8. Antonov, A., Voevodin, Vad., Voevodin, Vl., Teplov, A.: A Study of the Dynamic Char-

acteristics of Software Implementation as an Essential Part for a Universal Description

of Algorithm Properties. In: 24th Euromicro International Conference on Parallel, Dis-

tributed, and Network-Based Processing Proceedings, 17–19 February 2016, pp. 359–363.

DOI: 10.1109/PDP.2016.24

9. Voevodin, Vl., Antonov, A., Dongarra, J.: Why is it hard to describe properties of algorithms?

In: Procedia Computer Science, vol. 101, pp. 4–7 (2016), DOI: 10.1016/j.procs.2016.11.002

10. Dongarra, J.J., Bunch, J.R., Moler, G.B., Stewart, G.W.: LINPACK Users’ Guide. Society

for Industrial and Applied Mathematics, 1979–1993.

11. Murphy, R.C., Wheeler, K.B., Barrett, B.W., Ang, J.A.: Introducing the Graph 500. In:

Cray User’s Group (CUG), May 5, 2010, vol. 19, pp. 45–74 (2010)

12. Heroux, M., Dongarra, J.: Toward a New Metric for Ranking High Performance Computing

Systems. In: UTK EECS Tech Report and Sandia National Labs Report SAND2013–4744,

June 2013.

13. Shun, J., Blelloch, G.E.: Ligra: a lightweight graph processing framework for shared mem-

ory. In: ACM Sigplan Notices, vol. 48, no. 8, pp. 135–146. DOI: 10.1145/2517327.2442530

14. Beamer, S., Asanovi, K., Patterson, D.: The GAP Benchmark Suite. arXiv:1508.03619

[cs.DC] (2015)

15. Parallel Boost Graph Library. http://www.boost.org/doc/libs/1_51_0/libs/graph_

parallel/doc/html/index.html, accessed: 2018-03-22

AlgoWiki Project as an Extension of the Top500 Methodology

10 Supercomputing Frontiers and Innovations

Record-and-Replay Techniques for HPC Systems: A Survey

Dylan Chapp1, Kento Sato2, Dong H. Ahn2, Michela Taufer1

c© The Authors 2018. This paper is published with open access at SuperFri.org

Record-and-replay techniques provide the ability to record executions of nondeterministic ap-

plications and re-execute them identically. These techniques find use in the contexts of debugging,

reproducibility, and fault-tolerance, especially in the presence of nondeterministic factors such as

message races. Record-and-replay techniques are highly diverse in terms of the fidelity of replay

they provide, the assumptions they make about the recorded application, the programming models

they target, and the runtime overheads they impose. In the high performance computing (HPC)

environment, all the above factors must be considered in concert, thus presenting additional im-

plementation challenges. In this manuscript, we survey record-and-replay techniques in terms of

the programming models they target and the workloads on which they were evaluated, providing

a categorization of these techniques benefiting application developers and researchers targeting

exascale challenges. This manuscript answers three questions through this survey: What are the

gaps in the existing space of record-and-replay techniques? What is the roadmap to widespread

use of record-and-replay on production-scale HPC workloads? And, what are the critical open

problems that must be addressed to make record-and-replay viable at exascale?

Keywords: reproducibility, nondeterminism, fault-tolerance, exascale, message-passing, shared

memory, proxy application, HPC benchmarks.

Introduction

Record-and-replay (R&R) techniques provide the ability to monitor and record changes in

program state over one execution (i.e., the recorded execution) of an application and reproduce

those changes–and thus, the behavior of the application–during a subsequent execution (i.e.,

the replayed execution). The convergence of extremely high levels of hardware concurrency, the

effective overlap of computation and communication, and overall code complexity make R&R a

vital tool for coping with non-determinism in HPC applications. Non-determinism in HPC ap-

plications is a growing problem [1, 15, 48] and it manifests at multiple levels. Non-determinism

may manifest in low-level communication primitives (e.g., the inherent non-determinism of non-

blocking matching functions in MPI); it may manifest in libraries (e.g., dynamic load-balancing

libraries [29]); or it may manifest at the application level (e.g., Monte-Carlo simulations). The

common motivation of all R&R techniques is to manage these forms of non-determinism. Specif-

ically, R&R techniques play key roles in three different HPC contexts. First, these techniques

are used for debugging parallel programs that exhibit non-deterministic bugs during a code ex-

ecution when moving, for example, from a smaller to a larger scale or from one platform to a

different one. Second, R&R is useful during testing parallel programs, where users may want

to ensure numerical or scientific repetition of certain results despite, for example, not enforc-

ing specific message interleavings. Third, R&R techniques find alternative use in the context of

fault-tolerance where the execution of one or more processes may need to be rolled back and

replayed to recover from a fault.

This survey presents a rigorous classification of R&R techniques based on the program-

ming model the R&R technique targets (i.e., shared memory or distributed memory) and the

workloads on which the techniques have been evaluated (i.e., theoretical, non-HPC, HPC bench-

marks, and HPC applications). For each programming model, we refine our categorization based

1University of Delaware, Newark, United States
2Lawrence Livermore National Laboratory, Livermore, United States

DOI: 10.14529/jsfi180102

2018, Vol. 5, No. 1 11

on the overall approach the technique takes (i.e., data-replay, order-replay, or a hybrid of the

two). This dimension is shown in Fig. 1 and 2 on the horizontal axis. The vertical axis roughly

corresponds to time, as we show the evolution of R&R techniques through conceptual eras. For

each technique, we indicate the category of workloads it is evaluated against. We consider four

categories: first, an absence of empirical evaluation (i.e., for purely theoretical works); second,

non-HPC workloads (e.g., network servers, as these are common evaluation workloads for shared

memory techniques); third, HPC benchmarks (e.g., the NAS Parallel Benchmarks); and fourth,

full HPC applications. In Fig. 1 and 2 we represent the paper that introduced each technique as

a box. The evaluation workloads are indicated by symbols in the boxes. For techniques that are

evaluated against multiple categories of workloads, multiple symbols are shown. Additionally,

due to the impact of logical clock algorithms on R&R (both for shared and distributed memory

techniques) and interest in leveraging specialized hardware (for shared memory techniques only),

we color the boxes corresponding to use of these features.

Order	
 ReplayData	
 Replay Hybrid

From	
 Data-­‐Replay	

to	
 Order-­‐Replay

Coping	
 with	
 Scale	

for	
 Debugging

Broadened	
 Scope	

Beyond	
 Debugging

Replay	
 Style

LeBlanc,	
 “Instant	

Replay”	
 IEEE	

Trans.	
 on	
 Comp.,	

1987

Pan,	
 “Recap”
PADD	
 1988

Thoai,	
 “Shortcut	

Replay”,	

ASIAN	
 2002

Netzer,	
 “Optimal	

Tracing”,	

SC,	
 1992	

Ronsse,	
 “ROLTMP”,	

PDP,	
 1998

de	
 Kergommeaux,	

“MPL”
EuroMPI 1999

Clemencon,	

EuroPar,	

1995

Levrouw,	

Euromicro,	

1994

Netzer,	
 “Incremental	

Replay”,
SC,	
 1993

Kranzlmuller,	

“Integrated	

Record-­‐and-­‐
Replay”,
EuroMPI
2001

Kranzlmuller,	

“NOPE”
ParNum,	

1999

Zambonelli,	
 “Deadlock	

Prevention	
 for	

Incremental	
 Replay”,
HPCN	
 1999

Gerstel,	
 “On-­‐
the-­‐fly	
 Replay”
SPDP,	
 1994

Zambonelli,	
 “Efficient	

Logging	
 for	
 Incremental	

Replay”,
PDP,	
 1999

Curtis,	

“BUGNET”,	

ICDCS,	
 1982	

Leu,	
 	
 “Execution	

Replay”,
SPDP,	
 1990

Sato,	
 “CDC”,	

SC,	
 2015

Lifflander,	

CLUSTER,	

2014

Ropars,
EuroPar,	

2011

Gioachin,	

“Processor	

Extraction”,	

PADTAD,	
 	

2010

Qian	
 “OPR”
PPoPP,	
 2016

Qian,	
 “Sreplay”,
ICS,	
 2016

Xue,	
 “MPIWiz”
PPoPP,	
 2009

Noeth,	
 “Scalatrace”,	

IPDPS,	
 2007

Wu,	
 ‘Scalatrace II”	

ICS,	
 2013

Zhai,	
 “Representative	
 Replay”,	

IEEE	
 Trans.	
 Comp.,	
 2016

Wu,	
 “Scala-­‐H-­‐Trace”	

ICPP,	
 2011

Boutellier,	

“Retrospect”
EuroPVM/MPI,	

2007

Ti
m
e

Scalar	
 Logical	
 Clock

Vector	
 Logical	
 Clock

Event-­‐Ordering	

Mechanism:

No	
 Logical	
 Clock

Full	
 HPC	
 application

HPC	
 Benchmark

Non-­‐HPC	
 Workload

Theoretical

Evaluation	

Workload:

Figure 1. Record-and-replay techniques for distributed memory programming models

Our survey targets three communities: 1) researchers who are interested in filling the gaps

in the existing space of R&R techniques; 2) developers and maintainers of HPC applications

who use R&R primarily as a debugging aid; 3) the community of researchers exploring uses

of R&R at exascale, including for fault-tolerance, resilience, and reproducibility. For each of

these communities we identify a guiding question that this survey answers. Our survey supports

researchers attempting to design R&R techniques that address so-far-unexplored regions of the

technique space. They will benefit from the taxonomy that this survey develops by learning how

to situate their work. The guiding question for this community is: Where are the gaps in the

technique space? An HPC developer benefits from this survey because it informs them about

which R&R techniques apply to their workloads. The guiding question for this community is:

Record-and-Replay Techniques for HPC Systems: A Survey

12 Supercomputing Frontiers and Innovations

Order	
 ReplayData	
 Replay Hybrid

Hardware	
 Assisted

Early	
 Approaches

Broadened	
 Scope	

Beyond	
 Debugging

Levrouw,	
 “ROLT”,
Euromicro,	

1994 Netzer,	
 “Optimal	

Tracing”,
PADD	
 1993

Lee,	
 “Respec”
ASPLOS,	

2010

Park,	
 “PRES”,	

SOSP,	
 2009

Altekar,	
 “ODR”,	

SOSP,	

2009

Liu,	
 ”Light”,
PLDI,	
 2015

Budanur,	
 “ScalaMemTrace”,
Computer	
 Journal,
2011

Mashtizadeh,	
 “Castor”
ASPLOS,	
 2017

Utterback,	
 “PORRidge”,	

PPoPP,	
 2017

Patil,	
 “PinPlay”
CGO,	
 2010

Hower,	
 “Rerun”
ISCA,	
 2008

Ren,	
 “SAMSARA”
APSys,	
 2015

Pokam,	
 “QuickRec”,
ISCA,	
 2013

Replay	
 Style

Ti
m
e

Scalar	
 Logical	
 Clock

Vector	
 Logical	
 Clock

Event-­‐Ordering	

Mechanism:

No	
 Logical	
 Clock

Full	
 HPC	
 application

HPC	
 Benchmark

Non-­‐HPC	
 Workload

Theoretical

Evaluation	

Workload:

LeBlanc,	
 “Instant	

Replay”	
 IEEE	

Trans.	
 on	
 Comp.,	

1987

Pan,	
 “Recap”
PADD	
 1988 Bacon

PADD,	
 1991

Ronsse,	
 “RecPlay”,	

1999

Figure 2. Record-and-replay techniques for shared memory programming models

What are the workloads to which R&R techniques apply? Finally, an exascale-centric researcher

benefits from this survey by gaining a holistic view of how R&R techniques have overcome scaling

challenges. The guiding question for this community is: What are the open problems standing

between the state-of-the-art in R&R and suitability for future exascale systems?

The remainder of the article is structured in the following way. In Section 1, we provide

terminology and definitions needed for evaluating R&R techniques. In Section 2, we discuss

techniques targeting shared memory programming models. In Section 3, we discuss R&R tech-

niques targeting distributed memory programming models, specifically focusing on techniques

targeting message-passing applications using MPI due to its prevalence in HPC. Conclusion

contains the lessons learned from our evaluation and concludes the article.

1. Concepts and Definitions

In this section, we introduce concepts and definitions that recur throughout the manuscript.

Regardless of whether an R&R technique is being used for debugging, computational repro-

ducibility, or fault-tolerance, the technique must observe and represent nondeterministic appli-

cation behavior during the recording phase, and then recover that same behavior during replay.

First, we introduce terms to describe the generic styles of R&R. Next, we define terms that

are common across all R&R techniques. We conclude this section by introducing the concept of

replay fidelity and relating it to the level of determinism present in the recorded application.

Data-replay techniques explicitly record the contents of communication. In the context of

R&R techniques for distributed memory applications, specifically message-passing applications,

a data-replay technique records the contents of messages. For techniques targeting shared-

memory applications, a data-replay technique records the values read from or written to shared

D. Chapp, K. Sato, D.H. Ahn, M. Taufer

2018, Vol. 5, No. 1 13

memory locations. In contrast with data-replay, order-replay techniques only record the rela-

tive ordering of communication. In the context of distributed-memory applications, specifically

message-passing applications, an order-replay technique records the interleaving of message re-

ceptions. For shared-memory applications, an order-replay technique records the order in which

threads accessed shared memory locations. Order-replay techniques avoid the overheads asso-

ciated to copying and storing large message contents, but must make more assumptions about

the global ordering of communication (e.g., that messages are delivered through FIFO queues)

than data-replay techniques. Hybrid-replay techniques combine data-replay and order-replay

approaches in an attempt to balance the greater scalability of order-replay with the richness of

debugging information and flexibility that data-replay provides (e.g., replaying only a subset of

processes). Techniques that aim to avoid replaying many non-buggy processes in order to replay

a single buggy one are referred to as subgroup-replay techniques.

Every R&R technique builds up a representation of an execution during the recording phase.

This representation exists in memory during the recording and may be persisted to disk, either

in chunks during recording or all at once at the end, and necessarily imposes some overhead in

order to monitor events and update the representation. Consequently, we will refer to two kinds

of overheads: memory overhead and execution time overhead. The memory overhead refers to

the size of the in-memory representation, and the execution time overhead refers to the slowdown

relative to an unmonitored execution. Additionally, we will refer to the on-disk representation

as the trace of the execution. Each technique also defines a level of replay fidelity, by which we

mean a contract-like description of which events in the replayed run are guaranteed to match

those from the recorded run. For instance, a technique may guarantee that messages are received

by each process in the same order during replay only if they are sent in the same order during

replay. Another technique may guarantee that both types of events (i.e., receives and sends)

interleave in the same order. In this case, the second technique is said to have higher replay

fidelity than the first one.

Replay fidelity, specifically the ease with which the desired level of it can be achieved,

is intimately related to the determinism class [7] of the application being recorded. HPC ap-

plications commonly consist of intervals of deterministic computation bounded by periods of

communication or synchronization, which may incorporate some element of non-determinism.

The determinism class of an application is largely determined by how this communication is

implemented, specifically how it is overlapped by computation. Generally speaking, a high level

of replay fidelity is more challenging to achieve for applications the determinism class of which

is less strict.

2. Record-and-Replay for Shared Memory

In this section we discuss R&R techniques that target shared memory models. These tech-

niques target replaying the behavior of an application on a single node of an HPC system. The

presence of fat nodes and accelerators in HPC systems makes these techniques relevant for peta

and exascale computing. First, we discuss early approaches to R&R for shared memory appli-

cations. Next, we cover techniques that employed logical clocks as a means of managing trace

growth as systems scaled in size. Finally, we survey contemporary techniques which we classify

as either debugging-oriented (i.e., emphasizing high-fidelity replay) or targeting reproducibility

of execution characteristics in a more relaxed sense.

Record-and-Replay Techniques for HPC Systems: A Survey

14 Supercomputing Frontiers and Innovations

2.1. Early Approaches – Plurality of Directions

From the late 1980s through the 1990s, R&R for shared memory models explored tradeoffs

between replay styles (i.e., data-replay vs. order-replay), but focused primarily on debugging,

and thus, high-fidelity replay. In 1987, LeBlanc introduced Instant Replay [23], which adopted

an order-replay approach of associating a version number to each shared-memory access. Instant

Replay is a common predecessor not only of later order-replay techniques for shared memory

models, but also of many techniques for distributed memory models as discussed in Section 3. The

empirical evaluation of Instant Replay was conducted on a 128-cpu system and used a Gaussian

Elimination workload, indicating early interest in facilitating debugging of HPC applications. In

contrast, Pan’s 1988 Recap [38] technique combined periodic checkpointing with a data-replay

logging approach. Additionally, Recap requires the compiler to generate instrumentation code,

rather than being implemented as a library. While achieving greater flexibility of replay (e.g., the

ability to replay from a checkpoint as opposed to the start of the execution), Recap is limited by

the daunting growth rate of its log. Beyond order and data-replay, hardware-assisted approaches

also emerged. The first R&R technique designed to explicitly take advantage of hardware was

introduced by Bacon and Goldstein in 1991 [3]. The latter technique logs traffic between the

main memory and caches and establishes a total order on shared-memory accesses by recording

instruction counter values.

In the early 1990s, Netzer introduced the shared memory version of his Optimal Replay

technique [35], addressing the overhead associated with tracing every shared memory access via

on-the-fly race detection using vector clocks [12]. Netzer’s work on Optimal Replay, both the

shared memory version discussed in this section and the distributed memory version discussed

in the following section, are among the first in the R&R space to acknowledge the need for

adaptive tracing, to explore the tradeoff between execution time overhead and the memory

footprint of the trace [33], and to leverage logical clocks. In both the original and subsequent

work on Optimal Replay, the technique was evaluated against the SPLASH-2 benchmark suite

on up to 16 threads.

To contrast with the overheads imposed by using vector clocks in [35], Levrouw et al. in-

troduced an order-replay technique [26] based on scalar logical clocks [22]. The authors provide

theoretical justification and empirical evaluation supporting their claim that their technique

can outperform its two major competitors at the time–Netzer’s Optimal Replay and LeBlanc’s

Instant Replay–both in terms of recording overhead and memory footprint. However, the eval-

uation workloads do not resemble HPC workloads (e.g., sorting) and are run on a maximum of

four threads.

This period of development culminated in Ronsse and de Bosschere’s RecPlay [45] debugging

framework. This work uses multiple kinds of logical clocks: scalar clocks to order synchronization

events during recording, and snooped matrix clocks [4] to do race detection during replay and

abort when data races prohibit correct replay. RecPlay was evaluated against the SPLASH-2

benchmark suite, demonstrating worst-case execution time overhead during recording of 25.9%.

As will be seen throughout the rest of this manuscript, the idea of augmenting R&R through

logical clocks persists to the present day.

D. Chapp, K. Sato, D.H. Ahn, M. Taufer

2018, Vol. 5, No. 1 15

2.2. Broadened Scope: Adding Reproducibility

Contemporary approaches to R&R of shared-memory applications address a broad spectrum

of reproducibility challenges. In this section, besides the traditional debugging-centric techniques,

we discuss techniques that target more relaxed notions of reproducibility. Across these techniques

we observe two trends: increased diversity of programming models targeted, and increased

interest in hardware assisted approaches.

2.2.1. Reproducibility-Centric Techniques

Due to the overheads associated with high-fidelity replay, recent techniques targeting multi-

core systems have opted to relax the requirement of exactly replaying the recorded run. Instead,

these techniques try to replay a run the output of which matches the recorded run’s output,

regardless of the internal state-transitions that produce the output. Altekar introduced Output-

Deterministic Replay (ODR) [2], which records only a subset of the necessary information to

guarantee reproducible outputs but, augments this subset during replay with a search procedure

to iterate towards a thread schedule that reproduces the final state of the recorded run. While

this strategy can be applied to debugging, it can also clearly aid in situations where reproducibil-

ity of numerical outputs is desired. ODR was evaluated against a suite of applications including

three of the SPLASH-2 benchmarks and demonstrated average recording overhead of 1.6×.

Simultaneously, Park introduced a similar technique called Probabilistic Replay with Exe-

cution Sketching (PRES) [39]. PRES also relaxes the common replay fidelity requirement, but

in a different way. Rather than defining an equivalent execution more loosely, PRES proposes to

gradually approach exact replay over multiple replay runs. By building up an execution sketch

during recording and then iteratively exploring the constrained set of possible executions that

agree with the sketch, PRES is able to hone in on executions that reproduce a buggy run. The

evaluation was conducted on a subset of the SPLASH-2 benchmarks on up to four threads, at

which scale execution time overhead of 10.6% was observed for an N-Body workload.

Inspired by fault-tolerance, Lee introduced Respec [24] which also targets determinism at

the output level. In contrast with most popular techniques used at this point in time, Respec

runs its “replay” concurrently with the monitored execution, periodically checking for diver-

gence between the two runs and maintaining a checkpoint of the executions’ last agreed-upon

state. Respec manages overhead by only logging a subset of the most common synchronization

operations, and borrows ideas from fault-tolerance protocols to correct itself when the replaying

execution drifts too far from the monitored execution. Respec was evaluated, on up to four

threads, on the PARSEC and SPLASH-2 benchmark suites.

At the beginning of this decade, many codes are parallelized on HPC systems by using

a shared-memory model on each node coupled with a distributed-memory model for intern-

ode communication (i.e., the MPI/X model). Budanur et al., introduced an R&R technique

for studying memory inefficiencies in this scenario called ScalaMemTrace [6]. ScalaMemTrace

leverages Extended Power Regular Section Descriptors (EPSRDs) to exploit repeated behavioral

patterns across multiple levels of the memory hierarchy to realize a compressed representation

of a memory trace. ScalaMemTrace was evaluated against HPC-centric workloads, namely the

MPI/OpenMP implementation of the Sequoia AMG benchmark and two computational ker-

nels: matrix-matrix multiplication and vector addition. In a weak-scaling study of the kernels,

ScalaMemTrace’s compression afforded near-constant trace size on up to 64 threads, in contrast

Record-and-Replay Techniques for HPC Systems: A Survey

16 Supercomputing Frontiers and Innovations

with the uncompressed version of the same trace which grew exponentially with the number of

threads. In a strong-scaling study of the AMG benchmark, the compressed traces grew linearly

with the number of threads, but nevertheless afforded a 50% reduction in size. The manuscript

acknowledges that ScalaMemTrace’s replay fidelity is limited, namely that the AMG benchmark

was only replayed at 91% accuracy.

2.2.2. Debugging-Centric Techniques

While the first reproducibility-centric R&R techniques appeared and evolved, as described

in the previous section, debugging-centric techniques still remain a high priority. The major

challenge shared memory presents for debugging is the sheer number of events (i.e., shared

memory accesses) that must be traced to ensure the high-fidelity replay required. Contem-

porary debugging-centric techniques address this challenge via two strategies: first, working

primarily at the software level (e.g., by employing an algorithm to ensure that a necessary and

sufficient trace is recorded for the desired level of replay fidelity); and second, by leveraging

specialized hardware to reduce recording overhead (e.g., by using hardware clocks with tighter

synchronization guarantees).

At the software level, we observe a single vendor-driven effort to address the challenges of

R&R with a highly general technique. Intel proposed PinPlay [40], which is an R&R technique

built atop their Pin dynamic instrumentation framework. PinPlay provides highly flexible R&R

options (e.g., subgroup replay) and offers composability with other Pin-based tools (thus, pur-

suing generality). PinPlay’s evaluation was conducted on realistic HPC workloads, including

the Parallel Ocean Program, the MILC quantum chromodynamics code, and a weather predic-

tion application. On these workloads, PinPlay observes between 36× and 147× execution time

overhead during recording, which, despite being high, is indicative of the challenge of recording

sufficient information for high-fidelity replay of scientific applications.

From the academic community, efforts include reformulation of replay as a satisfiability

problem, and specialization to task-parallel runtimes.

Liu et al.’s Light [28] introduces a novel software-level technique leveraging Satisfiability

Modulo Theory (SMT) solvers. Light formally characterizes the minimal trace data needed for

the desired level of replay. Light focuses on logging flow dependence of shared memory accesses,

and then during replay generates a thread schedule that respects the recorded flow dependencies

by formulating it as a satisfiability problem. Light is evaluated on a diverse set of benchmarks

ranging from scientific applications to web server and web crawling applications.

Though all techniques in this section have focused on recording threads’ behavior, in the

case of task-based parallel runtimes such as Cilk Plus, this is not an option since the runtime’s

scheduler may employ variable numbers of threads from run to run in a nondeterministic fashion.

A so-called “Processor-oblivious” R&R is needed in this case. PORRidge [51] is the first such

technique of this kind, which targets Cilk Plus programs where shared objects are protected

by locks. Rather than maintaining per-thread records, PORRidge maintains per-lock records

and constrains the Cilk scheduler to conform to these records’ access orders by augmenting the

scheduler’s DAG-representation of the execution with extra edges that represent the happens-

before relationships observed during recording. PORRidge is evaluated against a diverse set of

benchmarks, including two from the PARSEC suite, and three nondeterministic graph algorithms

from the Problem Based Benchmark Suite. The execution time overhead of the recording phase

D. Chapp, K. Sato, D.H. Ahn, M. Taufer

2018, Vol. 5, No. 1 17

ranges from essentially negligible to 3.39×, with a mean of 1.62× across all benchmarks. The

graph benchmarks saw the highest overheads for both recording and replaying.

In parallel with novel software-level approaches to R&R, researchers have endeavored to ex-

ploit advances in hardware and propose future hardware augmentations. In an effort to reduce

recording overhead while maintaining the level of replay fidelity needed for debugging Hower

et al. introduced Rerun [17], which proposes to use relatively little dedicated memory per core

compared with prior approaches, coupled with a scalar logical clock to establish a partial order

on atomic episodes, i.e. periods during which one thread does not race with any other. Additional

hardware-assisted techniques were proposed throughout the 2010s, most notably QuickRec [41]

which proposes an extension of Intel’s architecture to support efficient record and replay, and

SAMSARA [44] which leverages hardware-assisted virtualization extensions. QuickRec was eval-

uated on the SPLASH-2 benchmarks on up to eight threads, whereas SAMSARA was evaluated

on the PARSEC benchmarks on up to four threads.

More recently, the tool Castor [30] has been developed to provide recording with such low

overhead that it may be left on by default, rather than only used during specific debugging runs.

Castor uses a time stamping procedure that relies on synchronized hardware clocks. In contrast

with other tools, Castor monitors replayed execution and dynamically evaluates whether the

replay sufficiently matches the record. Castor maintains per-thread records of nondeterministic

events which are aggregated to a master record periodically. Castor’s primary contribution is

maximization of log throughput during recording and replay by use of transactional memory

and recording nondeterminism at multiple levels by combining an LLVM pass, library interpo-

sitioning, and thread-level logging. Castor is evaluated against the PARSEC benchmark suite.

Though Castor demonstrates low recording overhead for most PARSEC benchmarks, the Ra-

diosity benchmark incurs overheads up to 25% when running on 10 threads. The authors claim

that this is due to Radiosity’s sensitivity to the log aggregation’s effect on caches and the fact

that Radiosity periodically overwhelmed the aggregator.

3. Record-and-Replay for Distributed Memory

In this section we discuss R&R techniques that target distributed memory models. As the

Message-Passing Interface (MPI) [32] became the de facto standard for distributed-memory HPC

applications, R&R techniques increasingly targeted MPI applications. Therefore, we focus on

these techniques in this section. First, we discuss early approaches to R&R techniques, moving

from data-replay to order-replay in pursuit of scalability. Next, we identify an era of progress in

order-replay due in large part to the integration of logical clock algorithms. Finally, we identify

contemporary techniques which we classify into three main research directions: first, debugging-

oriented techniques with an emphasis on high-fidelity replay; second, techniques oriented towards

reproducibility of communication characteristics and performance analysis; and third, techniques

that straddle the line between R&R and fault-tolerance.

3.1. Early Approaches – from Data-Replay to Order-Replay

The earliest era of R&R techniques for distributed memory applications took the data-replay

approach for three reasons. First, early R&R tools were developed in the debugging community

rather than the HPC community, so logging messages’ content to provide rich debugging infor-

mation at the expense of scalability was seen as an acceptable tradeoff. Second, message-passing

Record-and-Replay Techniques for HPC Systems: A Survey

18 Supercomputing Frontiers and Innovations

standards such as MPI were still maturing, which limited the development of order-replay tech-

niques. Third, data-replay does not require that all processes be replayed, allowing users to focus

on buggy processes. Representative data-replay techniques from this era include BUGNET [11]

and Recap [38]. BUGNET logged all message contents and represents one of the first tools

specifically designed to alleviate the burden of nondeterminism when debugging parallel code.

Recap represented a step forward in two ways. First, and most prominently, Recap was one

of the first tools to provide subgroup replay; recognizing that in the debugging context, only

faulty processes need to be replayed. Second, Recap explicitly acknowledges that the rate of

trace generation constrains the technique’s applicability.

As the HPC community began to recognize the need for R&R tools, order-replay soon

emerged as an attractive alternative to data-replay. LeBlanc’s Instant Replay [23] was the earliest

such technique, as discussed in Section 2.1. Instant Replay models all interprocess communication

as accesses to shared objects and assigns version numbers to each such access during the recording

phase. This approach circumvents the need to copy and store message buffers’ contents, and so

is attractive for the debugging scenario where an application may need to run for a long time

before a bug manifests. The empirical evaluation of Instant Replay demonstrated the space

savings that can be realized by an order-replay approach. Specifically, LeBlanc shows that for a

Gaussian Elimination workload on 64 processes, Instant Replay’s trace occupied over 300x less

space than a data-replay trace wherein all messages’ contents are logged.

Despite achieving significant reduction in trace size, Instant Replay presented challenges to

practical implementation, which were identified and addressed by Leu et al. in their proposal

of Execution Replay [25]. Leu observed that Instant Replay’s versioning algorithm requires

sending extra messages, which may interfere with debugging. Execution Replay constrains itself

to send no additional messages. Additionally Leu took steps towards formalizing the notion

of equivalent executions (i.e., What does it mean to say that a replay is “correct”?). Finally,

Leu explicitly addresses replay of both blocking and non-blocking communication–a distinction

absent in prior work. Throughout this initial period of development, we observe the emergence

of the key driving problems that guide research into R&R to this day (i.e., the tradeoff between

memory overhead and execution time overhead). Moreover, the evolution of systems architecture

exacerbated the need to manage the above-mentioned tradeoff. This lead to the burst of research

on R&R techniques throughout the 1990s and early 2000s discussed in the next section.

3.2. Coping with Scale for Debugging

Order-replay techniques were developed in response to the growing need in HPC for scalable

R&R. Through the 1990’s and early 2000’s, two related design goals emerged. First, minimizing

the memory overhead and trace size was recognized as necessary to apply R&R to long-running,

memory-hungry HPC applications. Second, minimizing the execution time overhead was rec-

ognized as necessary, because even small changes in event timings could prevent bugs from

manifesting during the recording phase. Logical clocks [22] (i.e., algorithms for establishing or-

ders on events across multiple processes) became instrumental to tackling both problems. Both

challenges are addressed in the following sections, discussing enhancments associated to logical

clocks and hybridization of replay techniques.

D. Chapp, K. Sato, D.H. Ahn, M. Taufer

2018, Vol. 5, No. 1 19

3.2.1. Enhancing Order-Replay Techniques with Logical Clocks

Netzer’s work on Optimal Replay [36] is archetypical of the research direction for R&R

during the 1990’s. The general idea was to detect potential message races at runtime using a

vector-valued logical clock [12] and log only enough information to cause the races’ outcomes

during replay to match their outcomes during the recorded run. All other non-racing communi-

cation could be safely assumed to repeat without the guidance of the recorded trace. Empirical

evaluation of Optimal Replay on a set of computational kernels (e.g., matrix multiplication)

indicated that only 1-14% of messages required tracing, leading to significant reductions in trac-

ing overhead. Beyond Optimal Replay, Netzer also introduced Incremental Replay [34], which

combined checkpointing with the kind of message-logging common in R&R to allow replayed

executions to “fast-forward” to the region of the execution where a bug actually occured. While

the focus on debugging is clear, this work is indicative of the conceptual overlaps between the

debugging and HPC fault tolerance communities – a trend that has persisted to the present.

Shortly following Netzer’s work on Optimal Replay, MPI was standardized and embraced by

the HPC community as the de facto mechanism for distributed memory scientific applications.

Consequently, R&R techniques for distributed memory applications began to specifically target

MPI. The earliest example of this is Clemencon’s work [9] on the Annai programming envi-

ronment’s parallel debugging tool. Clemencon’s technique builds on the vector-clock-based race

detector of Optimal Replay, adding an additional scalar logical clock per process. This work is

significant not only in its use of logical clocks, but also in that it addresses the nondeterminism

inherent in non-blocking communication, including non-blocking probes. This work was evalu-

ated on communication microbenchmarks, as well as more HPC-oriented benchmarks such as

BiCGSTAB, on up to 64 processes.

Despite the power of vector clocks to determine when events must be recorded, the need to

piggyback vector timestamps on all messages becomes increasingly prohibitive as system size in-

creases. ROLTMP [46] attempts to overcome this scalability barrier by using scalar logical clocks

during recording to determine when events must be explicitly logged, coupled with additional

checks during replay to compensate for the limited ability of scalar clocks to order events across

processes [8].

As MPI saw increasingly widespread adoption in HPC, techniques for R&R emerged that

leverage MPI’s point-to-point communication semantics in order to reduce recording overhead for

applications with limited nondeterminism. Kranzlmuller introduced such a technique in the Non-

deterministic Program Evaluator (NOPE) [20]. This work was novel not only in that it forgoes

logical clocks in favor of a simpler logging mechanism that leverages MPI’s non-overtaking rule,

but also in that NOPE supports replay of alternative executions (i.e., one execution is recorded

but multiple possible executions, including the recorded one, may be replayed). NOPE’s draw-

backs are that it assumes the only sources of receiver-side nondeterminism are wildcard receives,

and that the recorded application is send-deterministic [7].

In addition to leveraging the features of MPI itself, R&R tools were developed in response to

the particular programming idioms HPC developers wrote into their codes. De Kergommeaux et

al. developed MPL∗ [18] which targeted correct replay of MPI applications that use non-blocking

test functions in polling loops. This programming idiom is commonly used to overlap communi-

cation and computation, but one result is that the number of tests becomes nondeterministic.

MPL∗ compactly represents sequences of test calls such that applications that use the number

of test calls (e.g., for control flow) can be correctly replayed. Kranzlmuller later went a step

Record-and-Replay Techniques for HPC Systems: A Survey

20 Supercomputing Frontiers and Innovations

beyond, opting to integrate R&R functionality into the MPI library itself [19]. The primary

advantage of such a scheme is convenience for the user in a debugging context since there is no

need to instrument code, link with additional libraries beyond MPI, or manage traces. Later

work by Bouteiller et al. produced Retrospect [5], which integrates R&R directly into an MPI

implementation’s lower-level communication routines and can switch between data-replay and

order-replay strategies based on user needs. Retrospect set a new standard for empirical evalua-

tion of distributed memory R&R techniques as it was evaluated on the NAS Parallel Benchmarks

on up to 1, 024 processes.

3.2.2. Hybrid Replay and Integration of Checkpointing

Due to the growing popularity of order-replay, data-replay approaches were not explored

to the same degree. However, notable exceptions include Gertsel’s On-the-Fly Replay [13] and

several works of Zambonelli [55, 56]. Gerstel’s work introduced a scheme where the entire network

of processes is duplicated, and one-way channels between the processes in the “real” network

propagate the nondeterministic actions of those processes to their partners in the other network.

In a sense, this scheme pursues “replay-while-recording” debugging. In contrast, Zambonelli’s

work builds off of Netzer’s work on Incremental Replay, first providing a solution to avoid

deadlocks then optimizing its message logging algorithm. This work showed that by piggybacking

limited additional information on all messages, its message-logging scheme reduced the number

of messages that needed to be logged by 10%.

Along similar lines, Thoai’s Shortcut Replay [50] proposes replaying from a combination

of globally consistent and inconsistent checkpoints. The value proposition of Shortcut Replay is

being able to skip segments of the execution during replay that are not immediately relevant to a

debugging task. Shortcut Replay leverages the event graph model of MPI programs’ executions

to determine how to safely combine checkpoints to avoid inconsistency during replay.

3.3. Broadened Scope: Adding Reproducibility and Fault Tolerance

Contemporary research in R&R has advanced along two novel directions in addition to de-

bugging: reproducibility and fault-tolerance. First, a class of R&R techniques targeting more

relaxed definitions of reproducibility (e.g., for characterizing the communication behaviors of

applications or studying performance portability) has emerged. These techniques do not pro-

vide the fine-grained, high-fidelity replay of debugging-oriented techniques, but instead prioritize

scaling to larger executions. Second, cross-pollination between the debugging and fault-tolerance

communities has led to a class of fault-tolerance protocols involving message-logging that lever-

age techniques from traditional R&R. First we discuss these new directions, and we conclude

this section by discussing contemporary approaches to debugging-centric record-and-replay.

3.3.1. Reproducibility-Centric Techniques

Although debugging continues to be a major focus of R&R, recent interest from the HPC

community in reproducibility (of e.g., performance, communication behavior, scientific outcomes

of simulations) has motivated R&R techniques that target replay with a more relaxed fidelty

requirement than in the debugging case.

A prominent example of this trend is the Scalatrace tools. The original Scalatrace [37]

tool proposed trace compression techniques that provide nearly constant-sized traces for MPI

D. Chapp, K. Sato, D.H. Ahn, M. Taufer

2018, Vol. 5, No. 1 21

applications with sufficiently regular communication. Regular section descriptors (RSDs) and

their recursive counterparts power-RSDs are used to compactly represent MPI communication

events, which, combined with a suite of MPI-specific encoding techniques, significantly reduce

trace sizes for applications with relatively little nondeterminism.

Scalatrace’s immediate successor, Scala-H-Trace [53] provides probabilistic replay. Rather

than exactly replicating fine-grained MPI events such as individual message receptions, Scala-H-

Trace allows the user to specify a tuning parameter that controls the tradeoff between fidelity of

replay and scalability of recording. By forgoing the lossless tracing approach of its predecessor,

Scala-H-Trace was able to achieve near-constant trace file sizes when recording executions of

the Parallel Ocean Program on up to 2, 048 processes. In contrast, the original Scalatrace was

only able to record the same executions on up to 1, 1024 processes. Additionally, Scala-H-Trace

demonstrated constant trace sizes for the NPB conjugate gradient workload on 2, 048 processes.

An important caveat is that these results were obtained using the lowest replay fidelity setting

of Scala-H-Trace, and the metric used for evaluating correctness of replay is overall execution

time. Despite limited applicability to debugging, techniques providing probabilistic replay can

be invaluable for scientific reproducibility and for ensuring that the communication behavior of

applications has characteristics that agree with programmer intent.

Scala-H-Trace’s successor, Scalatrace II [52], also embraces probabilistic replay. Proposed

as a major redesign of the compression techniques developed in Scalatrace for applications

with more irregular behavior, Scalatrace II is evaluated against a subset of NPB, the Sweep3D

neutron transport kernel, and the Parallel Ocean Program on up to 400 processes. Like Scala-

H-Trace, Scalatrace II performs lossy compression of MPI events and thus its correctness metric

for replay is overall execution time. In all evaluation workloads, Scalatrace II achieves good

agreement between replay time and originally observed execution time–experience an average

execution time error of 5.7%. Like its predecessor, the probabilistic replay Scalatrace II provides

is useful for achieving coarse-grained reproducibility of communication behavior.

Scalatrace was evaluated on stencils of various sizes, a subset of the NPB, and Raptor, a

simulation framework supporting adaptive mesh refinement used in this evaluation to run a

hydrodynamics simulation. These workloads were recorded on up to 512 processes and in most

cases demonstrated nearly constant trace size and memory footprint during recording. However,

the conjugate gradient and Fourier transform benchmarks from NPB yielded trace sizes that

increased with the number of the processors. In the case of the conjugate gradient benchmark, the

role of asynchronous point-to-point communication in the increased trace size is acknowledged.

Most recently, Zhai et al. [57] introduced “Representative Replay”, which targets perfor-

mance prediction. Representative replay permits users to record an execution of a parallel ap-

plication on a limited platform (e.g., a single node of a cluster) and obtain predictions of the

execution time of the same application on the full platform via a controlled replayed execution.

3.3.2. Fault-Tolerance-Centric Techniques

The last aspect of R&R’s applicability is in fault-tolerance. As the exascale era looms, fault-

tolerance occupies an increasingly important role in HPC. R&R techhniques and fault-tolerance

protocols (especially their message-logging aspects) share many concerns, namely concise rep-

resentation of nondeterministic application behaviors. Similarities can also be seen between

debugging-oriented techniques that seek to replay only buggy processes, and fault-tolerance

protocols that combine checkpointing with message-logging; seeking to avoid rolling back ex-

Record-and-Replay Techniques for HPC Systems: A Survey

22 Supercomputing Frontiers and Innovations

ecution any farther than necessary. In this section, we discuss fault-tolerance protocols that

incorporate deterministic replay.

Partial message-logging protocols, such as those introduced by Guermouche et al. [16] and

Meneses et al. [31] depend on clustering of processes into process groups that realize similar com-

munication patterns in order to achieive efficient deterministic replay. Ropars et al. introduced

a process clustering technique [47] that leverages the regular communication patterns of MPI

collectives and uses a bisection-based graph partitioning algorithm to compute process clusters

that facilitate partial message-logging protocols. For empirical evaluation, Ropars’ clustering

algorithm is coupled with the above-cited partial message-logging protocols and ran against set

an HPC benchmarks including the NAS Parallel Benchmarks and LAMMPS. The key contribu-

tion of this work is that the process clustering algorithm takes the characteristics of the partial

message-logging scheme it is coupled to into account, resulting in process clusters that are con-

ducive to reducing the overall number of messages logged. Specifically, the technique requires

logging less than 5.3% of all messages for all but one of their workloads.

Due to the daunting task of achieving fault-tolerance at exascale, reseachers seek to lever-

age application characteristics to achieve scalable replay of failed processes. Lifflander et al.

developed an algebraic methodology for their fault-tolerance protocol [27] that can determine

when events in the execution of a distributed-memory application may safely commute (i.e.,

occur in any order without altering the program state after their completion), thus a message-

logging R&R scheme with lower overheads. Beyond this work’s theoretical contributions, the

fault-tolerance protocol was rigourously evaluated against HPC applications across a variety

of scientific domains (e.g., molecular dynamics and hydrodynamics). The evaluation platform

was an IBM BG/P system with 40, 960 nodes, and the workloads were ran on up to 131, 072

processes.

3.3.3. Debugging-Centric Techniques

The debugging-oriented research direction of R&R continues to prioritize reducing the trace

size and memory footprint of the recording phase. Xue et al. proposed Subgroup Reproducible

Replay (SRR) [54] to address not only the problem of trace size, but also provide the user with

flexible replay options (i.e. replaying only those processes deemed relevant to the debugging

task). SRR leverages the fact that most HPC applications are structured so that any one process

does most of its communication with a limited subset of other processes (e.g., communicating

only with its neighbors in a stencil pattern). With this in mind, SRR adopts a hybrid-replay

strategy by recording only message interleavings within groups of processes (order-replay), while

recording the contents of messages between groups (data-replay). While it is acknowledged that

application developers’ expertise may be needed to specify the appropriate process groups, the

grouping can also be obtained by partitioning a weighted graph representing the application’s

communication channels. SRR was evaluated on a diverse benchmark suite containing a subset

of the NAS Parallel Benchmarks, as well as a parallel graph benchmark and a benchmark

specifically designed to stress SRR’s ability to replay nondeterministic probes. The benchmarks

were run on a maximum of 64 processes.

In a distinct approch to hybrid-replay, Gioachin et al. introduced “Processor Extraction” [14]

where multiple R&R passes are used to iteratively progress towards replaying a desired bug.

The first pass uses a lightweight order-replay approach. Subsequent passes use increasingly

heavyweight data-replay approaches but on increasingly small subsets of processes, thereby

D. Chapp, K. Sato, D.H. Ahn, M. Taufer

2018, Vol. 5, No. 1 23

narrowing down the root cause of bugs and limiting the tracing overhead. This technique was

evaluated on up to 1, 024 processes. The evaluation workloads ranged from synthetic benchmarks

to full-fledged scientific applications, specifically ChaNGa and NAMD.

Despite the flexibility of hybrid-replay schemes, pure order-replay remains attractive for

HPC, especially when fine-grained high-fidelty replay is desired for debugging. To this end, Sato

et al. developed Clock-Delta Compression (CDC) [49], a technique for compressing the record of

nondeterministic events. The technique piggybacks scalar logical timestamps on each message

much in the same way that earlier techniques such as ROLTMP do, but instead of explicitly

storing the timestamps, CDC stores a permutation that maps a reference order, which can be

deterministically generated during replay, to the observed order from the recorded run, thereby

realizing a reduction in trace size. Clock-Delta Compression was evaluated against an HPC proxy

application “The Monte Carlo Benchmark” (MCB) [10] on 3, 072 processes, for which CDC was

able to show a reduction in trace size of two orders of magnitude while maintaining execution

time overhead of 13.1-25.5%.

Finally, as MPI continues to evolve, so must the R&R techniques targeting it. MPI’s one-

sided communication routines in particular pose unique challenges to R&R. Quian et al. proposed

two techniques for addressing this challenge–OPR [42] and its successor SReplay [43]. SReplay

proposes a hybrid-replay scheme which permits replay of subgroups of processes. Like MPIWiz,

SReplay does order-replay within process groups for which it employs a specialized vector clock

algorithm. Unlike previous works that have associated vector clocks to individual memory re-

gions, ranges of regions are associated to the same vector clock in SReplay thereby enhancing its

scalability. SReplay was evaluated against standard benchmarks for R&R tools (e.g., the NAS

Parallel Benchmarks), but also against applications exhibiting considerably greater nondeter-

minism (e.g., unbalanced tree search and parallel DeBruijn graph construction) on up to 1, 024

processes.

Conclusion

Record-and-replay techniques were originally developed enabling cyclic debugging in the

presence of nondeterminism, but since then their scope has expanded to include more relaxed

forms of reproducibility, as well as integrating into fault tolerance protocols. This expansion of

scope is driven by the three communities we identify as associated to R&R. In this section we

revisit the guiding questions of each community listed in Section and provide answers.

For researchers whose goal is to develop new R&R techniques, the guiding question is: Where

are the gaps in the technique space? We observe three gaps. First, there are no techniques that

offload recording overhead to accelerators, which are becoming more prevalent on HPC systems.

Second, debugging-oriented techniques have not been evaluated at the scale of full system runs

on petascale platforms. Third, there has been minimal investigation of composability of shared

memory and distributed memory techniques.

For HPC developers, the guiding question is: What are the workloads to which R&R tech-

niques apply? We observe that the workloads R&R techniques are evaluated against have grown

in complexity (as evidenced in Fig. 1 by the increase in full HPC application evaluation work-

loads with time), however the scale at which recording is feasible depends strongly on desired

replay fidelity. For reproducibility studies, recording runs on over 5K processes has become

feasible. For debugging, particularly of long-running applications, 5K processes is still a barrier.

Record-and-Replay Techniques for HPC Systems: A Survey

24 Supercomputing Frontiers and Innovations

Finally, for exascale-oriented researchers, the guiding question is: What are the open prob-

lems preventing state-of-the-art R&R from being deployed at exascale? For this community, we

consider first the ways R&R overcame scaling challenges in the past, then propose problems to

consider for the future. Driven by the need to minimize recording overhead, R&R techniques

employed logical clock algorithms, leveraged compression to reduce memory overhead and trace

size, and proposed methods that adapt to application characteristics. For R&R to remain viable

at exascale we observe three potential untapped directions. First, elements of recording and

replaying may be able to be offloaded to GPUs or other accelerators. Second, machine learn-

ing may be needed to more-precisely adapt recording strategies to application characteristics.

Third, logical clock algorithms continue to advance (e.g., logical-physical clocks [21]), exposing

the possibility of upgrading old techniques with new event-ordering strategies.

Acknowledgements

This work was performed under the auspices of the U.S. Department of Energy by LLNL

under contract DE-AC52-07NA27344 (LLNL-JRNL-749010).

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-

mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work

without further permission provided the original work is properly cited.

References

1. Ahn, D.H., Lee, G.L., Gopalakrishnan, G., Rakamarić, Z., Schulz, M., Laguna, I.: Over-

coming extreme-scale reproducibility challenges through a unified, targeted, and multilevel

toolset. In: Proceedings of the 1st International Workshop on Software Engineering for

High Performance Computing in Computational Science and Engineering. pp. 41–44. SE-

HPCCSE ’13, ACM, New York, NY, USA (2013), DOI: 10.1145/2532352.2532357

2. Altekar, G., Stoica, I.: ODR: Output-deterministic Replay for Multicore Debugging. In: Pro-

ceedings of the ACM SIGOPS 22nd Symposium on Operating Systems Principles. pp. 193–

206. SOSP ’09, ACM, New York, NY, USA (2009), DOI: 10.1145/1629575.1629594

3. Bacon, D.F., Goldstein, S.C.: Hardware-assisted Replay of Multiprocessor Programs. In:

Proceedings of the 1991 ACM/ONR Workshop on Parallel and Distributed Debugging.

pp. 194–206. PADD ’91, ACM, New York, NY, USA (1991), DOI: 10.1145/122759.122777

4. Bosschere, K.D., Ronsse, M.: Clock snooping and its application in on-the-fly data

race detection. In: 1997 International Symposium on Parallel Architectures, Algorithms

and Networks (ISPAN ’97), 18-20 December 1997, Taipei, Taiwan. pp. 324–330 (1997),

DOI: 10.1109/ISPAN.1997.645115

5. Bouteiller, A., Bosilca, G., Dongarra, J.: Retrospect: Deterministic Replay of MPI Ap-

plications for Interactive Distributed Debugging. In: Proceedings of the 14th European

PVM/MPI User’s Group Meeting, Paris, France, September 30 – October 3, 2007. pp. 297–

306. Springer, Berlin, Heidelberg (2007), DOI: 10.1007/978-3-540-75416-9 41

D. Chapp, K. Sato, D.H. Ahn, M. Taufer

2018, Vol. 5, No. 1 25

6. Budanur, S., Mueller, F., Gamblin, T.: Memory trace compression and replay for SPMD

systems using extended PRSDs. SIGMETRICS Performance Evaluation Review 38(4), 30–

36 (2011), DOI: 10.1145/1964218.1964224

7. Cappello, F., Guermouche, A., Snir, M.: On communication determinism in parallel HPC

applications. In: Proceedings of the 19th International Conference on Computer Communi-

cations and Networks, IEEE ICCCN 2010, Zürich, Switzerland, August 2-5, 2010. pp. 1–8

(2010), DOI: 10.1109/ICCCN.2010.5560143

8. Charron-Bost, B.: Concerning the size of logical clocks in distributed systems. Information

Processing Letters 39(1), 11–16 (1991), DOI: 10.1016/0020-0190(91)90055-M

9. Clémençon, C., Fritscher, J., Meehan, M.J., Rühl, R.: An implementation of race detec-

tion and deterministic replay with MPI, pp. 155–166. Springer, Berlin, Heidelberg (1995),

DOI: 10.1007/BFb0020462

10. Cleveland, M.A., Brunner, T.A., Gentile, N.A., Keasler, J.A.: Obtaining identical re-

sults with double precision global accuracy on different numbers of processors in parallel

particle Monte Carlo simulations. Journal of Computational Physics 251, 223–236 (2013),

DOI: 10.1016/j.jcp.2013.05.041

11. Curtis, R., Wittie, L.D.: BUGNET: A debugging system for parallel programming envi-

ronments. In: Proceedings of the 3rd International Conference on Distributed Computing

Systems, Miami/Ft. Lauderdale, Florida, USA, October 18-22, 1982. pp. 394–400 (1982)

12. Fidge, C.J.: Partial orders for parallel debugging. In: Proceedings of the ACM SIGPLAN

and SIGOPS Workshop on Parallel and Distributed Debugging, University of Wisconsin,

Madison, Wisconsin, USA, May 5-6, 1988. pp. 183–194 (1988), DOI: 10.1145/68210.69233

13. Gerstel, O.O., Zaks, S., Hurfin, M., Plouzeau, N., Raynal, M.: On-the-fly replay: a practical

paradigm and its implementation for distributed debugging. In: Proceedings of the Sixth

IEEE Symposium on Parallel and Distributed Processing, SPDP 1994, Dallas, Texas, USA,

October 26-29, 1994. pp. 266–272 (1994), DOI: 10.1109/SPDP.1994.346158

14. Gioachin, F., Zheng, G., Kalé, L.V.: Robust Non-intrusive Record-replay with Processor

Extraction. In: Proceedings of the 8th Workshop on Parallel and Distributed Systems:

Testing, Analysis, and Debugging. pp. 9–19. PADTAD ’10, ACM, New York, NY, USA

(2010), DOI: 10.1145/1866210.1866211

15. Gopalakrishnan, G., Hovland, P.D., Iancu, C., Krishnamoorthy, S., Laguna, I., Lethin, R.A.,

Sen, K., Siegel, S.F., Solar-Lezama, A.: Report of the HPC correctness summit, January 25-

26, 2017, Washington, DC. CoRR abs/1705.07478 (2017), http://arxiv.org/abs/1705.

07478, accessed: 2017-12-22

16. Guermouche, A., Ropars, T., Brunet, E., Snir, M., Cappello, F.: Uncoordinated Check-

pointing Without Domino Effect for Send-Deterministic MPI Applications. In: Pro-

ceedings of the 25th IEEE International Symposium on Parallel and Distributed Pro-

cessing, IPDPS 2011, Anchorage, Alaska, USA, 16-20 May 2011. pp. 989–1000 (2011),

DOI: 10.1109/IPDPS.2011.95

Record-and-Replay Techniques for HPC Systems: A Survey

26 Supercomputing Frontiers and Innovations

17. Hower, D., Hill, M.D.: Rerun: Exploiting Episodes for Lightweight Memory Race Recording.

In: 35th International Symposium on Computer Architecture (ISCA 2008), June 21-25,

2008, Beijing, China. pp. 265–276 (2008), DOI: 10.1109/ISCA.2008.26

18. de Kergommeaux, J.C., Ronsse, M., De Bosschere, K.: MPL: Efficient Record/Replay of

nondeterministic features of message passing libraries, pp. 141–148. Springer, Berlin, Hei-

delberg (1999), DOI: 10.1007/3-540-48158-3 18

19. Kranzlmüller, D., Schaubschläger, C., Volkert, J.: An Integrated Record&Replay Mecha-

nism for Nondeterministic Message Passing Programs, pp. 192–200. Springer, Berlin, Hei-

delberg (2001), DOI: 10.1007/3-540-45417-9 28

20. Kranzlmüller, D., Volkert, J.: NOPE: A Nondeterministic Program Evaluator, pp. 490–499.

Springer, Berlin, Heidelberg (1999), DOI: 10.1007/3-540-49164-3 47

21. Kulkarni, S.S., Demirbas, M., Madappa, D., Avva, B., Leone, M.: Logical physical clocks. In:

Principles of Distributed Systems - 18th International Conference, OPODIS 2014, Cortina

d’Ampezzo, Italy, December 16-19, 2014. Proceedings. pp. 17–32 (2014), DOI: 10.1007/978-

3-319-14472-6 2

22. Lamport, L.: Time, clocks, and the ordering of events in a distributed system. Communi-

cations of the ACM 21(7), 558–565 (1978), DOI: 10.1145/359545.359563

23. LeBlanc, T.J., Mellor-Crummey, J.M.: Debugging Parallel Programs with Instant Replay.

IEEE Transactions on Computers 36(4), 471–482 (1987), DOI: 10.1109/TC.1987.1676929

24. Lee, D., Wester, B., Veeraraghavan, K., Narayanasamy, S., Chen, P.M., Flinn, J.: Respec:

Efficient Online Multiprocessor Replay via Speculation and External Determinism. In: Pro-

ceedings of the Fifteenth Edition of ASPLOS on Architectural Support for Programming

Languages and Operating Systems. pp. 77–90. ASPLOS XV, ACM, New York, NY, USA

(2010), DOI: 10.1145/1736020.1736031

25. Leu, E., Schiper, A., Zramdini, A.W.: Execution Replay on Distributed Memory Archi-

tectures. In: Proceedings of the Second IEEE Symposium on Parallel and Distributed

Processing, SPDP 1990, Dallas, Texas, USA, December 9-13, 1990. pp. 106–112 (1990),

DOI: 10.1109/SPDP.1990.143516

26. Levrouw, L., Audenaert, K.M.R., Campenhout, J.M.V.: A New Trace And Replay System

For Shared Memory Programs Based On Lamport Clocks. In: Proceedings of the Second

Euromicro Workshop on Parallel and Distributed Processing, PDP 1994, January 26-28,

1994, Malaga, Spain. pp. 471–478 (1994), DOI: 10.1109/EMPDP.1994.592529

27. Lifflander, J., Meneses, E., Menon, H., Miller, P., Krishnamoorthy, S., Kalé, L.V.: Scal-

able replay with partial-order dependencies for message-logging fault tolerance. In: 2014

IEEE International Conference on Cluster Computing, CLUSTER 2014, Madrid, Spain,

September 22-26, 2014. pp. 19–28 (2014), DOI: 10.1109/CLUSTER.2014.6968739

28. Liu, P., Zhang, X., Tripp, O., Zheng, Y.: Light: Replay via Tightly Bounded Record-

ing. In: Proceedings of the 36th ACM SIGPLAN Conference on Programming Language

Design and Implementation. pp. 55–64. PLDI ’15, ACM, New York, NY, USA (2015),

DOI: 10.1145/2737924.2738001

D. Chapp, K. Sato, D.H. Ahn, M. Taufer

2018, Vol. 5, No. 1 27

29. Lusk, E.L., Pieper, S.C., Butler, R.M., Univ., M.T.S.: More scalability, less pain : A simple

programming model and its implementation for extreme computing. SciDAC Rev. 17(1),

30–37 (2010)

30. Mashtizadeh, A.J., Garfinkel, T., Terei, D., Mazieres, D., Rosenblum, M.: Towards

Practical Default-On Multi-Core Record/Replay. In: Proceedings of the Twenty-Second

International Conference on Architectural Support for Programming Languages and

Operating Systems. pp. 693–708. ASPLOS ’17, ACM, New York, NY, USA (2017),

DOI: 10.1145/3037697.3037751

31. Meneses, E., Mendes, C.L., Kalé, L.V.: Team-Based Message Logging: Preliminary Re-

sults. In: 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Comput-

ing, CCGrid 2010, 17-20 May 2010, Melbourne, Victoria, Australia. pp. 697–702 (2010),

DOI: 10.1109/CCGRID.2010.110

32. MPI: A Message-Passing Interface Standard, Version 3.0, http://mpi-forum.org/docs/

mpi-3.0/mpi30-report.pdf, accessed: 2017-12-22

33. Netzer, R.H.B.: Trace size vs parallelism in trace-and-replay debugging of shared-memory

programs, pp. 617–632. Springer, Berlin, Heidelberg (1993), DOI: 10.1007/3-540-57659-2 35

34. Netzer, R.H.B., Xu, J.: Adaptive Message Logging for Incremental Replay of Message-

passing Programs. In: Proceedings of the 1993 ACM/IEEE Conference on Super-

computing. pp. 840–849. Supercomputing ’93, ACM, New York, NY, USA (1993),

DOI: 10.1145/169627.169850

35. Netzer, R.H.B.: Optimal Tracing and Replay for Debugging Shared-Memory Parallel Pro-

grams. In: Proceedings of the ACM/ONR Workshop on Parallel and Distributed Debugging,

San Diego, California, USA, May 17-18, 1993. pp. 1–11 (1993), DOI: 10.1145/174266.174268

36. Netzer, R.H.B., Miller, B.P.: Optimal Tracing and Replay for Debugging Message-Passing

Parallel Programs. In: Proceedings Supercomputing ’92, Minneapolis, MN, USA, November

16-20, 1992. pp. 502–511 (1992), DOI: 10.1109/SUPERC.1992.236654

37. Noeth, M., Mueller, F., Schulz, M., de Supinski, B.R.: Scalable Compression and Re-

play of Communication Traces in Massively Parallel Environments. In: Proceedings of the

2007 IEEE International Parallel and Distributed Processing Symposium. pp. 1–11 (2007),

DOI: 10.1109/IPDPS.2007.370261

38. Pan, D.Z., Linton, M.A.: Supporting Reverse Execution for Parallel Programs. In: Proceed-

ings of the 1988 ACM SIGPLAN and SIGOPS Workshop on Parallel and Distributed Debug-

ging. pp. 124–129. PADD ’88, ACM, New York, NY, USA (1988), DOI: 10.1145/68210.69227

39. Park, S., Zhou, Y., Xiong, W., Yin, Z., Kaushik, R., Lee, K.H., Lu, S.: PRES: Probabilistic

Replay with Execution Sketching on Multiprocessors. In: Proceedings of the ACM SIGOPS

22nd Symposium on Operating Systems Principles. pp. 177–192. SOSP ’09, ACM, New

York, NY, USA (2009), DOI: 10.1145/1629575.1629593

40. Patil, H., Pereira, C., Stallcup, M., Lueck, G., Cownie, J.: PinPlay: A framework for

deterministic replay and reproducible analysis of parallel programs. In: Proceedings of the

Record-and-Replay Techniques for HPC Systems: A Survey

28 Supercomputing Frontiers and Innovations

8th Annual IEEE/ACM International Symposium on Code Generation and Optimization.

pp. 2–11. CGO ’10, ACM, New York, NY, USA (2010), DOI: 10.1145/1772954.1772958

41. Pokam, G., Danne, K., Pereira, C., Kassa, R., Kranich, T., Hu, S., Gottschlich, J., Hon-

armand, N., Dautenhahn, N., King, S.T., Torrellas, J.: QuickRec: Prototyping an Intel

Architecture Extension for Record and Replay of Multithreaded Programs. In: Proceed-

ings of the 40th Annual International Symposium on Computer Architecture. pp. 643–654.

ISCA ’13, ACM, New York, NY, USA (2013), DOI: 10.1145/2485922.2485977

42. Qian, X., Sen, K., Hargrove, P., Iancu, C.: OPR: Deterministic Group Replay for One-sided

Communication. In: Proceedings of the 21st ACM SIGPLAN Symposium on Principles and

Practice of Parallel Programming. pp. 47:1–47:2. PPoPP ’16, ACM, New York, NY, USA

(2016), DOI: 10.1145/2851141.2851179

43. Qian, X., Sen, K., Hargrove, P., Iancu, C.: SReplay: Deterministic Sub-Group Re-

play for One-Sided Communication. In: Proceedings of the 2016 International Confer-

ence on Supercomputing. pp. 17:1–17:13. ICS ’16, ACM, New York, NY, USA (2016),

DOI: 10.1145/2925426.2926264

44. Ren, S., Li, C., Tan, L., Xiao, Z.: Samsara: Efficient Deterministic Replay with Hardware

Virtualization Extensions. In: Proceedings of the 6th Asia-Pacific Workshop on Systems.

pp. 9:1–9:7. APSys ’15, ACM, New York, NY, USA (2015), DOI: 10.1145/2797022.2797028

45. Ronsse, M., De Bosschere, K.: RecPlay: A Fully Integrated Practical Record/Replay

System. ACM Transactions on Computer Systems 17(2), 133–152 (1999),

DOI: 10.1145/312203.312214

46. Ronsse, M., Kranzlmüller, D.: Roltmp-replay of Lamport timestamps for message passing

systems. In: PDP. pp. 87–93 (1998), DOI: 10.1109/EMPDP.1998.647184

47. Ropars, T., Guermouche, A., Uçar, B., Meneses, E., Kalé, L.V., Cappello, F.: On the

Use of Cluster-Based Partial Message Logging to Improve Fault Tolerance for MPI HPC

Applications. In: Euro-Par 2011 Parallel Processing - 17th International Conference, Euro-

Par 2011, Bordeaux, France, August 29 - September 2, 2011, Proceedings, Part I. pp. 567–

578 (2011), DOI: 10.1007/978-3-642-23400-2 53

48. Sato, K., Ahn, D.H., Laguna, I., Lee, G.L., Schulz, M., Chambreau, C.M.: Noise injection

techniques to expose subtle and unintended message races. In: Proceedings of the 22Nd

ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming. pp. 89–

101. PPoPP ’17, ACM, New York, NY, USA (2017), DOI: 10.1145/3018743.3018767

49. Sato, K., Ahn, D.H., Laguna, I., Lee, G.L., Schulz, M.: Clock delta compression for

scalable order-replay of non-deterministic parallel applications. In: Proceedings of the

International Conference for High Performance Computing, Networking, Storage and

Analysis, SC 2015, Austin, TX, USA, November 15-20, 2015. pp. 62:1–62:12 (2015),

DOI: 10.1145/2807591.2807642

50. Thoai, N., Kranzlmüller, D., Volkert, J.: Shortcut Replay: A Replay Technique for De-

bugging Long-Running Parallel Programs, pp. 34–46. Springer, Berlin, Heidelberg (2002),

DOI: 10.1007/3-540-36184-7 5

D. Chapp, K. Sato, D.H. Ahn, M. Taufer

2018, Vol. 5, No. 1 29

51. Utterback, R., Agrawal, K., Lee, I.A., Kulkarni, M.: Processor-oblivious record and re-

play. In: Proceedings of the 22Nd ACM SIGPLAN Symposium on Principles and Practice

of Parallel Programming. pp. 145–161. PPoPP ’17, ACM, New York, NY, USA (2017),

DOI: 10.1145/3018743.3018764

52. Wu, X., Mueller, F.: Elastic and Scalable Tracing and Accurate Replay of Non-deterministic

Events. In: Proceedings of the 27th International ACM Conference on International Con-

ference on Supercomputing. pp. 59–68. ICS ’13, ACM, New York, NY, USA (2013),

DOI: 10.1145/2464996.2465001

53. Wu, X., Vijayakumar, K., Mueller, F., Ma, X., Roth, P.C.: Probabilistic Communication

and I/O Tracing with Deterministic Replay at Scale. In: International Conference on Par-

allel Processing, ICPP 2011, Taipei, Taiwan, September 13-16, 2011. pp. 196–205 (2011),

DOI: 10.1109/ICPP.2011.50

54. Xue, R., Liu, X., Wu, M., Guo, Z., Chen, W., Zheng, W., Zhang, Z., Voelker, G.: MPIWiz:

Subgroup Reproducible Replay of MPI Applications. In: Proceedings of the 14th ACM

SIGPLAN Symposium on Principles and Practice of Parallel Programming. pp. 251–260.

PPoPP ’09, ACM, New York, NY, USA (2009), DOI: 10.1145/1504176.1504213

55. Zambonelli, F.: Deadlock prevention in incremental replay of message-passing programs.

In: Sloot, P., Bubak, M., Hoekstra, A., Hertzberger, B. (eds.) High-Performance Com-

puting and Networking: 7th International Conference, HPCN Europe 1999 Amsterdam,

The Netherlands, April 12-14, 1999 Proceedings. pp. 593–602. Springer, Berlin, Heidelberg

(1999), DOI: 10.1007/BFb0100620

56. Zambonelli, F., Netzer, R.H.B.: Proceedings 13th International Parallel Processing Sym-

posium and 10th Symposium on Parallel and Distributed Processing. IPPS/SPDP 1999.

pp. 392–398 (1999), DOI: 10.1109/IPPS.1999.760506

57. Zhai, J., Chen, W., Zheng, W., Li, K.: Performance Prediction for Large-Scale Parallel

Applications Using Representative Replay. IEEE Transactions on Computers 65(7), 2184–

2198 (2016), DOI: 10.1109/TC.2015.2479630

Record-and-Replay Techniques for HPC Systems: A Survey

30 Supercomputing Frontiers and Innovations

Survey of Storage Systems for High-Performance Computing

Jakob Lüttgau1, Michael Kuhn2, Kira Duwe1, Yevhen Alforov1, Eugen Betke1,
Julian Kunkel1, Thomas Ludwig1,2

© The Authors 2018. This paper is published with open access at SuperFri.org

In current supercomputers, storage is typically provided by parallel distributed file systems
for hot data and tape archives for cold data. These file systems are often compatible with local
file systems due to their use of the POSIX interface and semantics, which eases development
and debugging because applications can easily run both on workstations and supercomputers.
There is a wide variety of file systems to choose from, each tuned for different use cases and
implementing different optimizations. However, the overall application performance is often held
back by I/O bottlenecks due to insufficient performance of file systems or I/O libraries for highly
parallel workloads. Performance problems are dealt with using novel storage hardware technologies
as well as alternative I/O semantics and interfaces. These approaches have to be integrated into
the storage stack seamlessly to make them convenient to use. Upcoming storage systems abandon
the traditional POSIX interface and semantics in favor of alternative concepts such as object and
key-value storage; moreover, they heavily rely on technologies such as NVM and burst buffers
to improve performance. Additional tiers of storage hardware will increase the importance of
hierarchical storage management. Many of these changes will be disruptive and require application
developers to rethink their approaches to data management and I/O. A thorough understanding of
today’s storage infrastructures, including their strengths and weaknesses, is crucially important for
designing and implementing scalable storage systems suitable for demands of exascale computing.

Keywords: storage hierarchy, file system, storage system, I/O interface, data format.

Introduction

Supercomputers are valuable tools for scientific and industrial users [26]; they allow con-
ducting experiments and generating insight in areas which are otherwise too expensive, too
dangerous or impossible with other available technology. Large-scale modeling, simulation and
analysis are used to optimize existing technologies, to peek into the future and to understand
phenomena where direct means for imaging or observation are missing. Typical workloads in
high-performance computing (HPC) include climate simulations, numerical weather prediction
as well as computational fluid dynamics and finite element methods in physics, engineering and
astrophysics [26]. In biology and chemistry, protein folding and molecular dynamics are especially
compute-intensive. With the rise of precision medicine, HPC is also about to become more relevant
on an individual level. To solve these tasks, many scientific applications are frequently reading
and writing large amounts of data from and to the attached storage systems.

Unfortunately, processor, memory and network technologies advance on divergent trajectories.
Clock frequencies did not increase notably for years, and even Moore’s law is slowing down
as the technology approaches economical and physical limits [45]. Yet, compute capabilities
continue to rise dramatically due to massive use of parallelism and distributed computing [93].
Memory and storage technologies, however, have not benefited from comparable advancements
so that only a fraction of the computed results can be stored permanently [50]. This mismatch
is sometimes referred to as the memory wall, which forces users to decide which information is
considered valuable enough for preservation [65]. Besides the memory/storage challenge, policy
and practicality demand to limit the next generation of exascale systems to stay within a 20MW

1Deutsches Klimarechenzentrum GmbH, Hamburg, Germany
2Universität Hamburg, Hamburg, Germany

DOI: 10.14529/jsfi180103

2018, Vol. 5, No. 1 31

104 106 108 1010 1012
10−1

103

107

1011

Register
L1 Cache

L2 Cache
DRAM

NVRAM
SSD

Disk

Tape

BluRay

Capacity (Bytes/$)

La
te
nc
y
(n
s)

Volatile

Non-Volatile

104 106 108 1010 1012
10−2

104

1010

Register

L3 Cache

DRAM
NVRAM

SSD
Disk

Tape

Capacity (Bytes/$)

P
ow

er
(B

yt
es
/W

at
t)

Volatile

Non-Volatile

Figure 1. Comparison of capacity, latency and power characteristics for the most important
technologies of the memory and storage hierarchies

power envelope. In 2016, the US Department of Energy (DoE) released estimates that data centers
accounted for 1.8% of the country’s total electricity usage [85]. While adding additional storage
hardware promises the realization of arbitrary aggregated throughput, seeking parity to compute
capabilities with currently available technologies would result in data centers dominated by ever
larger storage systems, which eventually would exceed power and budget constraints.

The remainder of this paper is structured as follows: Section 1 provides an overview of different
memory and storage technologies which form the most basic building blocks for actual storage
systems. In Section 2, the most relevant as well as upcoming high-performance storage systems are
introduced and characterized for comparison. Storage system semantics and convenient interfaces
are discussed in Section 3 due to their impact on user experience and system performance.
Section 4 collects the most important future developments which may transform the storage
landscape. Finally, the survey is concluded with a short summary.

1. Storage and Memory Technologies

Memory and storage technologies feature widely different performance characteristics, which
usually requires finding a trade-off between latency, capacity and cost. Figure 1 illustrates the
relationships between latency, capacity, cost and power requirements for the most important
volatile and non-volatile memory technologies. Lower latency technologies tend to have lower
capacity, lack persistence and are more costly. As a result, memory hierarchies are deployed in
combination with caching techniques to provide fast access to hot data that is currently in use.
Large amounts of cold data are stored on much more affordable storage media. For data centers,
it is often feasible to provide a variety of storage tiers with deep hierarchies. The bulk of data is
stored and archived on cheap high capacity but high latency storage media (for example, tape),
while data with fast access requirements is staged onto lower latency storage tiers (for example,
hard disk drives and solid-state drives). An overview of the different storage technologies including
their performance metrics and costs are provided in Tab. 1.

Many research works during the last decade have been devoted to the possible employment
of cloud computing technologies as a platform for running HPC applications [19, 105]. Most of
these works investigated the performance of chosen application runs on such platforms, including
Amazon Web Services, OpenStack etc. [28, 55]. The results showed that only applications that

Survey of Storage Systems for High-Performance Computing

32 Supercomputing Frontiers and Innovations

Table 1. Comparison of memory and storage technologies
and performance characteristics [32, 33, 43, 47, 62, 81, 82, 94]

Technology/
Latency

Throughput
IOPS

Capacity Cost Power Endurance Retention
Form Factor Read/Write Unit ∼$/GB ∼W/GB DWPD Time

Registers < 1 ns - - 32/64 bits - - ∞ hours
L1 Cache ∼ 5 ns - - 32+32KB - - ∞ hours
L2 Cache ∼ 10 ns - - < 1024KB - - ∞ hours
L3 Cache ∼ 20 ns - - 8–12MB - - ∞ hours
DRAM ∼ 80 ns 17/17GB/s - < 64GiB 5.000 0.1500 ∞ ∼ 5ms
NVRAM ∼ 5µs 2.5/2.5GB/s 4.6M < 480GB 1.200 0.0300 (∼1000) (∼10 y)

SSD (NVMe) ∼ 20µs 8.0/5.0GB/s 1.2M < 32TB 0.200 0.0007 ∼ 10-25 > 10 y
SSD ∼ 100µs 2.1/2.0GB/s 0.8M < 8TB 0.100 0.0018 ∼ 10-25 > 10 y
HDD ∼ 10ms 250/240MB/s < 500 < 14TB 0.030 0.0004 - > 10 y
Tape > 20 s 315/315MB/s - < 15TB 0.001 - - > 30 y

are not data-intensive are suitable for cloud deployments [27]. There are also projects aiming to
develop unified systems that can be leveraged by both HPC and big data worlds [86].

1.1. Tape

For decades, tapes have been the most affordable technology for long-term storage, making it
the most common cold storage technology. Unlike other storage technologies, tape is robust to
many forms of physical mishandling. As the technology has been used for almost a century, the
aging of tape is well understood, featuring reliable data retention times easily exceeding 30 years.
Tape media are inexpensive with a price of $ 0.01 per GiB. For the total cost of ownership (TCO),
tapes are usually attractive because no energy is required for inactive media. Tapes are expected to
feature capacities of up to 200TB per tape [83]; prototypes with this capacity have been showcased
at conferences and in lab conditions by Fujitsu and IBM. With Linear Tape Open (LTO), an
industry standard protects investments into tape libraries with a roadmap for the next 6–8 years,
with guaranteed backwards compatibility for two LTO generations. About every two years, a new
generation of LTO tapes is released to the market, which roughly doubles the capacity and also
improves the read/write performance [88]. Typically, the most recent LTO cartridge will provide
capacities slightly higher than available hard disk drives (HDDs). For sequential workloads, tape
drives often outperform HDDs when comparing read/write throughput. To reduce spool times
when reaching the end of the tape, tapes are usually using a linear serpentine layout of tracks.
Technologies such as the Linear Tape File System (LTFS) and affordable EEPROMs attached to
tapes ensure that tapes are portable, self-describing and easily indexable. This allows to easily
migrate large amounts of data from one library to another. Redundant Array of Independent
Tape (RAIT) will help tape to cope with simulation output that may exceed the capacity of a
single tape and to improve read performance when multiple tapes hold the same data [36]. Special
tapes with write-once-read-many (WORM) semantics are available for temper resistant archival
as may be required by company policies or government regulation. Tape systems are commonly
deployed in combination with a disk-based cache.

J. Lüttgau, M. Kuhn, K. Duwe, Y. Alforov, E. Betke, J. Kunkel, T. Ludwig

2018, Vol. 5, No. 1 33

1.2. Hard Disk Drives

In terms of gigabytes shipped, HDDs are dominating the storage technology landscape. The
market demand, driven by consumers and data centers, provides manufacturers with the necessary
economics of scale to produce a high-tech product with delicate mechanics at competitive prices.
Until today, the bulk of active data in data centers is provisioned using HDDs. In addition to
their price, HDDs provide a very reliable way to store data [48].

HDDs store data on the magnetic coating of rotating platters, sometimes featuring up to
eight platters in a 3.5-inch drive. An actuator arm allows positioning the read/write head on
different locations of the disk. The polarity of the magnetization is used to encode for individual
states of a bit. HDDs feature very high areal data densities while providing mediocre random
read/write performance. Most modern HDDs use the so-called perpendicular recording to achieve
higher data densities and to prevent data loss due to magnetic instabilities (superparamagnetic
limit). Even higher data densities can be achieved using shingled magnetic recording (SMR),
but the capacity reduces write performance because it may be necessary to rewrite overlapping
magnetic shingles [31]. Helium-filled drives allow increasing the RPM of a drive and enable tighter
packing of platters because the lower friction of helium reduces vibration [104]. Decreasing cost
for other storage media such as NAND-based solid-state drives (SSDs) limits incentives to further
tweak HDDs based storage systems.

1.3. Solid-State Drives

Solid-state drives are commonly used to improve small random access I/O performance in
storage systems. Database systems and metadata subsystems of HPC storage systems employ
SSDs. Most commercially available SSDs are based on NAND flash memory cells. More recently,
there are also SSDs that feature 3D XPoint technologies, which offer improved I/O operations
per second (IOPS) but disappoint in terms of throughput performance so far. Both forms of SSDs
employ a variety of techniques to maximize lifetime and performance. This includes wear leveling
to prevent a drive from failing early because of access patterns that would quickly degrade specific
cells. To meet warranty guarantees, most SDDs use over-provisioning internally and remap faulty
cells transparently.

Many metrics for SSDs’ endurance rating are available; they are not standardized, however,
and often rely on an opaque workload chosen by the specific vendor. Terabytes written (TBW) and
drive writes per day (DWPD) have turned out to be among the most transparent ones because
they allow users to compare against their own assumed workload. SSDs are most commonly
available as 2.5-inch SAS/SATA drives. For highest performance, PCIe cards using NVM Express
(NVMe) are also available, but usually at a higher cost.

New manufacturing techniques that allow arranging NAND in 3D promise larger capacity
SDDs, likely resulting in density advantages over HDDs [67]. While this adds access latency
due to another indirection, higher overall throughput for large block I/O is expected. Current
architectures will not be able to fully exploit 3D NAND due to a lack of wider buses.

1.4. Non-Volatile Memory

Non-volatile random-access memory (NVRAM) aims to provide similar latency characteristics
as DRAM or SRAM while retaining data when powered off. While there exist a variety of candidates

Survey of Storage Systems for High-Performance Computing

34 Supercomputing Frontiers and Innovations

for NVRAM (for example, PCM, MRAM, FeRAM, ReRAM, Flash Memory), commercial products
that would render DRAM or SRAM obsolete are not available as of 2018.

1.4.1. Flash Memory

Flash memory is the most widespread form of NVRAM, but the performance characteristics
and especially memory wear justify research in alternative technologies. Two variants of flash
memory cells (NAND and NOR) are available, and both exhibit memory wear which eventually
leads to the failure of the memory cells. NOR-based flash memory can provide byte addressable
random access to data, but experiences long erase and write times. NAND is far more common,
as it features higher data densities and provides block-level access semantics. Flash memory
can either store individual bits using single-level cells (SLC), or multiple bits using multi-level
cells (MLC). Single-level cells can provide higher performance, better endurance and longer data
retention times. MLC provides higher data densities and therefore achieves higher capacities at
lower cost, but with reduced performance and less endurance.

1.4.2. Phase-Change Memory

As of 2016, NVRAM based on phase-change memory (PCM), called 3D XPoint, is marketed
by Intel and Micron. Intel distributes the technology in the Optane product line of SSDs, which
provides in the order of 1,000,000 IOPS and features better write endurance than NAND-based
SSDs. Performance of read/write throughput is on par with NAND-based SSDs at this time.

1.5. Volatile Memory

Besides non-volatile memory technologies for permanent data storage, volatile technologies
such as dynamic random-access memory (DRAM) and static random-access memory (SRAM)
are commonly used to accelerate access to data that is currently in use or anticipated to be used
soon. A computer’s main memory is often used to speed up file access by providing page/disk
caches. On the one hand, they can be used to speculatively read more blocks of a file than have
been requested by an application, which is called read-ahead. On the other hand, they are used
for slightly delayed write operations in order to avoid latency penalties when performing many
small I/O requests. Some database systems load all data into volatile main memory to provide
optimal query performance, while changes to the data are logged and applied asynchronously to
persistent copies of the data.

1.5.1. SRAM

Modern CPUs provide low latency access to about 8–12 MB of SRAM-based memory arranged
in multiple cache levels. In multi-core architectures, L1 caches are usually exclusive to a single
compute core, while L2 and higher cache levels are usually shared between multiple cores. The
cache coherence semantics can vary for different architectures. SRAM retains data up to a few
hours, which makes it very power efficient when idle. When SRAM is accessed frequently, power
consumption can be higher than DRAM.

J. Lüttgau, M. Kuhn, K. Duwe, Y. Alforov, E. Betke, J. Kunkel, T. Ludwig

2018, Vol. 5, No. 1 35

Table 2. NVM characteristics [4]

Property SRAM DRAM HDD NAND STT-RAM ReRAM PCM FeRAM
Cell size (F 2) 120 - 200 60 - 100 N/A 4 - 6 6 - 50 4 - 10 4 - 12 6 - 40

Write Endurance 1016 > 1015 > 1015 104 - 105 1012 - 1015 108 - 1011 108 - 109 1014 - 1015

Read Latency ∼ 0.2 - 2ns 10ns 3 - 5ms 15 - 35µs 2 - 35ns ∼ 10ns 20 - 60ns 20 - 80ns
Write Latency ∼ 0.2 - 2ns 10ns 3 - 5ms 200 - 500µs 3 - 50ns ∼ 50ns 20 - 150ns 50 - 75ns
Leakage Power High Medium (mech.) Low Low Low Low Low
Energy (R/W) Low Medium (mech.) Low Low/High Low/High Medium/High Low/High

Maturity Mature Mature Mature Mature Test chips Test chips Test chips Manufactured

1.5.2. DRAM

Because SRAM is relatively expensive to produce due to its structural complexity as well as
its density disadvantage in comparison to DRAM, DRAM is used for computer main memory
instead of SRAM. The downside of DRAM is a relatively high power consumption because
DRAM-based memory cells encode data as a charge in a capacitor that needs to be refreshed
regularly to prevent data loss. In combination with an uninterrupted power supply to ensure
operation long enough to drain data to a non-volatile memory technology, DRAM is sometimes
treated just like a non-volatile class of high performance storage.

1.6. Accelerators

As stated in [4], the upcoming non-volatile memory will probably revolutionize the memory
stack. The technologies will be used to add new memory layers (vertical integration) and to
support existing technologies (horizontal integration). The most promising technologies are PCM
(phase-change memory), MRAM (magneto-resistive RAM), FeRAM (ferroelectric RAM) and
ReRAM (resistive RAM). As shown in Tab. 2, the read/write access to these technologies is
getting closer to RAM, which offers corresponding opportunities. In fact, many accelerators use
the faster technology as a kind of cache for inefficient I/O to the slower storage technology. There
is no ultimate solution so far, so we will describe some of the most promising approaches.

Burst Buffers. Flash-based acceleration hardware can be integrated at different locations in
the system [75]. Compute nodes can be equipped with local flash storage. Another possibility
is to incorporate dedicated nodes, also referred to as burst buffers. Furthermore, buffers can be
built into the storage system itself. These three variants are illustrated in Fig. 2.

A burst buffer acts as a fast write-behind cache that transparently migrates data from the
burst buffer’s fast storage to a traditional parallel file system. Typically, burst buffers rely on
flash or NVM to support random I/O workloads that HDD-based file systems struggle with. For
flash-based SSDs, many vendors offer high-performance storage solutions: DDN’s Infinite Memory
Engine (IME) [12], IBM’s FlashSystem [37] and Cray’s DataWarp accelerator [11] are popular
examples. Using comprehensive strategies to utilize flash chips concurrently, these solutions are
powerful and robust to guarantee availability and durability of data for many years.

Hybrid Flash Arrays. Even though burst buffers provide the possibilities to increase the
system’s performance dramatically, the hardware’s potential can often not be fully exploited due
to transfer limitations. As a result, they are used at their full speed only a fraction of the time
while imposing a great part in the overall costs. Therefore, more efficient solutions are required.

Survey of Storage Systems for High-Performance Computing

36 Supercomputing Frontiers and Innovations

a) Attached to compute nodes b) Attached to compute fabric

c) Attached to I/O nodes d) Attached to storage fabric

Figure 2. An overview of different burst buffer architectures [57] (CN = compute node, ION = I/O
node, SN = storage node)

Seagate’s Nytro Intelligent I/O Manager (NytroXD) is a hybrid flash array consisting of a small
amount of flash combined with HDDs to work within Lustre and Spectrum Scale [75]. It acts as
a block device directing small I/O accesses to flash while the large I/O calls are passed to the
HDDs. With this approach temporal and spatial fragmentation can be reduced. Especially mixed
I/O workloads and I/O of small block sizes profit from NytroXD.

Other Hybrid Caching Approaches. In order to find a trade-off between performance as
well as acquisition and maintenance costs, various hybrid systems have been proposed consisting
of NVM/NVRAM and SSDs. OTF-AST (on-the-fly automated storage tiering) consists of byte-
accessible NVDIMM (non-volatile dual inline memory module) and SSDs and investigates the
potential benefits of forwarding the problematic I/O accesses to the NVRAM, while the rest is
passed directly to the main storage [70]. The results show that although the average response
time of I/O accesses is decreased, the migration algorithm needs to be adapted as the migration
overhead is considerably smaller between DIMM and SSDs than between SSDs and HDDs. A
different approach is to determine automatically whether a given memory area can benefit from
DRAM characteristics by using a profiling tool [18]. Furthermore, NOVA is a file system aiming
to increase the performance and offering strong consistency guarantees at the same time through
additional metadata structures held in DRAM, accelerating the lookup. Additionally, the data
and metadata is stored in logs on NVM, providing atomicity and fast concurrent access in a
random manner [102].

Memory Management. Further acceleration approaches are taken in the area of storage
allocation in order to optimize the system’s utilization dynamically and thereby increase the I/O
throughput. DynIMS is a dynamic memory controller, developed to speed up HPC applications
that use Spark [103]. With DynIMS, an improvement of a factor of five can be achieved in contrast

J. Lüttgau, M. Kuhn, K. Duwe, Y. Alforov, E. Betke, J. Kunkel, T. Ludwig

2018, Vol. 5, No. 1 37

HPC Storage System

Burst
Buffer

Switch
Object/Data Targets

e.g. JBODs

Object/Data Server...

...

...

...

Metadata Targets

All-Flash Arrays

Metadata Servers ...

...

...

..
.

..
.

..
.

...

...

...

Switch
High-Troughput Interconnect (IB, FC, ...)

(Low-Latency for Metadata)

Cold Storage / Archive

Switch

Disk-based
Cache

...

Ocassionally, application nodes are exclusively
dedicated to I/O (effectively burst buffers).

Tape Drives in
Robot Library

Compute
Nodes

Figure 3. A data center with a typical HPC storage system and an archive for cold data; the
network is only an approximation for better overview and may differ in a real deployment

to static allocation. Future efforts are targeted at adjusted cache management for file systems
like Lustre and Spectrum Scale.

Metadata Accelerator. FSMAC is a metadata accelerator that exploits byte-addressable
NVM technology [9, 99]. Metadata is quite small, typically smaller than a block of a file system,
which makes access to metadata inefficient. FSMAC separates metadata and data, forwarding data
to the storage and metadata to the byte-addressable NVM. For synchronous I/O, this approach
achieved a speedup factor of 49.2, while a speedup of 7.22 was reached for asynchronous I/O.

In-Memory Storage. Network-attached in-memory storage promises to provide optimal per-
formance that exceeds SSD-based solutions. A benefit is high performance predictability and
low variance. The usage of DRAM for storing intermediate data is not new, and RAM drives
have been used in operating systems for decades. However, offered RAM storage was used as
temporary local storage and not durable and usually not accessible from remote nodes. Exporting
RAM storage via parallel file systems was used mainly for performance evaluation but without
durability guarantees. BurstMem provides a burst buffer with write-behind capabilities by ex-
tending Memcached [97]. Experiments show that the ingress performance grows up to 100GB/s
with 128 BurstMem servers.

The Kove XPD is a robust scale-out pooled memory solution that allows aggregating mul-
tiple InfiniBand links and devices into one big virtual address space that can be dynamically
partitioned [49]. Internally, this remote memory is asynchronously backed up to SATA RAID
embedded in the XPDs and, thus, together with an UPS can be considered to be non-volatile. The
system offers various APIs to access this memory such as treating it as a block device. The XPDs
can also be used to speed up MPI-IO accesses [51]: three Kove XPDs delivered a throughput
of up to 60GiB/s. When increasing the number of clients or servers, a throughput close to the
available network bandwidth can be achieved already with 100KiB random accesses.

2. Storage and File Systems

Providing reliable, efficient and easy to use storage and file systems is one of the main issues
today in HPC because a wide variety of scientific applications produces and analyzes enormous
volumes of data. File systems offer an interface to the underlying storage device and link an
identifier such as the file name to the corresponding physical addresses of the storage hardware.

Survey of Storage Systems for High-Performance Computing

38 Supercomputing Frontiers and Innovations

Thereby, a more comfortable and simplified use of storage devices is enabled. Traditionally, they
realize the concept of hierarchical structuring through the use of directories and files. Besides the
actual file content, metadata such as the file size and access times are managed. Over the years,
several file systems have been proposed and established, offering a wide range of functionality.
Especially in HPC systems, parallel distributed file systems are deployed, allowing to spread
data across numerous storage devices and combining the particular features to increase the
throughput as well as the system’s capacity. However, due to the rapidly increasing data sizes,
more sophisticated and specialized approaches are required for handling the enormous amount
of information. At the same time, new and more powerful storage and network technologies are
developed, posing challenges to exploit the respective capabilities. Besides the old file system
concepts, other approaches have found their way into HPC systems. Figure 3 gives an overview
of an archetypal HPC system with a number of different storage systems and technologies.

Hence, the need for high-throughput concurrent read and write capabilities of HPC appli-
cations led to development of parallel and distributed file systems. In this section we discuss
the most popular and widely used systems and their characteristics. Among them are Lustre,
Spectrum Scale, BeeGFS, OrangeFS, Ceph and GlusterFS.

2.1. Spectrum Scale

Spectrum Scale is a scalable high-performance data management solution developed by IBM
for enterprises that need to process and store massive amounts of unstructured data [39]; it is
based on the former General Parallel File System (GPFS) [38]. The parallel file system provides
concurrent data access with the ability to perform data analysis and archiving at one place.
Spectrum Scale unifies different storage tiers like SSDs, HDDs and tapes, as well as analytics into a
single scale-out solution. This enables users to choose optimal storage for their files or object data
and move them as quickly as possible with low costs. Spectrum Scale is fully POSIX-compliant,
which allows it to support many traditional HPC applications.

The file system helps to avoid a performance bottleneck for metadata-intensive applications by
configuring dedicated servers for metadata updates. Otherwise, data can be mixed together with
metadata. Another bottleneck regarding single-server performance is also avoided in Spectrum
Scale as all servers and clients can access and share the data without moving it. Thus, even a
client can play the role of a server.

Even though Spectrum Scale is a very capable file system and has a great support by IBM
with the integration of various useful tools, it is still quite expensive especially for non-profit
clusters with research purposes.

2.2. Lustre

Lustre is a parallel distributed file system that is used on supercomputers. It is licensed under
the GNU General Public License (GPLv2) and can be extended and improved. Because of its high
performance, Lustre is used on more than half of the 100 fastest supercomputers in the world.

The file system’s architecture distinguishes between clients and servers. Clients use RPC
messages to communicate with the servers, which perform the actual I/O operations. While all
clients are identical, the servers can have different roles: Object Storage Servers (OSS) manage
the file system’s data in the form of objects; clients can access byte ranges within the objects.
Metadata Servers (MDS) manage the file system’s metadata; after retrieving the metadata, clients

J. Lüttgau, M. Kuhn, K. Duwe, Y. Alforov, E. Betke, J. Kunkel, T. Ludwig

2018, Vol. 5, No. 1 39

are able to independently contact the appropriate OSSs. Each server is connected to possibly
multiple targets (OSTs/MDTs) that store the actual file data or metadata, respectively.

Lustre runs in kernel space, that is, most functionality has been implemented in the form of
kernel modules, which has advantages and disadvantages. On the one hand, by using the kernel’s
virtual file system (VFS) Lustre can provide a POSIX-compliant file system that is compatible
with existing applications. On the other hand, each file system operation requires a system call,
which can be expensive when dealing with high-performance network and storage devices.

In line with its open approach to Lustre development, Intel has funded five Intel Parallel
Computing Centers to integrate new features into Lustre. Among others, these centers are working
on quality of service for I/O performance, file system compression, as well as better integration of
TSM storage backends and big data workflows.

2.3. BeeGFS

The parallel and POSIX-compliant cluster file system BeeGFS was developed for I/O-
intensive HPC applications [21]. Its architecture has a client-server design and consists of three
key components: clients, metadata servers and storage servers. The scalability and flexibility of
BeeGFS can be reached simply by increasing the number of servers and disks required for specific
users. All their data is transparently distributed across multiple servers using striping (chunk by
chunk of a given size). Besides data distribution, metadata is also striped over several metadata
servers on a directory level, with each server storing a part of the complete file system tree. In
this way, fast access to the data is provided. BeeGFS enables load balancing for metadata as well.

The client kernel module of the BeeGFS system is free and under the GPL license, the server
is covered by the BeeGFS EULA. Hence, commercial support is optionally available. In the future,
developers of BeeGFS aim to improve tools for monitoring and diagnostics, as well as extend the
POSIX interface support.

2.4. User-Level File Systems

In contrast to kernel space file systems such as Lustre, user-level file systems do not require any
kernel modules to run. This typically makes it easier to use such file systems in a supercomputer
environment, where users typically do not have root privileges.

OrangeFS is a parallel distributed file system that runs completely in user space. It is open
source and licensed under the GNU Lesser General Public License (LGPL). It provides excellent
MPI-IO support through a native ADIO backend and provides a wide range of user interfaces,
including several Direct Interface libraries, a FUSE file system and an optional kernel module [96].
Similar to other file systems, OrangeFS has dedicated servers for data and metadata storage.
OrangeFS uses arbitrary local POSIX file systems for data and can use either Berkeley DB (BDB)
or Lightning Memory-Mapped Database (LMDB) for metadata.

IBIO is a user-level InfiniBand-based file system, and is designed as an intermediate layer
between compute nodes and parallel file system [80]. It aims to improve performance for check-
point/restart use cases, and they discuss redundancy schemes to increase reliability. With SSDs
and FDR Infiniband, they achieve on one server a throughput of 2GB/s and 3GB/s for write
and read, respectively.

Survey of Storage Systems for High-Performance Computing

40 Supercomputing Frontiers and Innovations

Table 3. Performance of different file systems on the IO-500
list (ordered by node count)

System FS Nodes
IOR in GiB/s MDTest in kIOP/s

Easy Hard Easy Hard Easy Hard Easy Hard

Write Read Write Read Create Stat Delete

Oakforest IME 2048 740 430 600 260 28 2 54 62 36 1
Shaheen Lustre 1000 330 220 1.4 81 13 14 120 130 15 11
Shaheen DataWarp 300 970 900 16 39 51 11 49 39 49 19
Mistral Lustre 100 160 160 1.5 7 18 18 150 160 8 9
Seislab BeeGFS 24 19 22 0.9 2 100 5 430 57 170 14
Sonasad S.Scale 10 34 32 0.2 2 57 22 340 530 48 85

GlusterFS is another one POSIX-compliant, free and open-source distributed file system [14].
Like other traditional storage solutions, it has a client-server model but does not need a dedicated
metadata server. All data and metadata are stored on several devices (called volumes), which
are dedicated to different servers. GlusterFS locates files algorithmically using an elastic hashing
algorithm. This no-metadata server architecture ensures better performance, linear scalability
and reliability. At the same time, GlusterFS is a network file system that provides file-based
storage only; block and object interfaces must be built on top of it.

2.5. File System Comparison

In the IO-5003, the performance behavior for data and metadata benchmarks of different file
systems is listed. Similar to the TOP500 list for computing architectures, IO-500 aims to track
performance growth over the years and analyze changes in the storage landscape. The IO-500
does not only provide key metrics of expected performance but serves as a repository for fostering
and sharing best practices within the community. The benchmark methodology harnesses the
MDTest and the IOR benchmarks. A collection of hard tests with preconfigured parameters are
designed to show a worst-case scenario of unoptimized applications. For IOR, this means random
I/O of 47,000 chunks, and for MDTest a single shared directory with files of 3,901 bytes. A set
of easy tests are configurable and optimizable by the user and aim to show the potential of the
storage system tested. For IOR, easy tests typically are sequential I/O of large chunks, and for
MDTest empty files are used.

An excerpt from the Nov. 2017 list (rounded) is shown in Tab. 3. It shows that IME excels
at IOR hard (random) performance, but the metadata performance is worse than that of Lustre.
Data Warp on Shaheen improves the throughput of sequential I/O, but random I/O does not
benefit much. The small configurations tested of BeeGFS and Spectrum Scale do not allow to
make conclusions on the throughput. However, for metadata, BeeGFS and a recent version of
Spectrum Scale shine compared to Lustre and IME.

2.6. HPSS

In the early 1990s, national laboratories of the Department of Energy and IBM recognized there
was an enormous challenge ahead in order to manage the exponential growth of data [98]. They
developed the High Performance Storage System (HPSS) to provide a scalable hierarchical storage

3https://www.io500.org/

J. Lüttgau, M. Kuhn, K. Duwe, Y. Alforov, E. Betke, J. Kunkel, T. Ludwig

2018, Vol. 5, No. 1 41

system that meets the requirements to handle future hardware generations. The architecture’s
main focus lies in hierarchical storage management (HSM) and data archiving. It is a widespread
solution in today’s storage systems, mainly used for the management of tape archives. The total
managed data volume equals 2.2EB only for scientific data [34].

2.7. ECFS and MARS

Other storage systems focused on data archiving developed by the European Centre for
Medium-Range Weather Forecasts (ECMWF) are ECMWF’s File Storage System (ECFS) and
Meteorological Archival and Retrieval System (MARS) [25]. An HPSS manages the tape archives
for both systems as well as the disk cache for ECFS where the files are accessed using a unique
path. MARS is an object store providing an interface similar to a database. By using queries
in a custom language, a list of relevant fields can be set which are then joined into a package
and stored in the system. The field database (FDB) stages and caches fields which are often
accessed. ECFS contains relatively few files which are used concurrently and experiences mainly
write calls. In MARS, however, the files are equally relevant and mostly read [87]. Thus, both
systems provide powerful storage management for researchers interested in weather modeling.
MARS allows HPC users to access huge amounts of meteorological data stored only in GRIB and
BUFR formats, collected over the last 30 years.

2.8. Ceph

Ceph is a free and open-source platform that offers file-, block- and object-based data storing
on a single distributed cluster [100]. The system implements distributed object-storage on a base
of Reliable Autonomic Distributed Object Store (RADOS) system [101]. It is responsible for data
migration, replication, failure detection, and failure recovery to the cluster. Integration of the
near-POSIX-compliant CephFS file system allows many applications to utilize the benefits and
capabilities of the scalable environment. Ceph makes use of intelligent Object Storage Devices
(OSDs). These units provide file I/O (reads and writes) for all clients which interact with them.
Data and metadata are decoupled because all the operations for metadata altering are performed
by Metadata Servers (MDSs). Ceph dynamically distributes the metadata management and
responsibility for the file system directory hierarchy among tens or even hundreds of those MDSs.

Ceph, however, still has some drawbacks. Among them is the limitation of only being able to
deploy one CephFS per cluster and the current test phase of reliability on real-world use-cases.
Some features and utilities are still in an experimental phase as well. For instance, usage of
snapshots could cause client nodes or MDSs to terminate unexpectedly. In addition, Ceph is
designed with HDDs as its basis and needs improvements in performance when disks are replaced
with SSDs, and data access pattern is random [71].

3. Interfaces and Data Formats

Interfaces play an important role in using file and storage system, especially in the HPC
context. On the one hand, interfaces should be convenient to use, so that developers can focus on
the applications’ functionality instead of the I/O interface. On the other hand, they should be
able to deliver high performance by supporting parallel access. Moreover, being able to easily
exchange data is of fundamental importance in research. Each interface typically supports one or

Survey of Storage Systems for High-Performance Computing

42 Supercomputing Frontiers and Innovations

more data formats that can be accessed using it. Data formats also influence how fast data can
be accessed and how exchangeable it is.

3.1. POSIX

The POSIX I/O interface’s first formal specification dates back to 1988 when it was included
in POSIX.1. Later, specifications for asynchronous and synchronous I/O were added in POSIX.1b
from 1993 [40]. Even though it was designed primarily for local file systems, POSIX is widely
used, even in parallel distributed file systems, and thus provides excellent portability.

Due to its focus on local file systems and portability, POSIX features very strict consistency
and coherence requirements. For instance, write operations have to be visible to other clients
immediately after the system call returns. These strict requirements pose a serious bottleneck in
parallel distributed file systems as they require coordination and synchronization of all clients [58].
Moreover, I/O is intended to be atomic but not strictly required to be so.

Additionally, POSIX files are opaque byte streams and, therefore, applications are not able
to inform the file system about data structures that might be used for more intelligent I/O and
data placement decisions.

The effort for POSIX HPC I/O extensions aimed to address some of POSIX’s limitations
by introducing functionality for group open, non-contiguous read/write and optimizations for
metadata performance [46, 95]. However, none of the extensions were integrated into any major
file system, requiring applications to use the traditional interface.

3.2. MPI-IO

In contrast to the POSIX interface, MPI-IO has been designed from the ground up for
parallel I/O. It was introduced in the MPI standard’s version 2.0 in 1997 [66] and defines I/O
operations in an analogous fashion to MPI’s established message passing operations. MPI-IO
represents an I/O middleware that abstracts from the actual underlying file system and thus
offers portability for parallel applications. For instance, the ADIO layer of the popular MPI-IO
implementation ROMIO includes support and optimizations for POSIX, NFS, OrangeFS and
many other file systems [35]. MPI-IO’s interface is element-oriented and supports MPI datatypes
to access data within files. The actual I/O functions look and behave very similar to their POSIX
counterparts [84].

MPI-IO’s semantics differ drastically from POSIX’s. Specifically, its consistency requirements
are less strict than those defined by POSIX [10, 89]. Non-overlapping or non-concurrent write
operations are handled correctly when using MPI-IO’s default semantics. In contrast to POSIX’s
immediate visibility of changes for all participating clients, MPI-IO requires changes to be visible
immediately only to the writing process itself. Other processes first have to synchronize their
view of the file using MPI_File_sync and MPI_Barrier.

Moreover, MPI-IO offers an atomic mode for workloads that require stricter semantics.
The mode can be enabled (and disabled) at runtime using MPI_File_set_atomicity. It allows
concurrent and conflicting writes to be handled correctly and also makes changes visible to all
processes within the same communicator without explicitly synchronizing them. However, the
atomic mode can be difficult to support [53, 77].

J. Lüttgau, M. Kuhn, K. Duwe, Y. Alforov, E. Betke, J. Kunkel, T. Ludwig

2018, Vol. 5, No. 1 43

3.3. HDF and NetCDF

As described above, many I/O interfaces only feature access based ones on bytes or elements.
Additionally, they do not encode the file structure within the files themselves, requiring a priori
knowledge to be able to access existing files. HDF and NetCDF are two popular interfaces for
working with self-describing data. Self-describing data formats contain all necessary information
to be able to access files even if their structure is not known beforehand. This allows effortless
exchange of data between scientists.

The Hierarchical Data Format (HDF) consists of a set of file formats and libraries for accessing
self-describing collections of data. It is used in many scientific applications [30]. HDF5 supports
two major types of data structures: datasets and groups, which are similar to files and directories
in traditional file systems. Datasets are used to store typed data, while groups are used to structure
the namespace. Groups can contain datasets as well as groups, which leads to a hierarchical
layout. Datasets are typed and can store multi-dimensional arrays of several different data types.
Another similarity to file systems is how objects are accessed: they use POSIX-like paths such as
/path/to/dataset. Moreover, datasets and groups can be associated with additional metadata
using user-defined attributes. This can be used to store arbitrary information together with the
actual data. HDF5 uses existing I/O interfaces such as POSIX and MPI-IO to perform the actual
I/O. When using the MPI-IO backend, parallel I/O can be performed from multiple clients into a
shared HDF5 file.

The Network Common Data Format (NetCDF) also consists of a set of libraries and self-
describing data formats [68]. It is mainly used in scientific applications, especially in the fields
of climatology, meteorology and oceanography [76]. NetCDF’s current version 4 uses HDF5
underneath but reduces the number of supported features for more convenient use. As is the case
with HDF5, NetCDF-4 supports parallel I/O.

Unfortunately, over time these libraries accumulate legacy. For example, in HDF5 this becomes
apparent in optimizations designed for systems that differ considerably from today’s parallel file
systems. Because HDF5 in the past could not and today does not pass on logical information
about the structure of the data to lower levels, there is no way to account for it. Eventually,
well-intentioned heuristics distributed across different layers begin to impede each other.

3.4. ADIOS

The Adaptable IO System (ADIOS) has been designed to solve some of the problems that
come with the approaches discussed above. The basic objective is to provide a library of tuned
I/O routines to serve as a middleware on a wide range of hardware [56, 61]. Often, applications
are highly optimized for specific system architectures to increase performance. As scientific code
has a long lifetime, it is executed on several generations of supercomputers. Therefore, changes
are required to fully exploit the respective system’s capabilities. ADIOS offers the possibility to
perform I/O using an abstract definition of the application’s data structures in an XML file. This
definition is then used to automatically generate code to perform the actual I/O, which allows
decoupling the I/O portion of the remaining application code. Once the old I/O calls are replaced
by the automatically generated code, there is no need for future recompiling as the implementation
of the I/O behavior is no longer in the application. The actual I/O functionality is realized
by so-called engines acting as different backends for several self-describing data formats such

Survey of Storage Systems for High-Performance Computing

44 Supercomputing Frontiers and Innovations

as ADIOS’s own bp (binary packed) format, HDF5, and NetCDF. Moreover, ADIOS supports
advanced functionality such as on-the-fly data transformations [5].

3.5. SIONlib

SIONlib provides scalable access to task-local files [22]. This is achieved by internally mapping
all accesses to a single or small number of physical files and aligning them to the file system’s block
size. By supporting the common fread and fwrite interfaces, SIONlib minimizes the amount of
changes necessary to applications. SIONlib’s approach is required to overcome shortcomings in
current file systems. Due to metadata performance bottlenecks, file systems often cannot deal
well with large numbers of files. Moreover, because of the strong consistency semantics described
above, shared file performance is often dramatically degraded when performing unaligned I/O to
a shared file. By intelligently managing the number of underlying physical files and transparently
aligning the data, SIONlib can alleviate these problems.

3.6. Domain-Specific Approaches

In addition to the previously mentioned generic I/O libraries, there are a multitude of domain-
specific I/O and data management libraries available. For instance, the Gridded Binary (GRIB)
format is widely used in meteorology to store weather and climate data [24]. The Climate Data
Interface (CDI) provides a convenient interface for climate-related data and supports multiple data
formats, including GRIB and NetCDF [8]. PIO is an application-level I/O library for earth system
models and supports multiple backends such as MPI-IO and various versions of NetCDF [13].
Lemon is a library for parallel I/O mainly used in high-energy physics [15]; it enables efficient I/O
of both binary data and associated metadata in the SciDAC Lattice QCD Interchange Message
Encapsulation format.

3.7. Conclusion and Comparison

All production-level file systems currently in use offer a POSIX I/O interface that treats file
data as an opaque byte stream. As it is not possible to reconstruct the data format from this
byte stream, self-describing data formats such as NetCDF and ADIOS are widely used to be able
to exchange data with other researchers and annotate data with meaningful metadata.

Parallel Application
NetCDF

MPI-IO

Block Storage

ADIO

HDF5

Lustre
ldiskfs

Kernel
Space

User
Space

Figure 4. Exemplary HPC I/O stack

Figure 4 illustrates a typical HPC I/O stack. Applications only interface directly with NetCDF,
which depends on HDF5 and so on. The coupling between the different layers is loose and mainly
used for performance tuning. Structural information about the data is lost as it is handed down

J. Lüttgau, M. Kuhn, K. Duwe, Y. Alforov, E. Betke, J. Kunkel, T. Ludwig

2018, Vol. 5, No. 1 45

through the layers: while an application might pass multi-dimensional matrices of numerical
data to NetCDF, MPI-IO is only aware of a stream of elements, and Lustre’s POSIX interface
handles file data as raw bytes. A comparison of different I/O interfaces, including their ease of use,
supported data formats, exchangeability of data and supported languages, is shown in Tab. 4.

Table 4. Comparison of I/O interfaces used in HPC
(Conv. = Convenience, Exch. = Exchangeability)

Interface Conv. Formats Exch. Languages

POSIX Low Raw 7 C, C++, Fortran and more
MPI-IO Low Raw 7 C, C++, Fortran, Java, Python and more
HDF Medium HDF4, HDF5 3 C, C++, Fortran, Java and more
NetCDF Medium NetCDF, HDF5 3 C, C++, Fortran, Java, R and more
ADIOS High bp, bp2, HDF5, NetCDF-4 3 C, C++, Fortran
SIONlib Low Raw 7 C, C++, Fortran
GRIB Medium GRIB 34 C, C++, Fortran, Python
CDI Medium GRIB, NetCDF and more 35 C, C++, Fortran
PIO Medium Raw, NetCDF 35 C, C++, Fortran
Lemon Medium SciDAC LIME 7 C, C++

4. Future Developments

This section collects current efforts and anticipated developments for storage systems and
technologies. We identify five main factors/areas. Each is summarized in a dedicated subsection,
but they should not be seen as independent of each other: 1) future applications and system
requirements, as well as market effects; 2) co-design efforts; 3) new and advanced technologies; 4)
alternative storage architectures; 5) future interfaces.

4.1. Future Applications and Market Effects

Exascale applications, big data analytics and machine learning are already anticipated
workloads. It seems reasonable to expect an increase in diversity and even less predictable access
patterns than before. Exascale simulations require storage systems that will be able to serve
tens of thousands of nodes [23]. Larger node counts are expected to introduce higher error
rates, which results in the deployment of fault-tolerance mechanism and also incurs stress onto
storage systems [17, 59]. Large-scale observation systems (for example, in astrophysics) as well as
small-scale data loggers (for example, Internet of Things) will require storage systems that can
consume and store data at unprecedented scale, ideally with in-transit data processing capabilities.
In many cases, scientific workloads are lacking market relevance, and are thus not a priority
for many vendors. Storage products offered by vendors are more likely to address the demands
of cloud providers and business-driven big data analytics and machine learning. At the same
time, the commoditization of technologies used in consumer electronics as well as cloud services
influences on which technologies will be considered for the design of next-generation storage
systems.

4Only individual records are self-describing.
5Depends on the chosen data format.

Survey of Storage Systems for High-Performance Computing

46 Supercomputing Frontiers and Innovations

4.2. Co-Design

Incremental changes to existing solutions appear to be insufficient to address the challenges
ahead, which is why co-design efforts increasingly include all stakeholders and technical layers. A
major driver in HPC innovation is the Department of Energy, which focuses on two approaches
to co-design: 1) application-centric and 2) architecture-centric co-design [1]. As exascale systems
are approaching, and the storage problematic intensifies, many efforts (including ECP [16],
FastForward [44], ADIOS [72], HDF VOL [29], ESiWACE [20], NEXTGenIO [69] and SAGE [78])
are working on the modernization of how applications and libraries down to the storage hardware
handle I/O. Co-design can yield highly optimized solutions for special use cases but is not
affordable for many smaller communities within HPC.

4.3. Technologies

Section 1 was focusing on technologies and products that are already and widely deployed in
data centers. This section will summarize some upcoming changes to the existing technologies
but also the expected impact of more speculative technologies that require more research before
they find their way into data centers. An important trend is the addition of wider buses and
asynchronous protocols for data movement in the form of NVMe and also the support for high-
bandwidth memory (HBM) [74]. HBM requires architecture changes, which are not backwards
compatible with older hardware, but will bring significant benefit to bandwidth-bound applica-
tions [73]. With 3D NAND, the capacity of SSDs will improve further, which might eventually
replace HDDs in data centers [41]. NVRAM will likely have a considerable impact on the storage
landscape, but most of the known candidates are not ready for mass production or remain too
expensive to replace other technologies [4]. Many data transformations such as compression or
encryption could be performed out-of-core, either on GPUs or in-transit [2, 42].

For long term-storage and cold data, tape seems likely to remain competitive [83]. One
promising alternative, especially for WORM data, could be holographic storage which features
high densities and slightly more favorable access semantics than tape [79]. DNA may be interesting
as a data storage medium for being durable, while also featuring very high volumetric densities.
Applications have already been explored, but technology is currently not feasible due to the state
of DNA synthesis and sequencing techniques [3].

4.3.1. Open-Channel SSDs

A new class of SSDs which improves and optimizes the performance of traditional SSDs has
been recently introduced as Open-Channel SSDs [52]. They allow splitting the internal capacity
of a disk into a number of I/O channels for making the parallel data access faster and maximizing
the overall read/write bandwidth. This is a software-defined hardware because the management
of parallel units at Open-Channel SSDs is moved from the embedded processor within the device
to the hosting file system. It is possible to reduce and predict latency by intelligently controlling
I/O submissions. In addition, data placement and I/O scheduling are provided trough NVM
management as a block device either at the application level or at the hosting file system.

J. Lüttgau, M. Kuhn, K. Duwe, Y. Alforov, E. Betke, J. Kunkel, T. Ludwig

2018, Vol. 5, No. 1 47

4.4. Storage and File Systems

There is a wide variety of new and upcoming approaches for file and storage systems [7].
Their optimization and improvement is highly required due to the challenges regarding managing
the vast amount of data from I/O-intensive applications. The HPC community aims to relax
the strict POSIX semantics without losing the support for legacy applications. Leveraging cloud
computing features and its advantages is a new promising trend today. In this section, we will
provide an overview of some of the most important ones and highlight the impact they will have
on applications and developers.

DAOS. The Fast Forward Storage and IO (FFSIO) project aims at providing an exascale
storage system which is capable of dealing with the requirements of HPC applications, as well as
big data type workloads. It aims at introducing a new I/O stack and supporting more complex
basic data types like containers and key-arrays [60]. Its functionality ranges from a general I/O
interface at the top over an I/O forwarding and an I/O dispatcher layer to the Distributed
Application Object Store (DAOS) layer, which offers a persistent storage interface and translates
the object model visible to the user to the demands of the underlying infrastructure. DAOS will
require large quantities of NVRAM and NVMe devices and will therefore not be suitable for all
environments. Specifically, the high prices for these relatively new technologies will limit its use
both in data centers and especially research, at least in the near future.

PPFS. Post-Petascale File System (PPFS) based on object storage using OpenNVM and
targets to converge both HPC and cloud computing [90, 91]. This system uses a key-value store
for metadata storage and non-blocking distributed transactions to update multiple entries at
the same time. In this way, the offered platform achieves high performance and avoids POSIX
compliance.

SoMeta. Scalable Object-Centric Metadata Management (SoMeta) is intended for future object-
centric storage systems, providing the corresponding metadata infrastructure [92]. A distributed
hash table is used to organize metadata objects that contain the file system metadata. Additionally,
developers have the possibility to annotate this metadata with user-specific tags such as additional
information about the application.

EMPRESS. Extensible Metadata Provider for Extreme-Scale Scientific Simulations (EM-
PRESS) offers customizable metadata tagging in order to mark the interesting data of large-scale
simulations before storing. This simplifies locating the relevant data in post-processing and can
help avoid searches through the complete data [54].

Týr. Týr is a blob storage system with support for transactions; it provides blob storage
functionality and high access parallelism [64]. Measurements show that many applications do
not require most of the functionality provided by full-fledged file systems but instead only use a
subset that can be provided by blob or object storage systems [63].

4.5. Interfaces and Data Formats

DAOS. In addition to introducing a novel user-space storage system, DAOS will also support
new ways of performing I/O in a scalable way [6]. From an application developer’s point of

Survey of Storage Systems for High-Performance Computing

48 Supercomputing Frontiers and Innovations

view, DAOS will provide a rich I/O interface in the form of key-array objects with support for
both structured and unstructured data. Additionally, established I/O interfaces such as a legacy
POSIX interface and an HDF5 interface will be supported natively. Similar to databases, DAOS
has support for transactions, that is, multiple operations can be batched in a single transaction,
which becomes immutable, durable and consistent once committed as an epoch. On the one hand,
this allows multiple processes to perform asynchronous write operations without having to worry
about consistency problems. On the other hand, read operations will always have a consistent
view because they are based on a committed (and thus immutable) epoch.

Conclusion

This survey takes a snapshot of the current storage landscape and accentuates the areas
that require more research in the future. Current co-design efforts outline a plausible path to
exascale systems, but in the long term, the widening gap between computing and storage system
capabilities requires coordinated efforts on multiple fronts. Fundamental research and funding
directed towards software and hardware storage technologies are required. On the hardware side,
NVRAM storage will likely transform how we build storage systems. On the one hand, NVRAM
can improve the capabilities to record large amounts of data at the pace required to be useful
for later analysis tasks. On the other hand, NVRAM can dramatically simplify storage systems,
which currently add complexity to every effort for relatively modest performance improvements.

Hardware improvements alone will not ensure high-performance storage systems to keep
pace with the ever-increasing computational power. Applications and workloads, as well as data
centers, differ, but as many hardware components cannot be operated economically for over
five years, hardware-specific optimizations in applications are only feasible to a limited extent.
Applications typically have much longer lifetimes and, thus, research in software to come up with
convenient and portable interfaces is required. Approaches such as DAOS show that it is possible
to offer advanced and novel I/O interfaces without breaking backwards compatibility with existing
applications. By natively supporting established high-level interfaces such as HDF5, applications
do not need to be ported if they are already making use of such an interface. Moreover, additional
information made available by high-level interfaces can be used for optimizing I/O and data
management decisions.

Currently, a large number of domain-specific solutions are in use due to differing requirements
within each domain. Concentrating efforts on providing efficient and scalable solutions that are
generic enough to be used in multiple or all domains would allow reducing the fragmentation
we currently observe. This, however, is not a purely technical problem and would require broad
agreement across many domains. A more realistic goal would be to provide a solid base that
can be extended with relatively thin wrappers for each specific domain. For interfaces and data
formats, this has already happened in part with multiple domains (including high-energy physics
and climate science) basing their solutions on the established HDF5 format.

In addition, training activities for application developers but also programs to educate experts
which will develop the next generation of storage systems and technologies are necessary. Data-
driven sciences provide huge socio-economic benefits, but they are slowed down due to a lack of
experts, convenient software and sufficiently powerful systems.

J. Lüttgau, M. Kuhn, K. Duwe, Y. Alforov, E. Betke, J. Kunkel, T. Ludwig

2018, Vol. 5, No. 1 49

Acknowledgements

Parts of this publication are enabled by the following projects: BigStorage (Storage-based
Convergence between HPC and Cloud to Handle Big Data), funded by the European Union
under the Marie Skłodowska-Curie Actions (H2020-MSCA-ITN-2014-642963). ESiWACE, which
received funding from the EU Horizon 2020 research and innovation programme under grant
agreement no. 675191. This material reflects only the authors’ view and the EU commission is
not responsible for any use that may be made of the information it contains.

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-
mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work
without further permission provided the original work is properly cited.

References

1. Ang, J.A.: High performance computing co-design strategies. In: Proceedings of the 2015
International Symposium on Memory Systems. pp. 51–52. MEMSYS ’15, ACM, New York,
NY, USA (2015), DOI: 10.1145/2818950.2818959

2. Bennett, J., Abbasi, H., Bremer, P., Grout, R.W., Gyulassy, A., Jin, T., Klasky, S., Kolla,
H., Parashar, M., Pascucci, V., Pébay, P.P., Thompson, D.C., Yu, H., Zhang, F., Chen, J.:
Combining in-situ and in-transit processing to enable extreme-scale scientific analysis. In:
SC Conference on High Performance Computing Networking, Storage and Analysis, SC ’12,
Salt Lake City, UT, USA, November 11 - 15, 2012 (2012), DOI: 10.1109/SC.2012.31

3. Bornholt, J., Lopez, R., Carmean, D.M., Ceze, L., Seelig, G., Strauss, K.: A
DNA-Based Archival Storage System. SIGPLAN Notices 51(4), 637–649 (2016),
DOI: 10.1145/2954679.2872397

4. Boukhobza, J., Rubini, S., Chen, R., Shao, Z.: Emerging nvm: A survey on architectural
integration and research challenges. ACM Transactions on Design Automation of Electronic
Systems (TODAES) 23(2), 14:1–14:32 (2017), DOI: 10.1145/3131848

5. BoyukaII, D.A., Lakshminarasimhan, S., Zou, X., Gong, Z., Jenkins, J., Schendel, E.R.,
Podhorszki, N., Liu, Q., Klasky, S., Samatova, N.F.: Transparent in situ data transforma-
tions in ADIOS. In: 14th IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing, CCGrid 2014, Chicago, IL, USA, May 26-29, 2014. pp. 256–266 (2014),
DOI: 10.1109/CCGrid.2014.73

6. Breitenfeld, M.S., Fortner, N., Henderson, J., Soumagne, J., Chaarawi, M., Lombardi, J.,
Koziol, Q.: DAOS for extreme-scale systems in scientific applications. CoRR abs/1712.00423
(2017), http://arxiv.org/abs/1712.00423, accessed: 2018-03-01

7. Brinkmann, A., Mohror, K., Yu, W.: Challenges and opportunities of user-level file systems
for HPC (dagstuhl seminar 17202). Dagstuhl Reports 7(5), 97–139 (2017), DOI: 10.4230/Da-
gRep.7.5.97

8. CDI Developers: Climate Data Interface. https://code.mpimet.mpg.de/projects/cdi
(2018), accessed: 2018-02-01

Survey of Storage Systems for High-Performance Computing

50 Supercomputing Frontiers and Innovations

9. Chen, J., Wei, Q., Chen, C., Wu, L.: FSMAC: A file system metadata accelerator
with non-volatile memory. In: IEEE 29th Symposium on Mass Storage Systems and
Technologies, MSST 2013, May 6-10, 2013, Long Beach, CA, USA. pp. 1–11 (2013),
DOI: 10.1109/MSST.2013.6558440

10. Corbett, P., Feitelson, D., Fineberg, S., Hsu, Y., Nitzberg, B., Prost, J.P., Snir, M.,
Traversat, B., Wong, P.: Overview of the MPI-IO Parallel I/O Interface. In: IPPS ’95
Workshop on Input/Output in Parallel and Distributed Systems. pp. 1–15 (1995), http:
//lovelace.nas.nasa.gov/MPI-IO/iopads95-paper.ps, accessed: 2018-03-01

11. Cray: CRAY XC40 DataWarp Applications I/O Accelerator. http://www.cray.com/sites/
default/files/resources/CrayXC40-DataWarp.pdf, accessed: 2018-03-01

12. DDN: Worlds’s most advanced application aware I/O acceleration solutions. http://www.
ddn.com/products/infinite-memory-engine-ime14k, accessed: 2018-03-01

13. Dennis, J.M., Edwards, J., Loy, R.M., Jacob, R.L., Mirin, A.A., Craig, A.P., Vertenstein,
M.: An application-level parallel I/O library for earth system models. The International
Journal of High Performance Computing Applications (IJHPCA) 26(1), 43–53 (2012),
DOI: 10.1177/1094342011428143

14. Depardon, B., Le Mahec, G., Séguin, C.: Analysis of Six Distributed File Systems. Research
report (2013), https://hal.inria.fr/hal-00789086, accessed: 2018-02-01

15. Deuzeman, A., Reker, S., Urbach, C.: Lemon: An MPI parallel I/O library for data
encapsulation using LIME. Computer Physics Communications 183(6), 1321–1335 (2012),
DOI: 10.1016/j.cpc.2012.01.016

16. DOE, NISA: Exascale Computing Project (ECP). https://www.exascaleproject.org/
(2017), accessed: 2018-03-01

17. Dongarra, J.J., Tomov, S., Luszczek, P., Kurzak, J., Gates, M., Yamazaki, I., Anzt, H.,
Haidar, A., Abdelfattah, A.: With extreme computing, the rules have changed. Computing
in Science and Engineering 19(3), 52–62 (2017), DOI: 10.1109/MCSE.2017.48

18. Dulloor, S., Roy, A., Zhao, Z., Sundaram, N., Satish, N., Sankaran, R., Jackson, J., Schwan,
K.: Data tiering in heterogeneous memory systems. In: Proceedings of the Eleventh European
Conference on Computer Systems, EuroSys 2016, London, United Kingdom, April 18-21,
2016. pp. 15:1–15:16 (2016), DOI: 10.1145/2901318.2901344

19. Duran-Limon, H.A., Flores-Contreras, J., Parlavantzas, N., Zhao, M., Meulenert-Peña, A.:
Efficient execution of the WRF model and other HPC applications in the cloud. Earth
Science Informatics 9(3), 365–382 (2016), DOI: 10.1007/s12145-016-0253-7

20. ESiWACE: Centre of Excellence in Simulation of Weather and Climate in Europe. https:
//www.esiwace.eu/, accessed: 2018-03-01

21. Fraunhofer ITWM, ThinkParQ: BeeGFS - The Leading Parallel Cluster File System. https:
//www.beegfs.io (2018), accessed: 2018-02-01

J. Lüttgau, M. Kuhn, K. Duwe, Y. Alforov, E. Betke, J. Kunkel, T. Ludwig

2018, Vol. 5, No. 1 51

22. Frings, W., Wolf, F., Petkov, V.: Scalable massively parallel I/O to task-local files. In:
Proceedings of the ACM/IEEE Conference on High Performance Computing, SC 2009,
November 14-20, 2009, Portland, Oregon, USA (2009), DOI: 10.1145/1654059.1654077

23. Geist, A., Reed, D.A.: A survey of high-performance computing scaling challenges. The
International Journal of High Performance Computing Applications (IJHPCA) 31(1), 104–
113 (2017), DOI: 10.1177/1094342015597083

24. Gensel, J., Josselin, D., Vandenbroucke, D. (eds.): Bridging the Geographic Information
Sciences - International AGILE’2012 Conference, Avignon, France, April 24-27, 2012. Lecture
Notes in Geoinformation and Cartography, Springer (2012), DOI: 10.1007/978-3-642-29063-3

25. Grawinkel, M., Nagel, L., Mäsker, M., Padua, F., Brinkmann, A., Sorth, L.: Analysis of
the ecmwf storage landscape. In: Proceedings of the 13th USENIX Conference on File and
Storage Technologies. pp. 15–27. FAST ’15, USENIX Association, Berkeley, CA, USA (2015),
http://dl.acm.org/citation.cfm?id=2750482.2750484, accessed: 2018-03-01

26. Guest, M.: Prace: The Scientific Case for HPC in Europe. Insight publishers, Bristol (2012)

27. Gupta, A., Kalé, L.V., Gioachin, F., March, V., Suen, C.H., Lee, B., Faraboschi, P.,
Kaufmann, R., Milojicic, D.S.: The who, what, why, and how of high performance computing
in the cloud. In: IEEE 5th International Conference on Cloud Computing Technology and
Science, CloudCom 2013, Bristol, United Kingdom, December 2-5, 2013. vol. 1, pp. 306–314
(2013), DOI: 10.1109/CloudCom.2013.47

28. Gupta, A., Milojicic, D.: Evaluation of hpc applications on cloud. In: Proceedings of the
2011 Sixth Open Cirrus Summit. pp. 22–26. OCS ’11, IEEE Computer Society, Washington,
DC, USA (2011), DOI: 10.1109/OCS.2011.10

29. HDF Group: RFC: Virtual Object Layer (2014)

30. HDF5: Hierarchical data model. https://www.hdfgroup.org/hdf5/, accessed: 2018-03-01

31. He, W., Du, D.H.C.: Smart: An approach to shingled magnetic recording translation.
In: 15th USENIX Conference on File and Storage Technologies, FAST 2017, Santa Clara,
CA, USA, February 27 - March 2, 2017. pp. 121–134 (2017), https://www.usenix.org/
conference/fast17/technical-sessions/presentation/he, accessed: 2018-03-01

32. HGST: Ultrastar-Hs14-DS. https://www.hgst.com/sites/default/files/resources/
Ultrastar-Hs14-DS.pdf, accessed: 2018-03-01

33. HGST: Ultrastar-SN200. https://www.hgst.com/sites/default/files/resources/
Ultrastar-SN200-Series-datasheet.pdf, accessed: 2018-03-01

34. High Performance Storage System: Publicly disclosed HPSS deployments. http://www.
hpss-collaboration.org/customersT.shtml (2018), accessed: 2018-02-01

35. Hubovsky, R., Kunz, F.: Dealing with Massive Data: from Parallel I/O to Grid I/O. Master’s
thesis, University of Vienna, Department of Data Engineering (2004)

Survey of Storage Systems for High-Performance Computing

52 Supercomputing Frontiers and Innovations

36. Hughes, J., Fisher, D., Dehart, K., Wilbanks, B., Alt, J.: HPSS RAIT Architecture.
White paper of the HPSS collaboration (2009), http://www.hpss-collaboration.org/
documents/HPSS_RAIT_Architecture.pdf, accessed: 2018-03-01

37. IBM: Flash Storage. https://www.ibm.com/storage/flash, accessed: 2018-03-01

38. IBM: General Parallel File System. https://www.ibm.com/support/knowledgecenter/en/
SSFKCN/gpfs_welcome.html (2016), accessed: 2018-02-01

39. IBM: Ibm spectrum scale: Overview. http://www.ibm.com/systems/storage/spectrum/
scale/ (2016), accessed: 2018-03-01

40. IEEE, T., Group, T.O.: Standard for Information Technology – Portable Operating System
Interface (POSIX) Base Specifications, Issue 7. IEEE Std 1003.1, 2013 Edition (incorpo-
rates IEEE Std 1003.1-2008, and IEEE Std 1003.1-2008/Cor 1-2013) pp. 1–3906 (2013),
DOI: 10.1109/IEEESTD.2013.6506091

41. Intel: Intel® 3D NAND Technology Transforms the Economics of Storage. https://www.
intel.com/content/www/us/en/solid-state-drives/3d-nand-technology-animation.
html, accessed: 2018-03-01

42. Intel: Intel® QuickAssist Technology (Intel® QAT) Improves Data Center...
https://www.intel.com/content/www/us/en/architecture-and-technology/
intel-quick-assist-technology-overview.html, accessed: 2018-03-01

43. Intel: Optane SSD DC P4800X. https://www.intel.com/content/dam/www/public/us/
en/documents/product-briefs/optane-ssd-dc-p4800x-brief.pdf, accessed: 2018-03-01

44. Intel, The HDF Group, EMC, Cray: Fast Forward Storage and I/O - Final Report.
https://wiki.hpdd.intel.com/display/PUB/Fast+Forward+Storage+and+IO+Program+
Documents?preview=/12127153/22872065/M8.5%20FF-Storage%20Final%20Report%
20v3.pdf (2014), accessed: 2018-03-01

45. ITRS: International technology roadmap for semiconductors - 2.0. Tech. rep. (2015)

46. Kimpe, D., Ross, R.: Storage models: Past, present, and future. High Performance Parallel
I/O pp. 335–345 (2014)

47. Kingston: KSM24LQ4/64HAI. https://www.kingston.com/dataSheets/KSM24LQ4_64HAI.
pdf, accessed: 2018-03-01

48. Klein, A.: Backblaze Hard Drive Stats for 2017. https://www.backblaze.com/blog/
hard-drive-stats-for-2017/ (2018), accessed: 2018-03-01

49. Kove Corporation: About xpress disk (xpd) (2015), http://www.hamburgnet.de/products/
kove/Kove-XPD-L3-4-datasheet.pdf, accessed: 2018-03-01

50. Kuhn, M., Kunkel, J., Ludwig, T.: Data Compression for Climate Data. Supercomputing
Frontiers and Innovations 3(1), 75–94 (2016), DOI: 10.14529/jsfi160105

J. Lüttgau, M. Kuhn, K. Duwe, Y. Alforov, E. Betke, J. Kunkel, T. Ludwig

2018, Vol. 5, No. 1 53

51. Kunkel, J.M., Betke, E.: An MPI-IO in-memory driver for non-volatile pooled memory of
the kove XPD. In: High Performance Computing - ISC High Performance 2017 International
Workshops, DRBSD, ExaComm, HCPM, HPC-IODC, IWOPH, IXPUG, Pˆ3MA, VHPC,
Visualization at Scale, WOPSSS, Frankfurt, Germany, June 18-22, 2017, Revised Selected
Papers. pp. 679–690 (2017), DOI: 10.1007/978-3-319-67630-2_48

52. Labs, C.: Open-Channel Solid State Drives. https://openchannelssd.readthedocs.io/
en/latest, accessed: 2018-02-01

53. Latham, R., Ross, R.B., Thakur, R.: Implementing MPI-IO atomic mode and shared file
pointers using MPI one-sided communication. The International Journal of High Performance
Computing Applications (IJHPCA) 21(2), 132–143 (2007), DOI: 10.1177/1094342007077859

54. Lawson, M., Ulmer, C., Mukherjee, S., Templet, G., Lofstead, J.F., Levy, S., Widener,
P.M., Kordenbrock, T.: Empress: extensible metadata provider for extreme-scale scientific
simulations. In: Proceedings of the 2nd Joint International Workshop on Parallel Data
Storage & Data Intensive Scalable Computing Systems, PDSW-DISCS@SC 2017, Denver,
CO, USA, November 13, 2017. pp. 19–24 (2017), DOI: 10.1145/3149393.3149403

55. Ledyayev, R., Richter, H.: High performance computing in a cloud using Open-
Stack. Cloud Computing pp. 108–113 (2014), https://pdfs.semanticscholar.org/2a5d/
9c7afcf6b70ad83bca0c4262b66ef654415a.pdf, accessed: 2018-03-01

56. Liu, Q., Logan, J., Tian, Y., Abbasi, H., Podhorszki, N., Choi, J.Y., Klasky, S., Tchoua, R.,
Lofstead, J.F., Oldfield, R., Parashar, M., Samatova, N.F., Schwan, K., Shoshani, A., Wolf,
M., Wu, K., Yu, W.: Hello ADIOS: the challenges and lessons of developing leadership class
I/O frameworks. Concurrency and Computation: Practice and Experience 26(7), 1453–1473
(2014), DOI: 10.1002/cpe.3125

57. Lockwood, G.K.: Reviewing the state of the art of burst buffers. https://glennklockwood.
blogspot.de/2017/03/reviewing-state-of-art-of-burst-buffers.html (2017), ac-
cessed: 2018-02-01

58. Lockwood, G.: What’s So Bad About POSIX I/O? https://www.nextplatform.com/2017/
09/11/whats-bad-posix-io/ (2017), accessed: 2018-02-01

59. Lockwood, G.K., Hazen, D., Koziol, Q., Canon, R., Antypas, K., Balewski, J., Balthaser,
N., Bhimji, W., Botts, J., Broughton, J., et al.: Storage 2020: A vision for the future of hpc
storage (2017), https://escholarship.org/uc/item/744479dp, accessed: 2018-03-01

60. Lofstead, J.F., Jimenez, I., Maltzahn, C., Koziol, Q., Bent, J., Barton, E.: DAOS and friends:
a proposal for an exascale storage system. In: Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis, SC 2016, Salt Lake
City, UT, USA, November 13-18, 2016. pp. 585–596 (2016), DOI: 10.1109/SC.2016.49

61. Lofstead, J.F., Klasky, S., Schwan, K., Podhorszki, N., Jin, C.: Flexible IO and integration for
scientific codes through the adaptable IO system (ADIOS). In: 6th International Workshop
on Challenges of Large Applications in Distributed Environments, CLADE@HPDC 2008,
Boston, MA, USA, June 23, 2008. pp. 15–24 (2008), DOI: 10.1145/1383529.1383533

Survey of Storage Systems for High-Performance Computing

54 Supercomputing Frontiers and Innovations

62. LTO: Linear Tape Open (LTO) Website. https://www.lto.org/technology/
what-is-lto-technology/, accessed: 2018-03-01

63. Matri, P., Alforov, Y., Brandon, A., Kuhn, M., Carns, P.H., Ludwig, T.: Could blobs
fuel storage-based convergence between HPC and big data? In: 2017 IEEE International
Conference on Cluster Computing, CLUSTER 2017, Honolulu, HI, USA, September 5-8,
2017. pp. 81–86 (2017), DOI: 10.1109/CLUSTER.2017.63

64. Matri, P., Costan, A., Antoniu, G., Montes, J., Pérez, M.S.: Týr: blob storage meets
built-in transactions. In: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, SC 2016, Salt Lake City, UT, USA, November
13-18, 2016. pp. 573–584 (2016), DOI: 10.1109/SC.2016.48

65. McKee, S.A.: Reflections on the memory wall. In: Proceedings of the First Confer-
ence on Computing Frontiers, 2004, Ischia, Italy, April 14-16, 2004. p. 162 (2004),
DOI: 10.1145/977091.977115

66. Message Passing Interface Forum: MPI: A Message-Passing Interface Standard. Ver-
sion 3.0. http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf (2012), accessed:
2014-11-01

67. Micheloni, R., Crippa, L., Zambelli, C., Olivo, P.: Architectural and integration options for
3d NAND flash memories. Computers 6(3), 27 (2017), DOI: 10.3390/computers6030027

68. NetCDF: Network common data format. https://www.unidata.ucar.edu/software/
netcdf/, accessed: 2018-03-01

69. NEXTGenIO: Next Generation I/O for the exascale. http://www.nextgenio.eu/, accessed:
2018-03-01

70. Oe, K., Nanri, T., Okamura, K.: Feasibility study for building hybrid storage system con-
sisting of non-volatile DIMM and SSD. In: Fourth International Symposium on Computing
and Networking, CANDAR 2016, Hiroshima, Japan, November 22-25, 2016. pp. 454–457
(2016), DOI: 10.1109/CANDAR.2016.0085

71. Oh, M., Eom, J., Yoon, J., Yun, J.Y., Kim, S., Yeom, H.Y.: Performance optimization
for all flash scale-out storage. In: 2016 IEEE International Conference on Cluster Com-
puting, CLUSTER 2016, Taipei, Taiwan, September 12-16, 2016. pp. 316–325 (2016),
DOI: 10.1109/CLUSTER.2016.11

72. ORNL: Adios. https://www.olcf.ornl.gov/center-projects/adios/ (2017), accessed:
2018-03-01

73. Peng, I.B., Gioiosa, R., Kestor, G., Laure, E., Markidis, S.: Exploring the Performance
Benefit of Hybrid Memory System on HPC Environments. arXiv:1704.08273 [cs] pp. 683–692
(2017), DOI: 10.1109/IPDPSW.2017.115

74. Perarnau, S., Zounmevo, J.A., Gerofi, B., Iskra, K., Beckman, P.H.: Exploring data migration
for future deep-memory many-core systems. In: 2016 IEEE International Conference on
Cluster Computing, CLUSTER 2016, Taipei, Taiwan, September 12-16, 2016. pp. 289–297
(2016), DOI: 10.1109/CLUSTER.2016.42

J. Lüttgau, M. Kuhn, K. Duwe, Y. Alforov, E. Betke, J. Kunkel, T. Ludwig

2018, Vol. 5, No. 1 55

75. Petersen, T.K., Bent, J.: Hybrid flash arrays for HPC storage systems: An alter-
native to burst buffers. In: 2017 IEEE High Performance Extreme Computing Con-
ference, HPEC 2017, Waltham, MA, USA, September 12-14, 2017. pp. 1–7 (2017),
DOI: 10.1109/HPEC.2017.8091092

76. Rew, R., Davis, G.: Netcdf: an interface for scientific data access. IEEE Computer Graphics
and Applications 10(4), 76–82 (1990), DOI: 10.1109/38.56302

77. Ross, R.B., Latham, R., Gropp, W., Thakur, R., Toonen, B.R.: Implementing MPI-IO
atomic mode without file system support. In: 5th International Symposium on Cluster
Computing and the Grid (CCGrid 2005), 9-12 May, 2005, Cardiff, UK. pp. 1135–1142 (2005),
DOI: 10.1109/CCGRID.2005.1558687

78. SAGE: SAGE | Redefining Data Storage for Extreme Data and Exascale Computing.
http://www.sagestorage.eu/, accessed: 2018-03-01

79. Sai Anuhya, D., Agrawal, S., Publication, I.: 3-d holographic data storage 4, 232–239 (2013)

80. Sato, K., Mohror, K., Moody, A., Gamblin, T., de Supinski, B.R., Maruyama, N., Matsuoka,
S.: A user-level infiniband-based file system and checkpoint strategy for burst buffers. In:
14th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, CCGrid
2014, Chicago, IL, USA, May 26-29, 2014. pp. 21–30 (2014), DOI: 10.1109/CCGrid.2014.24

81. Seagate: Nytro 5910. https://www.seagate.com/files/www-content/datasheets/pdfs/
nytro-5910-nvme-ssdDS1953-3-1801DE-de_DE.pdf, accessed: 2018-03-01

82. Seagate: Nytro3000. https://www.seagate.com/files/www-content/datasheets/pdfs/
nytro-3000-sas-ssdDS1950-2-1711DE-de_DE.pdf, accessed: 2018-03-01

83. Sebastian, A.: IBM and Sony cram up to 330 terabytes into tiny
tape cartridge. https://arstechnica.com/information-technology/2017/08/
ibm-and-sony-cram-up-to-330tb-into-tiny-tape-cartridge/ (2017), accessed:
2018-03-01

84. Sehrish, S.: Improving Performance and Programmer Productivity for I/O-
Intensive High Performance Computing Applications. PhD thesis, School of Elec-
trical Engineering and Computer Science in the College of Engineering and Com-
puter Science at theUniversity of Central Florida (2010), http://purl.fcla.edu/fcla/etd/
CFE0003236, accessed: 2018-03-01

85. Shehabi, A., Smith, S., Sartor, D., Brown, R., Herrlin, M., Koomey, J., Masanet, E.,
Horner, N., Azevedo, I., Lintner, W.: United States data center energy usage report.
https://pubarchive.lbl.gov/islandora/object/ir%3A1005775/ (2016), accessed: 2018-
03-01

86. Shi, W., Ju, D., Wang, D.: Saga: A cost efficient file system based on cloud storage
service. In: Economics of Grids, Clouds, Systems, and Services - 8th International Workshop,
GECON 2011, Paphos, Cyprus, December 5, 2011, Revised Selected Papers. pp. 173–184
(2011), DOI: 10.1007/978-3-642-28675-9_13

Survey of Storage Systems for High-Performance Computing

56 Supercomputing Frontiers and Innovations

87. Smart, S.D., Quintino, T., Raoult, B.: A Scalable Object Store for Meteorological and
Climate Data. In: Proceedings of the Platform for Advanced Scientific Computing Conference.
pp. 13:1–13:8. PASC ’17, ACM, New York, NY, USA (2017), DOI: 10.1145/3093172.3093238

88. Spectralogic: LTO Roadmap. https://www.spectralogic.com/features/lto-7/ (2017),
accessed: 2018-03-01

89. Sterling, T., Lusk, E., Gropp, W.: Beowulf Cluster Computing with Linux. MIT Press,
Cambridge, MA, USA, 2 edn. (2003)

90. Takatsu, F., Hiraga, K., Tatebe, O.: Design of object storage using opennvm for high-
performance distributed file system. Journal of Information Processing 24(5), 824–833
(2016), DOI: 10.2197/ipsjjip.24.824

91. Takatsu, F., Hiraga, K., Tatebe, O.: PPFS: A scale-out distributed file system for post-
petascale systems. In: 18th IEEE International Conference on High Performance Computing
and Communications; 14th IEEE International Conference on Smart City; 2nd IEEE
International Conference on Data Science and Systems, HPCC/SmartCity/DSS 2016, Sydney,
Australia, December 12-14, 2016. pp. 1477–1484 (2016), DOI: 10.1109/HPCC-SmartCity-
DSS.2016.0210

92. Tang, H., Byna, S., Dong, B., Liu, J., Koziol, Q.: Someta: Scalable object-centric metadata
management for high performance computing. In: 2017 IEEE International Conference on
Cluster Computing, CLUSTER 2017, Honolulu, HI, USA, September 5-8, 2017. pp. 359–369
(2017), DOI: 10.1109/CLUSTER.2017.53

93. Top500: Top500 Supercomputer Sites. http://www.top500.org/ (2017), accessed: 2018-03-01

94. Toshiba: eSSD-PX05SHB. https://toshiba.semicon-storage.com/content/
dam/toshiba-ss/asia-pacific/docs/product/storage/product-manual/
eSSD-PX05SHB-product-overview.pdf, accessed: 2018-03-01

95. Vilayannur, M., Lang, S., Ross, R., Klundt, R., Ward, L.: Extending the POSIX I/O
Interface: A Parallel File System Perspective. Tech. Rep. ANL/MCS-TM-302 (2008), http:
//www.mcs.anl.gov/uploads/cels/papers/TM-302-FINAL.pdf, accessed: 2018-03-01

96. Vilayannur, M., Ross, R.B., Carns, P.H., Thakur, R., Sivasubramaniam, A., Kandemir, M.T.:
On the performance of the POSIX I/O interface to PVFS. In: 12th Euromicro Workshop
on Parallel, Distributed and Network-Based Processing (PDP 2004), 11-13 February 2004,
A Coruna, Spain. pp. 332–339 (2004), DOI: 10.1109/EMPDP.2004.1271463

97. Wang, T., Oral, S., Wang, Y., Settlemyer, B.W., Atchley, S., Yu, W.: Burstmem: A
high-performance burst buffer system for scientific applications. In: 2014 IEEE International
Conference on Big Data, Big Data 2014, Washington, DC, USA, October 27-30, 2014.
pp. 71–79 (2014), DOI: 10.1109/BigData.2014.7004215

98. Watson, R.W.: High performance storage system scalability: Architecture, implementa-
tion and experience. In: 22nd IEEE / 13th NASA Goddard Conference on Mass Storage
Systems and Technologies (MSST 2005), Information Retrieval from Very Large Stor-
age Systems, CD-ROM, 11-14 April 2005, Monterey, CA, USA. pp. 145–159 (2005),
DOI: 10.1109/MSST.2005.17

J. Lüttgau, M. Kuhn, K. Duwe, Y. Alforov, E. Betke, J. Kunkel, T. Ludwig

2018, Vol. 5, No. 1 57

99. Wei, Q., Chen, J., Chen, C.: Accelerating file system metadata access with byte-addressable
nonvolatile memory. ACM Transactions on Storage (TOS) 11(3), 12:1–12:28 (2015),
DOI: 10.1145/2766453

100. Weil, S.A., Brandt, S.A., Miller, E.L., Long, D.D.E., Maltzahn, C.: Ceph: A scalable,
high-performance distributed file system. In: 7th Symposium on Operating Systems Design
and Implementation (OSDI ’06), November 6-8, Seattle, WA, USA. pp. 307–320 (2006),
http://www.usenix.org/events/osdi06/tech/weil.html, accessed: 2018-03-01

101. Weil, S.A., Leung, A.W., Brandt, S.A., Maltzahn, C.: RADOS: a scalable, reliable storage
service for petabyte-scale storage clusters. In: Proceedings of the 2nd International Petascale
Data Storage Workshop (PDSW ’07), November 11, 2007, Reno, Nevada, USA. pp. 35–44
(2007), DOI: 10.1145/1374596.1374606

102. Xu, J., Swanson, S.: NOVA: A log-structured file system for hybrid volatile/non-volatile
main memories. In: 14th USENIX Conference on File and Storage Technologies, FAST 2016,
Santa Clara, CA, USA, February 22-25, 2016. pp. 323–338 (2016), https://www.usenix.
org/conference/fast16/technical-sessions/presentation/xu, accessed: 2018-03-01

103. Xuan, P., Luo, F., Ge, R., Srimani, P.K.: Dynims: A dynamic memory controller for
in-memory storage on HPC systems. CoRR abs/1609.09294 (2016), http://arxiv.org/
abs/1609.09294, accessed: 2018-03-01

104. Yang, J., Tan, C.P.H., Ong, E.H.: Thermal analysis of helium-filled enterprise disk drive.
Microsystem Technologies 16(10), 1699–1704 (2010), DOI: 10.1007/s00542-010-1121-x

105. Zhang, Z., Barbary, K., Nothaft, F.A., Sparks, E.R., Zahn, O., Franklin, M.J., Patterson,
D.A., Perlmutter, S.: Scientific computing meets big data technology: An astronomy use case.
In: 2015 IEEE International Conference on Big Data, Big Data 2015, Santa Clara, CA, USA,
October 29 - November 1, 2015. pp. 918–927 (2015), DOI: 10.1109/BigData.2015.7363840

Survey of Storage Systems for High-Performance Computing

58 Supercomputing Frontiers and Innovations

The High-Q Club: Experience with Extreme-scaling

Application Codes

Dirk Brömmel1, Wolfgang Frings1, Brian J.N.Wylie1, Bernd Mohr1,

Paul Gibbon1, Thomas Lippert1

c⃝ The Authors 2018. This paper is published with open access at SuperFri.org

Jülich Supercomputing Centre (JSC) started running (extreme) scaling workshops with its

first IBM Blue Gene supercomputer, finally spanning three generations each seeing an increase in

the number of cores and available threads. Over the years, this workshop series attracted numerous

international code teams and resulted in many applications capable of running on all available cores

of each system.

This article reviews some of the knowledge gained with running and tuning highly-scalable

applications, focussing on JUQUEEN, the IBM Blue Gene/Q at JSC. The ability to execute suc-

cessfully on all 458,752 cores with up to 1.8 million processes or threads may qualify codes for the

High-Q Club, which serves as a showcase for diverse codes scaling to the entire 28 racks, effectively

defining a collection of the highest scaling codes on JUQUEEN. The intention was to encourage

other developers to invest in tuning and scaling their codes while identifying the necessary key

aspects for that goal.

As this era closes, it is timely to compare the characteristics of the 32 High-Q Club member

codes, considering their strong and/or weak scaling, exploitation of hardware threading, and

whether/how intra-node multi-threading is employed combined with message-passing. We also

identify the obstacles for scaling such as inefficient use of limited compute node memory and file

I/O as key governing factors. Overall, the analysis provides guidance as to how applications may

(need to) be designed in the future to exploit expected exascale computer systems.

Keywords: JUQUEEN, IBM BlueGene/Q, extreme scaling, application codes, High-Q Club.

Introduction

Jülich Supercomputing Centre (JSC) has more than a decade of experience with the range

of IBM BlueGene systems and scaling HPC applications to use their considerable capabilities ef-

fectively. Applications that demonstrate scalability to exploit the entire computational resources

of the JUQUEEN system qualify for recognition in the High-Q Club. With the decommissioning

of JUQUEEN in spring 2018, it is timely to analyse the characteristics of these extremely scal-

able applications for valuable insight into how applications may (need to) look in the future to

exploit forthcoming exascale computer systems. Furthermore, supporting development tools and

libraries also need to have commensurate scalability to address current and future application

needs on these massively-parallel systems.

We start by reviewing application scaling activities at JSC in Section 1, focussing on its

leadership computer systems, and in Section 2 the JUQUEEN hardware environment, followed

with an overview of the associated High-Q Club in Section 3. Member applications and their basic

characteristics are summarised in Section 4, as adapted to the BG/Q software environment, while

Section 5 is a detailed comparison of the demonstrated scalability of these codes on JUQUEEN.

Specific tools which have proven effective for use with them at (very) large scale are then reviewed

in Section 6. Finally we present our conclusions from this study regarding High-Q Club member

application codes and readiness for exascale.

1Jülich Supercomputing Centre, Forschungszentrum Jülich GmbH, Jülich, Germany

DOI: 10.14529/jsfi180104

2018, Vol. 5, No. 1 59

1. Background

The first of the IBM BlueGene series installed in 2005 by Jülich Supercomputing Centre was

the JUBL BlueGene/L, succeeded by the JUGENE BlueGene/P [2] in 2007, and ultimately the

JUQUEEN BlueGene/Q [34] in 2012 which remained in operation to 2018. Key characteristics

of these supercomputers are summarised in Tab. 1. Part of each of these systems was normally

reserved for small/short application development executions, complemented by a variety of larger

partitions of different sizes for longer jobs. While batch jobs could also be submitted to queues

requiring the full system, they would only be run immediately following maintenance sessions or

other predefined times to avoid undue interference with general usage. “Big Blue Gene Weeks”

with seven or more days restricted exclusively to large-scale jobs were introduced first in 2015 and

readily were exploited by numerous application teams, both for scaling tests and production.

Before then, scaling-up applications could be a protracted process as a series of larger jobs

was prepared, eventually executed, and adjusted. Dedicated scaling, and subsequently extreme

scaling, workshops were held to facilitate this.

A “BlueGene/L Scaling Workshop” [10] was held in 2006, became a “BlueGene/P Porting,

Tuning & Scaling Workshop” in 2008 [25], followed by dedicated “Extreme Scaling Workshops”

in 2009 [26], 2010 [27] and 2011 [28]. These latter three workshops attracted 28 teams selected

from around the world to investigate scalability on the most massively-parallel supercomputer at

the time with its 294,912 cores. 26 of their codes were successfully executed at that scale, three

became ACM Gordon Bell prize finalists, and one participant was awarded an ACM/IEEE-CS

George Michael Memorial HPC fellowship.

“Extreme Scaling Workshops” for Blue Gene/Q continued in 2015 [4], 2016 [6] and 2017 [7]

with a similar format. Based on their demonstrated and planned use of BG/Q, a total of 19

Table 1. BlueGene series of computers installed at Jülich

Supercomputing Centre

Name JUBL JUGENE JUQUEEN

Installation year 2005 2007 2012

Series BG/L BG/P BG/Q

Racks 8 72 28

Compute nodes 8,192 73,728 28,672

Processor PowerPC 440 PowerPC 450 PowerPC A2

Frequency (MHz) 700 850 1,600

Compute cores 2 4 16

Hardware threads/core 1 1 4

Total cores 16,384 294,912 458,752

Total threads 16,384 294,912 1,835,008

Main memory (TiB) 4.1 144 448

Memory per core (MiB) 256 512 1,024

I/O Nodes 288 600 248

Network 3D torus 3D torus 5D torus

Peak performance (TFlop/s) 45.9 1,002.7 5,872.0

Footprint (m2) 15 130 82

Power consumption (kW) 179 2,268 2,301

The High-Q Club: Experience with Extreme-scaling Application Codes

60 Supercomputing Frontiers and Innovations

JUQUEEN

Partition Cores

8 = 4×1×2 65,536

16 = 4×2×2 131,072

24 = 4×3×2 196,608

32 = 4×4×2 262,144

40 = 4×5×2 327,680

48 = 4×6×2 393,216

14 = 1×7×2 114,688

28 = 2×7×2 229,376

42 = 3×7×2 344,064

56 = 4×7×2 458,752

Figure 1. JUQUEEN BlueGene/Q as presented by the LLview system monitor (28 racks with

two midplanes each with 16 nodeboards of 32 processors), schematic of the 56 BG/Q rack

midplanes arranged 4×7×2 and list of partitions with corresponding number of cores available

when scaling rows or columns of racks to the entire configuration

international teams were selected and hosted on-site by JSC for two or three days with dedicated

access to JUQUEEN for up to 50 hours in each event. Many of the teams’ codes had thematic

overlap with JSC Simulation Laboratories (SimLabs), which provided assistance during the

workshops along with Cross-Sectional Teams available to do performance analyses and suggest

optimisation opportunities. The first of these workshops had seven applications all running

successfully within 24 hours on all 28 racks (using 458,752 cores), however, in the following

two editions some participants encountered difficulties which they were unable to resolve, and

there were only eleven additional successes. File I/O bottlenecks were a frequent constraint

for some codes, while large-scale in situ interactive visualization using 458,752 MPI processes

running on 28 racks coupled via JUSITU to VisIt was successfully demonstrated as a possible

alternative [16].

These workshops motivated Leibniz Supercomputing Centre (LRZ), JSC’s partner with

HLRS in the German national Gauss Centre for Supercomputing (GCS), to adopt a similar

format for workshops to scale applications on the SuperMUC IBM iDataPlex system [18], and

similar opportunities are expected to be offered on future HPC systems at JSC.

2. JUQUEEN BlueGene/Q

JUQUEEN2 is an IBM BlueGene/Q system consisting of 28 racks [34] (Fig. 1), each with

two midplanes comprising 512 compute nodes with 1.6 GHz PowerPC A2 processors and 16 GiB

RAM, connected via a custom five-dimensional torus network. Compute node processors provide

16 cores to applications, each with a 256-bit SIMD/vector unit and capable of running four

hardware threads, therefore JUQUEEN offers a total of 458,752 cores and can concurrently run

1,835,008 processes or threads. An additional 248 I/O nodes connect via Cisco network switches

to the JUST GPFS filesystem.

IBM BlueGene/Q systems [1] (like their predecessors) have demonstrated their merits for

large-scale HPC regarding energy-efficiency, reliability and scalability to extremely large con-

2http://www.fz-juelich.de/ias/jsc/juqueen

D. Brömmel, W. Frings, B.J.N. Wylie, B. Mohr, P. Gibbon, T. Lippert

2018, Vol. 5, No. 1 61

figurations, making them highly-productive workhorses. JUQUEEN was ranked number five

for energy efficiency as well as fifth for HPL performance in the November 2012 Green500 and

Top500 lists of supercomputers, and coarse-grain energy usage is monitored during operation

(though no control is available for applications to adjust their usage). System warnings and errors

are also closely monitored, leading to pre-emptive hardware replacement at the next scheduled

maintenance, such that their is rarely impact on production (and particularly full-system jobs).

Application-level checkpointing is still recommended for long-running jobs.

By providing dedicated system partitions, applications receive isolated resources for compu-

tation and communication, the latter based on a proprietary 5-D torus network. With an extra

17th processor core for system services and lightweight compute-node kernel (CNK), applica-

tions are further isolated from “system noise” that can otherwise severely impact performance of

collective operations. And with uniform memory access, process/thread placement and bindings

to address NUMA issues are unnecessary. On the other hand, compute-node memory is limited

(typically 16 GiB) and the relatively weak individual processor cores require the effective use of

large numbers of them by applications, which is further exacerbated by the in-order processor

architecture [20]. Multiple application threads for the four hardware threads per processor core

are therefore generally considered to be the best bet for increased instruction throughput and

latency hiding.

Figure 1 shows a topological schematic of the 28 BG/Q racks of JUQUEEN with its 56

midplanes arranged 4×7×2. When performing scaling tests using rows or columns of racks,

increments of 8 or 14 midplanes are available. (Square numbers of 1, 4, 9 and 16 racks can also

be used, however, 25=5×5 racks cannot be configured, which severely limits scaling.) Note that

physical adjacency of racks is not essential to exploit mesh or torus topologies, however, even-

sized dimensions generally offer superior performance since odd-sized dimensions do not support

torus connectivity. 16 racks (32 midplanes) therefore constitute the preferred configuration for

compact torus communication, and this partition is available and commonly used in general

operation of JUQUEEN. Partitions larger than this are typically only made available after

maintenance periods and for specially scheduled sessions. In particular, full-system executions

requiring all 28 racks occupy the rack that is otherwise reserved for small/short development

jobs. Large jobs using 24 racks are therefore often a convenient compromise.

Bearing these considerations in mind, executions on partitions with 24 racks (48 midplanes,

86% of entire system) and perhaps even only 20/21 racks (40/42 midplanes, 71/75%) could be

covered by the definition of “large-scale” with respect to JUQUEEN.

3. High-Q Club

The High-Q Club is a collection of the highest scaling codes on JUQUEEN, and membership

requires codes to run successfully using all 28 racks. Codes also have to demonstrate that they

profit from each additional rack of JUQUEEN, either with reduced time to solution when strong

scaling a fixed problem size or a tolerable increase in runtime when weak scaling progressively

larger problems. Furthermore, application configurations should be beyond toy examples, and

use of all available hardware threads is encouraged which is often best achieved via mixed-mode

programming. Each code is then individually evaluated based on its weak or strong scaling

results with no strict limit on efficiency.

The full description of the High-Q Club codes and a summary of their scaling performance

along with developer and contact information is maintained on-line [22]. Further detail is avail-

The High-Q Club: Experience with Extreme-scaling Application Codes

62 Supercomputing Frontiers and Innovations

able in participants’ reports from Extreme Scaling Workshops [4, 6, 7]. 32 codes are listed (with

those from Extreme Scaling Workshops marked with an asterix*):

1D-NEGF 1D Non-Equilibrium Green’s Functions framework for transport phenomena

JSC SimLab Quantum Materials

*CIAO multiphysics, multiscale NS solver for turbulent reacting flows in complex geometries

RWTH Aachen University Institute for Combustion Technology [16]

*Code Saturne multiphysics simulation of the Navier-Stokes equations

EDF & STFC Daresbury Laboratory3

*CoreNeuron electrical activity of neuronal networks with morphologically-detailed neurons

EPFL Blue Brain Project and Yale University [29]

dynQCD lattice quantum chromodynamics with dynamical fermions

JSC SimLab Nuclear and Particle Physics & Bergische Universität Wuppertal

*FE2TI scale-bridging approach incorporating micro-mechanics in macroscopic simulations of

multi-phase steels

Universities of Cologne, Freiberg, Duisburg-Essen, Dresden and Erlangen-Nürnberg [23]

*FEMPAR massively-parallel finite-element simulation of multi-physics PDE problems

Universitat Politècnica de Catalunya CIMNE

Gysela gyrokinetic semi-Lagrangian code for plasma turbulence simulations

CEA-IRFM Cadarache

hp-fRG hierarchically parallelised functional renormalisation group calculations

JSC [31]

*ICON solver for fully compressible non-hydrostatic motion at very high horizontal resolution

Deutsches Klimarechenzentrum (DKRZ) & JSC SimLab Climate Science

IMD classical molecular dynamics simulations

Ruhr-Universität Bochum & JSC SimLab Molecular Systems

JURASSIC infrared radiative transfer in the Earth’s atmosphere

JSC SimLab Climate Science

JuSPIC fully relativistic particle-in-cell code for plasma physics and laser-plasma interaction

JSC SimLab Plasma Physics

*KKRnano Korringa-Kohn-Rostoker Green function code for quantum description of nano-

materials in all-electron density-functional calculations

Forschungszentrum Jülich IAS

LAMMPS-DCM molecular dynamics simulation with dynamic cutoff method for arbitrarily large

interfacial systems

RWTH Aachen University AICES [33]

MP2C massively-parallel multi-particle collision dynamics for soft matter physics and meso-

scopic hydrodynamics

JSC SimLab Molecular Systems [9]

*MPAS-A multi-scale non-hydrostatic atmospheric model for global, convection-resolving cli-

mate simulations

Karlsruhe Institute of Technology & National Center for Atmospheric Research [19]

3http://www.code-saturne.org/

D. Brömmel, W. Frings, B.J.N. Wylie, B. Mohr, P. Gibbon, T. Lippert

2018, Vol. 5, No. 1 63

µϕ (muPhi) algebraic multi-grid solver for simulation of water flow and solute transport in

porous media

Universität Heidelberg

Musubi multi-component Lattice Boltzmann solver for flow simulations

Universität Siegen [30]

NEST large-scale simulations of biological neuronal networks

Forschungszentrum Jülich INM-6, IAS-6 & JSC SimLab Neuroscience [21]

OpenTBL direct numerical simulation of turbulent flows

Universidad Politécnica de Madrid

*ParFlow+p4est high resolution parallel simulation of variably saturated flow

Forschungszentrum Jülich IBG-3, Colorado School of Mines, LLNL & Universität Bonn [8]

*pe physics engine framework for simulations of rigid bodies with arbitrary shapes

Universität Erlangen-Nürnberg4

PEPC tree code for N -body simulations, beam-plasma interaction, vortex dynamics, gravita-

tional interaction, molecular dynamics simulations

JSC SimLab Plasma Physics

PMG+PFASST space-time parallel solver for systems of ODEs with linear stiff terms

LBNL, Universität Wuppertal, Università della Svizzera italiana & JSC

PP-Code simulator for relativistic and non-relativistic astrophysical plasmas

University of Copenhagen

*psOpen direct numerical simulation of fine-scale turbulence

Jülich-Aachen Research Alliance & TU Freiberg [17]

*Seven-League Hydro (SLH) all Mach number fluid dynamics in astrophysics

Heidelberg Institute for Theoretical Studies5

*SHOCK structured high-order finite-difference computational kernel for numerical simulation

of compressible flow

RWTH Aachen University Shock Wave Laboratory [14]

TERRA-NEO simulation of Earth mantle dynamics

Universität Erlangen-Nürnberg, LMU & TUM

waLBerla Lattice-Boltzmann method for simulation of fluid scenarios

Universität Erlangen-Nürnberg

ZFS multiphysics framework for compressible/incompressible flow, aero-acoustics & combustion

RWTH Aachen Uni. Inst. of Aerodynamics & JSC SimLab Fluids and Solids Engineering

Half of the member codes involved institutions from the local region, ten were from the rest

of Germany, and six from other European nations. International collaborations included four

institutions in the USA.

4. Parallel Program & Execution Configuration Characteristics

Characteristics of these application codes (as contributed by the respective code teams

submitting their data) are summarised in Tab. 2 and discussed in this section, with scaling per-

formance compared in the following section. Five codes were accepted to the High-Q Club when

4https://www10.informatik.uni-erlangen.de/Research/Projects/pe/
5https://slh-code.org/

The High-Q Club: Experience with Extreme-scaling Application Codes

64 Supercomputing Frontiers and Innovations

Table 2. High-Q Club member application code characteristics

Compiler and main programming languages (excluding external libraries), parallelisation including maxi-

mal process/thread concurrency (per compute node and overall) and strong and/or weak scaling type, and

file I/O implementation. (Supported capabilities unused for scaling runs on JUQUEEN in parenthesis)

Programming Parallelisation
Code Accepted Compiler / Languages Tasking Threading Concurrency Type File I/O

1D-NEGF 2018/02 XL: C MPI 1 OpenMP 64 64: 1,835,008 S N/A
*CIAO 2015/08 XL: Ftn MPI 16 16: 458,752 S MPI-IO,HDF5
*Code Saturne 2016/03 XL: C Ftn MPI 16 OpenMP 4 64: 1,835,008 S MPI-IO
*CoreNeuron 2015/02 XL: C C++ MPI 1 OpenMP 64 64: 1,835,008 S W MPI-IO
dynQCD 2013/06 XL: C SPI 1 pthreads 64 64: 1,835,008 S unspecified
*FE2TI 2015/02 XL: C C++ MPI 16 OpenMP 4 64: 1,835,008 S W N/A
*FEMPAR 2014/12 XL: F08 MPI 64 (OpenMP) 64: 1,756,001 W N/A
Gysela 2013/06 XL: C F90 MPI OMP+pthrd 64: 1,835,008 W (HDF5)
hp-fRG 2016/10 XL: C C++ MPI 1 OpenMP 32 32: 917,504 S N/A
*ICON 2015/02 XL: C Ftn MPI 1 OpenMP 64 64: 1,835,008 S (netCDF)
IMD 2014/10 XL: C MPI 64 (OpenMP) 64: 1,835,008 W unspecified
JURASSIC 2014/05 XL: C MPI 32 OpenMP 2 64: 1,835,008 W netCDF
JuSPIC 2013/10 GCC: F90 MPI 4 OpenMP 16 64: 1,835,008 S MPI-IO, POSIX
*KKRnano 2014/10 XL: F03 MPI 4 OpenMP 16 64: 1,835,008 S SIONlib
LAMMPS-DCM 2015/04 XL: C++ MPI 4 OpenMP 16 64: 1,835,008 S W N/A
*MPAS-A 2017/03 XL: C Ftn MPI 16 (OpenMP) 16: 458,752 S SIONlib,PIO,pNetCDF
MP2C 2013/11 XL: Ftn MPI 32 32: 917,504 W SIONlib
muPhi (µϕ) 2013/11 XL: C++ MPI 32 32: 917,504 W SIONlib
Musubi 2014/12 XL: F03 MPI OpenMP 32: 917,504 ? ? N/A
NEST 2013/11 XL: C++ MPI 1 OpenMP 64 64: 1,835,008 W (SIONlib)
OpenTBL 2014/05 XL: F03 MPI OpenMP 64: 1,835,008 W pHDF5
*ParFlow+p4est 2017/03 XL: C Ftn MPI 16 16: 458,752 S MPI-IO
*pe 2017/03 GCC: C++ MPI 64 64: 1,835,008 W N/A
PEPC 2013/06 GCC: C F03 MPI 1 pthreads 61 61: 1,744,992 W (SIONlib,MPI-IO,vtk)
PMG+PFASST 2013/08 XL: C F03 MPI 16 (pthreads) 16: 458,752 S N/A
PP-Code 2014/08 XL: F90 MPI OpenMP 64: 1,835,008 S W unspecified
*psOpen 2015/02 XL: F90 MPI 32 OpenMP 2 64: 1,835,008 S pHDF5
*SHOCK 2015/02 XL: C MPI 64 64: 1,835,008 S W (cgns/HDF5)
*SLH 2016/02 XL: C F95 MPI 16 OpenMP 4 64: 1,835,008 S MPI-IO
TERRA-NEO 2013/06 XL: C++ Ftn MPI OpenMP 64: 1,835,008 W unspecified
waLBerla 2013/06 XL: C++ MPI OpenMP 64: 1,835,008 ? ? N/A
ZFS 2015/03 Clang: C++ MPI 16 OpenMP 2 32: 917,504 S (pNetCDF)

it opened in June 2013, and another group of five codes added as a result of the Extreme Scaling

Workshop in February 2015, otherwise membership submission requests and acceptance were

more sporadic and generally diminishing towards 2018 when JUQUEEN is due to be decom-

missioned. Throughout this period no particular trends seem discernable in the characteristics

of the accepted codes.

Member codes are typically able to run in a variety of configurations, which may trade-off

different capabilities and indeed evolve as the code continues to be developed, however, this

analysis provides a snapshot at the point of qualification for membership.

Programming Languages. IBM provide their XL suite of optimising compilers for C, C++,

and Fortran which feature support for automatic SIMD vectorisation and QPX vector intrinsics,

as well as transactional memory (TM) and speculative execution (SE), though relatively few

codes have investigated or currently exploit these capabilities. GCC and LLVM/Clang compilers

are also available, often providing support for newer language standards (e.g., C++11) and non-

standard extensions which can ease porting, or in some cases delivering better performance:

these have been exploited by several High-Q member codes (JuSPIC, pe, PEPC & ZFS).

Since Blue Gene/Q offers lower-level function calls for some hardware-specific features that

are sometimes not available for all programming languages, a starting point is looking at the

languages used. Figure 2 (left) shows a Venn set diagram of the main programming language(s)

used, i.e. languages used by the parallel application itself and not its auxiliary libraries or

pre/post-processing components. It indicates that all three major programming languages are

roughly equally popular (without considering lines of code). Seven combine Fortran with C,

three used C++ and C, one Fortran and C++, and the remainder exclusively used a single

language. Notably, Python and similar languages relying on dynamic linking have not been used

D. Brömmel, W. Frings, B.J.N. Wylie, B. Mohr, P. Gibbon, T. Lippert

2018, Vol. 5, No. 1 65

Fortran

C

C++

MPI

OpenMP
pthreads

SPI

MPI-IO

SIONlib

HDF5

netCDF

not specified not applicable

Figure 2. Left: Venn set diagram of main programming languages used by High-Q Club member

codes. Middle: Venn set diagram of parallelisation modes of High-Q Club member codes run on

JUQUEEN. Right: Pie-chart showing file I/O as available in High-Q Club member codes

64

32
16
4

16
32

64

4
16
32

64

IM
D

FE
M

PA
R

pe m
uP

hi
M

P
2C

S
H

O
C

K
C

IA
O

M
PA

S
-A

P
ar

Fl
ow

+p
4e

st
ZF

S
JU

R
A

S
S

IC
ps

O
pe

n
C

od
e

S
at

ur
ne

FE
2T

I
S

LH
LA

M
M

P
S

(D
C

M
)

K
K

R
na

no
Ju

S
P

IC
P

E
P

C
1D

-N
E

G
F

C
or

eN
eu

ro
n

dy
nQ

C
D

hp
-fR

G
IC

O
N

N
E

S
T

MPI ranks
per node

threads per MPI rankhardware threads

Figure 3. Bar chart of MPI ranks per node and threads per MPI rank, determining the number

of hardware threads exploited, for executions of High-Q Club member codes on JUQUEEN

by any High-Q Club member code, even though tools like Spindle6 were developed to address

performance issues with loading shared libraries [12].

Optimised libraries are also provided by IBM for BG/Q, that are often both more conve-

nient and performant than self-written versions. Only in a few special cases High-Q codes used

their own libraries, e.g., psOpen for non-blocking 3D Fast Fourier Transforms [17]. Issues which

initially inhibited scaling of ParFlow were addressed by employing the p4est library for mesh

partitioning and an updated version of the HYPRE library of linear solvers [8].

Parallelisation Modes. The four hardware threads per core of the Blue Gene/Q chip in

conjunction with the limited amount of memory recommend to make use of multi-threaded

programming. It is therefore interesting to see whether this is indeed the preferred programming

model and whether available memory is an issue. Figure 2 (middle) shows a Venn set diagram of

the parallelisation modes used, revealing that mixed-mode programming does indeed dominate.

6https://computation.llnl.gov/project/spindle/

The High-Q Club: Experience with Extreme-scaling Application Codes

66 Supercomputing Frontiers and Innovations

 0.0625

 0.25

 1

 4

 16

 64

 256

 1024

1k 4k 16k 64k 256k 512k 1M

ti
m

e
 [

se
cs

]

MPI ranks

 RPN = 16
 RPN = 32
 RPN = 64

CMO, RPN = 16
CMO, RPN = 32
CMO, RPN = 64

Figure 4. Scaling of wallclock execution time for MPI Comm split sub-communicator creation

on JUQUEEN BlueGene/Q: default and less memory-optimised alternative (CMO)

IBM provide an optimised implementation of MPI, which is almost ubiquitous for portable

distributed-memory parallelisation, such that only one High-Q code (dynQCD) found it worth-

while to program an alternate version that directly used the underlying machine-specific SPI

primitives. While a number of High-Q codes have demonstrated that they can scale when using

only MPI (“MPI everywhere”), this requires adapting to very limited per-rank memory (i.e., less

than 256 MiB/rank with 64 ranks per node) and switching to MPI communicator management

routines that are optimised to reduce execution time rather than memory utilisation7, further

reducing memory available to the application itself. Figure 4 compares the execution time of

both versions.

Ten codes exclusively used MPI for their scaling runs, both between and within compute

nodes, accommodating to the restricted per-process memory and even trading higher memory

requirements for faster MPI communicator management: this allowed FEMPAR to reduce sub-

communicator creation time (MPI_Comm_split) from 15 minutes to under 10 seconds.

Convenient and portable multi-threading within compute nodes is supported via OpenMP,

though some newer directives are not always optimised (e.g., for tasking). Only a few High-

Q codes have pursued using POSIX threads (pthreads) for additional multi-threading con-

trol (dynQCD, Gysela, PEPC & PMG+PFASST). Almost all High-Q codes use MPI only from

a single thread (MPI_THREAD_FUNNELED), with at least Gysela, ICON, and PEPC requiring

MPI_THREAD_MULTIPLE which internally needs to use locks for synchronisation and precludes

use of hardware support in the torus network for collective operations.

The majority of High-Q Club codes successfully employ OpenMP multi-threading to exploit

compute node shared memory in conjunction with MPI. A memory fragmentation issue in a

third-party library inhibited the use of OpenMP by FEMPAR, problems with nested parallel

regions blocked MPAS-A, and an earlier investigation with the SHOCK code found this not to

be beneficial. CoreNeuron has an ongoing effort investigating use of OpenMP-3 tasking and new

MPI-3 capabilities (e.g. non-blocking collectives) are under consideration, so these are generally

expected to become increasingly important.

7via setting the PAMID COLLECTIVES MEMORY OPTIMIZED environment variable

D. Brömmel, W. Frings, B.J.N. Wylie, B. Mohr, P. Gibbon, T. Lippert

2018, Vol. 5, No. 1 67

File I/O Libraries. Figure 2 (right) shows a pie-chart breakdown of the I/O libraries used by

High-Q Club codes, although in most cases writing output and in some cases reading input files

was disabled for their large-scale executions, and synthesised or replicated data was used instead.

Some of the (early) submissions for the High-Q Club unfortunately did not specify their file I/O

usage. One quarter of the High-Q Club codes can use either (p)HDF5 or (p)NetCDF, despite

their often disappointing performance, whereas one-sixth can use MPI file I/O directly. 20% of

High-Q Club codes have migrated to using SIONlib for effective parallel I/O (see Section 6.1).

Compute Node Memory. For CoreNeuron available memory was the limiting factor for larger

simulations, with the current limit being 155 million neurons using 15.9GiB of RAM. The other

neuroscience code NEST was similarly constrained by the amount of compute node memory

available to store simulation data, however, ultimately managed to simulate 645 million neurons

on JUQUEEN when using all available cores. MPAS-A required 1 GiB of memory on each process

for its regular 3 km mesh simulation (over 65 million grid cells with 41 vertical levels), and could

therefore only use a single hardware thread per core, limiting its effective performance. Using all

four hardware threads of each processor code, FEMPAR was able to increase its efficiency and

scalability to 1.75 million processes using 271
2 racks of JUQUEEN when employing an additional

(fourth-)level of domain decomposition.

Concurrency. Figure 3 shows the relation between the number of MPI ranks and threads per

node. On either side of this diagram are the two extremes of using all 64 hardware threads on

each CPU by either 64 MPI ranks or 64 OpenMP/POSIX threads. Whereas multiples of two

matching the available hardware were generally employed, PEPC delivered its best performance

with the rather unusual number of 61 POSIX threads. Hatching shows the resulting number of

hardware threads used by the codes, i.e. the concurrency. Clearly, codes benefit from using more

hardware threads than physical cores and favour this configuration.

5. Comparison of Code Scalability

An overview of application code execution time scaling on JUQUEEN entails comparison

of achievements in strong (fixed total problem size), and weak (fixed problem size per process

or thread) scaling. This section reviews execution performance of submissions that qualified for

membership. Various member codes continued to improve their performance and scalability (or

that of additional functionality) beyond that of their qualifying submission.

A significant spread in execution results, and diverse scaling characteristics of the codes are

visible in Fig. 5. A single BG/Q rack was chosen to provide a convenient baseline for scaling,

however, a (half-rack) mid-plane would also have offered an isolated dedicated resource for this

purpose. For strong scaling a minimum of three measurements spanning a factor of four in size

up to the full configuration of 28 racks was mandated. Note that in many cases timings do not

have a common baseline of one rack since datasets sometimes did not fit available memory, or no

data was provided for 1,024 compute nodes: for strong scaling an execution with a minimum of

seven racks (one quarter of JUQUEEN) is accepted for a baseline, and perfect scaling assumed

from a single rack to the baseline. While full-system runs have a dedicated allocation of all 28

racks, other measurements were generally done when JUQUEEN is operational with a full and

varying workload (which particularly impacts parallel I/O to the shared GPFS filesystem).

The High-Q Club: Experience with Extreme-scaling Application Codes

68 Supercomputing Frontiers and Innovations

1D-NEGF
CIAO

Code_Saturne
dynQCD

JuSPIC
KKRnano

PMG+PFASST
MPAS-A

CoreNeuron

16k 32k 64k 128k 256k 448k
 1

 2

 4

 8

 16

 32

 64

sp
e
e
d

-u
p

1 2 4 8 16 28
cores
racks

hp-fRG
ICON

psOpen
SHOCK

SLH
pe

PP-Code
ParFlow+p4est

ZFS
ideal

FE2TI
FEMPAR
Gysela

IMD
JURASSIC

LAMMPS(DCM)
MP2C

0.5

0.6

0.7

0.8

0.9

1.0

16k 32k 64k 128k 256k 448k

e
ffi
ci
e
n
cy

1 2 4 8 16 28
cores
racks

muPhi
NEST

OpenTBL
pe

PEPC
TERRA-NEO

ideal

Figure 5. Strong and weak scaling of High-Q Club member application codes on JUQUEEN.

Compared to a single rack, ideal strong scaling has a speed-up of 28× on 28 racks and weak

scaling has 100% efficiency. Of the 18 codes showing strong scalability, ten maintained scaling

efficiency above 80%, and only three were below 65% efficiency

Many High-Q Club member codes demonstrated very good strong-scaling speed-up close to

28×, with dynQCD standing out with superlinear speed-up of 52× due to its exceptional ability

to exploit caches as problem size per thread decreases. ICON only achieved a modest 12× speed-

up, and while this is less than 50% of the ideal, clear reduction in overall time to completion

was shown.

Size of dataset was often critical for successful strong scaling to 28 racks, as diminishing

per-rank computation can be overwhelmed by growing communication costs. Scaling of MPAS-A

with a dataset of 65 million grid cells was only demonstrated to 24 racks (with worse performance

for 28 racks), however, simulations using a 2 km global mesh with more than 147 million grid

D. Brömmel, W. Frings, B.J.N. Wylie, B. Mohr, P. Gibbon, T. Lippert

2018, Vol. 5, No. 1 69

cells scaled to the full 28 racks. Several codes switched to lower-precision (32-bit instead of

64-bit) datatypes to allow them to fit larger simulations in available memory.

Weak scaling is generally easier, as shown by the High-Q Club member codes maintaining

over 80% efficiency from a single to 28 racks. JURASSIC only managed 68% efficiency, due to

excessive I/O for the reduced-size test case, which was the lowest accepted for club membership,

whereas muPhi was able to achieve 102% efficiency on 28 racks.

Various codes show erratic scaling performance, most likely due to topological effects.

SHOCK is characterised by particularly poor configurations with an odd number of racks in

one dimension (i.e. 4×3, 4×5 and 4×7). Similarly, OpenTBL shows marked efficiency drops for

non-square numbers of racks (8 and 28).

Most optimisations employed by the codes are not specific to BlueGene (or BG/Q) systems,

but can also be exploited on other highly-parallel systems. High-Q Club codes have also run at

scale on various Cray supercomputers, K computer, MareNostrum-III, SuperMUC and other

x86-based computers, as well as on systems with GPGPUs [3].

6. Supporting Tools and Libraries

A variety of tools and libraries were invaluable during application tuning and scaling on

JUQUEEN. Particularly during workshops, LLview8 (shown in the left part of Fig. 1) facilitated

monitoring the current system usage and additionally showing job energy consumption and

file I/O performance. Custom mappings of MPI process ranks to JUQUEEN compute nodes

generated by the Rubik9 tool were investigated with psOpen and found to deliver some benefits,

however, for the largest machine partitions these did not provide the expected reduction in

communication times yet suffered from greatly increased application launch/initialisation time.

Efficient parallel file I/O libraries and performance analysis tools both delivered significant

benefits for many applications, specifically when addressing extreme scalability.

6.1. Managing Parallel File I/O

A critical point attracting increasing attention is performance of file I/O, which is often a

scalability constraint for codes which need to read and write huge datasets or open a large number

of files. Large-scale executions of various High-Q member codes using the popular HDF5 and

pNetCDF libraries needed to disable file I/O and synthesise initialisation data, e.g., CoreNeuron

replicated a small dataset to fill memory to 15.9 GiB.

Initial full-scale runs of MPAS-A needed 20minutes to load its initial condition data of

1.2TiB using PIO/NetCDF and simulation output was disabled for large-scale tests to avoid

similar writing inefficiency. This deficiency was subsequently addressed by adopting SIONlib to

improve file I/O, allowing MPAS-A to load 1.4TiB of finer resolution mesh data and output

4TiB of model data to disk at three stages of the model run. Benefits were also observed on

other systems, i.e. MPAS-A reported a 10x speed-up from PIO/NetCDF on 1,024 nodes or more

on SuperMUC [7].

The SIONlib10 library for parallel task-local file I/O, was specifically developed to address

such file I/O scalability limitations [11, 13]. It has been used effectively by four High-Q codes

8http://www.fz-juelich.de/jsc/llview
9https://computation.llnl.gov/project/performance-analysis-through-visualization/software.php
10http://www.fz-juelich.de/jsc/sionlib/

The High-Q Club: Experience with Extreme-scaling Application Codes

70 Supercomputing Frontiers and Innovations

0.1 1 10 100 1000
Particles [M]

1

10

100

1000

T
im

e
 [

s
]

Read, Fortran90
Write, Fortran90
Read, SIONlib
Write, SIONlib

1000 10000 100000
Particles [M]

10
3

10
4

10
5

B
a

n
d

w
id

th
 [

M
iB

/s
]

Read, SIONlib
Write, SIONlib

Figure 6. Left: MP2C file I/O time on one JUQUEEN midplane (8,192 MPI ranks) using

traditional F90 I/O compared to improved I/O with SIONlib. Right: MP2C file I/O bandwidth

for checkpointing executions with 1.8 million MPI ranks on 28 racks of JUQUEEN using SIONlib

for reading and writing particle data

(KKRnano, MPAS-A, MP2C and muPhi) and several other applications are investigating migrat-

ing to adopt it (e.g. NEST [32]).

The scalability limitations of näıve parallel file management is demonstrated by I/O opti-

mization results from the integration of SIONlib into MP2C [9]. MP2C couples multiple-particle

collision dynamics with molecular dynamics to implement mesoscale simulation of hydrodynamic

media. MP2C uses a large number of particles in its calculation, which have to be read from

files in the initialisation phase and stored in files at the end of a simulation run in restart files.

Furthermore, MP2C regularly does I/O to checkpoint files to be able to restart after system or

program failure.

Originally, MP2C implemented I/O to a single file storing all particle data, which prevents

bottlenecks which arise when using a large number of task-local files. However, data output

was implemented with standard Fortran90 I/O calls for writing in two steps by first collecting

the data on one task and then writing the data in a second step from that task to file. Data

input is done individually by each MP2C MPI rank, reading the whole input file and selecting

those particles that will be needed in the local domain. As both approaches limit the scalability

of data input and output, I/O had to be improved for using it at large scale on JUQUEEN.

Figure 6 (Fortran90 write and read) shows the results of initial benchmark runs on one BG/Q

midplane with 8,192 MPI ranks using the traditional I/O approach. The measurements at the

small scale of one midplane show the increasing time for I/O operations which hinders MP2C

from using more than 50 million particles. However, the algorithm and its memory requirements

allow orders of magnitude larger numbers of particles.

SIONlib supports efficient parallel file I/O for applications which use task-local I/O to

individual files for each MPI rank. It was easily integrated into MP2C by replacing Fortran90

file open and close calls by corresponding SIONlib collective calls and write and read operations

of local particle data with SIONlib I/O operations. After changing approximately 50 lines of

code, we could reduce MP2C I/O time by several orders of magnitude. Furthermore, we could

scale MP2C’s I/O on one midplane to more than 4 billion particles, which is 125 times more

than in the traditional approach (see SIONlib write and read in Fig. 6).

With integration of SIONlib into MP2C, it now runs with enabled I/O at the full scale of

JUQUEEN. Figure 6 shows the I/O bandwidth for reading and writing different numbers of

D. Brömmel, W. Frings, B.J.N. Wylie, B. Mohr, P. Gibbon, T. Lippert

2018, Vol. 5, No. 1 71

particles. Data was stored on the GPFS scratch filesystem which provides a theoretical I/O

bandwidth of 200GiB/s. MP2C could achieve at the largest scale about 100 GiB/s for writing

and more than 130 GiB/s for reading, which is 50–66 % of the peak bandwidth. For the largest

number of particles (270 trillion), the restart file of MP2C was 14.4 TiB which could be written

in 147 s (and read in 108 s).

6.2. Parallel Performance Analysis

During their development and specifically when preparing for large-scale runs on JUQUEEN,

the execution performance of various High-Q Club applications was investigated with open-

source tools. While most analyses are adequate at modest scales (e.g., a single BG/Q rack with

64k processes/threads), occassionally it is necessary to investigate performance issues that only

manifest at larger scales.

The Darshan11 tool was typically most convenient for low-overhead measurement and anal-

ysis of file I/O, distinguishing MPI file I/O from underlying POSIX file I/O per file and detailed

breakdown of operation counts and I/O sizes. This was complemented by the Scalasca12 toolset

for scalable performance analysis of large-scale parallel applications [15] which is widely deployed

on some of the largest HPC systems and clusters, supporting runtime summarization and event

trace analyses of MPI, and OpenMP primarily focus on locating and quantifying communica-

tion and synchronization inefficiencies in C/C++/Fortran applications. Scalasca uses its own

parallel trace tools with the community-developed Score-P13 instrumentation and measurement

infrastructure [24], itself based on OTF2 event trace and CUBE profile libraries. SIONlib is

employed for efficient large-scale parallel file I/O when writing and reading OTF2 trace files

(e.g., handling one container file per BG/Q IONode).

Scalasca measurements of applications running with 1.8 million threads on JUQUEEN have

been done where 64 OpenMP threads are used for a single MPI process on each processor. In

such an execution configuration the 16GiB of processor memory is adequate to store profile

and execution trace data collected during measurement for unification and collation during

finalisation. This is not the case when 32 or 64 MPI processes split the available processor

memory, along with memory required by the MPI library and application itself, restricting

measurements to smaller configurations.

Parallel execution profiles are by default based on full compiler instrumentation of applica-

tion user-level source routines, combined with OPARI2 instrumentation of OpenMP constructs

and PMPI interposition on MPI library routines. Where these initial profile measurements man-

ifest notable execution time dilation, filtering during measurement or selective instrumentation

can be employed, directed by scoring which assesses event frequencies and associated measure-

ment overheads. Iterative refinement of instrumentation and measurement of profiles is essential

prior to collecting event traces where overheads are more significant, particularly with respect

to in-memory buffering during measurement and final trace sizes.

Event traces are analysed by Scalasca trace tools with a parallel replay following measure-

ment within the allocated partition, using the same configuration of MPI processes and OpenMP

threads, to determine the fraction of OpenMP and MPI time due to waiting, the origins of de-

lays, and critical execution path. Since traces are loaded entirely in memory for forward and

11http://www.mcs.anl.gov/darshan
12http://www.scalasca.org/
13http://www.score-p.org/

The High-Q Club: Experience with Extreme-scaling Application Codes

72 Supercomputing Frontiers and Innovations

backward event replays, which require additional data-structures and pointers, the number of

recorded events similarly governs the size of trace that can be analysed. (While analysis of

smaller execution configurations may employ larger partitions with more memory, this option is

not possible for event traces from the full system.)

Finally, the minimal set of metrics provided in Score-P profiles and Scalasca trace analysis

reports are subsequently post-processed by a remapper which derives a large number of addi-

tional metrics and hierarchies. Since the CUBE remapper and GUI are serial processes requiring

large amounts of RAM to process metrics in memory (and to minimise expensive paging to

disk), generally these are best done on dedicated visualisation nodes, such as those of the JSC

general-purpose Linux cluster JURECA with 1 TiB shared RAM.

During an Extreme Scaling Workshop, Scalasca helped identify a critical performance issue

that manifest at large scale with a version of the NEST application when it was importing

1.9TiB of neuron and synapse data with HDF5 configured to use collective MPI file I/O. To

avoid IBM XL C++ compiler instrumentation overhead, manual annotation of the relevant

code regions was used to augment the instrumentation of OpenMP and MPI. Measurement of

an execution with 16 OpenMP threads for 28,672 MPI ranks (458,752 threads in total) revealed

a large imbalance in MPI File I/O which was mirrored in the following OpenMP parallel region.

Instead of the expected MPI collective file I/O, much less efficient individual file I/O was found

which originated from a mismatch between the import module’s data structure and the HDF5

file objects [5]. After suitably modifying the import data structure to match the HDF5 file

object, the imbalance was eliminated, and performance greatly improved [32].

The cost of MPI collective file writing for final simulation output of the CIAO application

on JUQUEEN with 458,752 MPI ranks was also identified by Scalasca as a key performance

limitation and motivation for JUSITU coupling in situ visualization to VisIt [16] as previously

incorporated in psOpen and ZFS.

Exponentially growing memory requirements of ParFlow were located to originate from

version of the HYPRE library used by its by preconditioner using memory allocation profiling [8].

Examination of Scalasca execution traces was key to determining optimal load-balancing of MPI

and OpenMP computations, and associated workload distribution and loop scheduling strategies,

to allow hp-fRG to scale effectively to use all of the JUQUEEN compute nodes with 1.8 million

threads [31].

Conclusions

As the highly productive operation of the JUQUEEN BlueGene/Q by Jülich Supercom-

puting Centre draws to a close in spring 2018, the High-Q Club documents 32 codes from a

wide range of HPC application fields that demonstrated effective extreme-scale execution using

its entire 458,752 cores (and often 1.8 million threads). Standard programming languages and

MPI combined with multi-threading was sufficient, and provided a straightforward migration

path for application developers which has also delivered performance and scalability benefits

on diverse HPC computer systems (including K computer, Cray supercomputer systems and

other clusters). Similar ease-of-use and reliability of well-established homogeneous Blue Gene/Q

systems probably cannot be expected to be representative of the current and future generations

of heterogeneous HPC systems, however, we believe it is a worthwhile goal.

Each of the High-Q Club member codes is quite distinct, encountering and resolving a

variety of often unique impediments in scaling to the full JUQUEEN configuration. Code teams

D. Brömmel, W. Frings, B.J.N. Wylie, B. Mohr, P. Gibbon, T. Lippert

2018, Vol. 5, No. 1 73

themselves ultimately determine whether and how to address the considerable challenges, with

the High-Q Club promoting successes. Engagement of experts from JSC involved close long-term

collaborations in some cases to very little in others. Extreme scaling workshops provided a brief

opportunity for particularly intense interaction and experimentation, which benefits many code

teams.

Extreme scaling on JUQUEEN generally required adapting to the limited compute node

memory, either via employing alternate communicator management optimised for large numbers

of MPI ranks or effective exploitation of OpenMP multi-threading in a mixed-mode configura-

tion. Often file I/O is not done in a scalable fashion, requiring many codes to forfeit I/O (and

use synthetic or replicated simulation data) for their large-scale runs. Application codes which

are leaner and less restrictive in their memory and I/O usage can be desirable as they can

exploit more affordable systems, however, each code has its own requirements and constraints.

High-Q Club member codes are those which were able to adapt, but many important codes

may not be so fortunate. Despite these limitations, notable extreme-scale simulation capabili-

ties were demonstrated and led to subsequent Big Blue Gene Weeks with prioritised production

executions.

The High-Q Club was entirely neutral as to how application codes achieve qualifying scala-

bility. JSC training and consultancy introduce and consider a variety of technologies and tech-

niques (including novel programming models and languages) from which application developers

themselves decide which to pursue based on their individual cost-benefit determination. Our as-

sessment of the High-Q Club member code characteristics shows that incremental changes were

convenient for a wide variety of codes. The absence of disruptive approaches can perhaps be

explained by the additional effort required and associated technology immaturity at this time.

While focussing on scalability to the entire 28 racks of the JUQUEEN BG/Q installed at

JSC was a natural choice, it is also rather arbitrary. Loosening the High-Q Club qualification

criteria to accept scaling to 85% (or perhaps even 70%) of the entire JUQUEEN system could

also have been justifiable and still offer value in distinguishing extreme-scaling codes. Additional

credit may also have been appropriate for executions that are representative of production

configurations including associated file I/O, and possibly other desirable aspects (such as node-

level optimisation via vectorisation and core over-subscription). Greater differentiation between

the High-Q Club member codes is also desirable, particularly for better insight into readiness for

capability-mode production on current leadership systems and expected future exascale systems.

These aspects will be re-considered for the successor to the High-Q Club.

Acknowledgements

We would like to thank the numerous application code-teams who participated in Extreme

Scaling Workshops at JSC and contributors to the High-Q Club for generously sharing their

experience, identifying performance and scalability inhibitors and effective solutions. We also

recognise the invaluable assistance provided by the JSC Simulation Laboratories, Cross-Sectional

Teams, system administrators, and JUQUEEN support staff.

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-

mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work

without further permission provided the original work is properly cited.

The High-Q Club: Experience with Extreme-scaling Application Codes

74 Supercomputing Frontiers and Innovations

References

1. Allock, W., Bacon, C., Bailey, A., Bair, R., et. al.: Blue Gene/Q: Sequoia and Mira. In: Vet-

ter, J. (ed.) Contemporary High Performance Computing: From Petascale toward Exascale.

pp. 225–282. Chapman & Hall/CRC (2013)

2. Attig, N., Docter, J., Frings, W., Grotendorst, J., Gutheil, I., Janetzko, F., Mextorf,

O., Mohr, B., Stephan, M., Wolkersdorfer, K., Wollschläger, L., Krieg, S., Lippert, T.:

BlueGene/P: JUGENE. In: Vetter, J. (ed.) Contemporary High Performance Computing:

From Petascale toward Exascale. pp. 153–188. Chapman & Hall/CRC (2013)

3. Brömmel, D., Frings, W., Wylie, B.: MAXI – Multi-system Application Extreme-scaling

Imperative. In: Joubert, G.R., Leather, H., Parsons, M., Peters, F., Sawyer, M. (eds.)

Parallel Computing: On the Road to Exascale. vol. 27, pp. 765–766. IOS Press (2016),

DOI: 10.3233/978-1-61499-621-7-765

4. Brömmel, D., Frings, W., Wylie, B.J.N.: JUQUEEN Extreme Scaling Workshop 2015.

Tech. Rep. FZJ-JSC-IB-2015-01 (2015), http://juser.fz-juelich.de/record/188191,

accessed: 2018-03-21

5. Brömmel, D., Frings, W., Wylie, B.J.N.: Extreme-scaling Applications En Route to Exas-

cale. In: Proceedings of the Exascale Applications and Software Conference 2016. pp. 1:1–

1:10. EASC ’16, ACM, New York, NY, USA (2016), DOI: 10.1145/2938615.2938616

6. Brömmel, D., Frings, W., Wylie, B.J.N.: JUQUEEN Extreme Scaling Workshop 2016.

Tech. Rep. FZJ-JSC-IB-2016-01 (2016), http://juser.fz-juelich.de/record/283461,

accessed: 2018-03-21

7. Brömmel, D., Frings, W., Wylie, B.J.N.: JUQUEEN Extreme Scaling Workshop 2017.

Tech. Rep. FZJ-JSC-IB-2017-01 (2017), http://juser.fz-juelich.de/record/828084,

accessed: 2018-03-21

8. Burstedde, C., Fonseca, J.A., Kollet, S.: Enhancing speed and scalability of the ParFlow

simulation code. Computational Geosciences 22(1), 347–361 (2018), DOI: 10.1007/s10596-

017-9696-2

9. Freche, J., Frings, W., Sutmann, G.: High-Throughput Parallel-I/O using SIONlib for Meso-

scopic Particle Dynamics Simulations on Massively Parallel Computers. In: Chapman, B.,

Desprez, F., Joubert, G.R., Lichnewsky, A., Peters, F., Priol, T. (eds.) Parallel Comput-

ing: From Multicores and GPU’s to Petascale. vol. 19, pp. 371–378. IOS Press (2010),

DOI: 10.3233/978-1-60750-530-3-371

10. Frings, W., Mohr, B., Orth, B.: Report on the Jülich Blue Gene/L Scaling Workshop 2006.

Tech. Rep. FZJ-ZAM-IB-2007-02, Jülich (2007), http://juser.fz-juelich.de/record/

55967, accessed: 2018-03-21

11. Frings, W.: Efficient Task-Local I/O Operations of Massively Parallel Applications. Ph.D.

thesis, RWTH Aachen University, Jülich (2016), http://juser.fz-juelich.de/record/

811621, accessed: 2018-03-21

D. Brömmel, W. Frings, B.J.N. Wylie, B. Mohr, P. Gibbon, T. Lippert

2018, Vol. 5, No. 1 75

12. Frings, W., Ahn, D.H., LeGendre, M., Gamblin, T., de Supinski, B.R., Wolf, F.: Massively

Parallel Loading. In: Proceedings of the 27th International ACM Conference on Interna-

tional Conference on Supercomputing. pp. 389–398. ICS ’13, ACM, New York, NY, USA

(2013), DOI: 10.1145/2464996.2465020

13. Frings, W., Wolf, F., Petkov, V.: Scalable Massively Parallel I/O to Task-local

Files. In: Proceedings of the Conference on High Performance Computing Network-

ing, Storage and Analysis. pp. 17:1–17:11. SC ’09, ACM, New York, NY, USA (2009),

DOI: 10.1145/1654059.1654077

14. Gageik, M., Klioutchnikov, I., Olivier, H.: Mesh study for a direct numerical simulation of

the transonic flow at Rec =500, 000 around a NACA 0012 airfoil. Computers & Fluids 122,

153–164 (2015), DOI: 10.1016/j.compfluid.2015.08.030

15. Geimer, M., Wolf, F., Wylie, B.J.N., Ábrahám, E., Becker, D., Mohr, B.: The Scalasca

Performance Toolset Architecture. Concurrency and Computation: Practice and Experience

22(6), 702–719 (2010), DOI: 10.1002/cpe.1556

16. Göbbert, J.H., Bode, M., Wylie, B.J.N.: Extreme-Scale In Situ Visualization of Turbulent

Flows on IBM Blue Gene/Q JUQUEEN. In: Taufer, M., Mohr, B., Kunkel, J.M. (eds.)

High Performance Computing. pp. 45–55. Springer International Publishing, Cham (2016),

DOI: 10.1007/978-3-319-46079-6 4

17. Göbbert, J., Gauding, M., Ansorge, C., Hentschel, B., Kuhlen, T., Pitsch, H.: Direct numer-

ical simulation of fluid turbulence at extreme scale with psOpen. In: Gerhard, R., Leather,

H., Parsons, M., Peters, F., Sawyer, M. (eds.) Parallel Computing: On the Road to Exascale.

vol. 27, pp. 777–785. IOS Press (2016), DOI: 10.3233/978-1-61499-621-7-777

18. Hammer, N., Jamitzky, F., Satzger, H., et al.: Extreme scale-out SuperMUC phase 2 –

lessons learned. In: Gerhard, R., Leather, H., Parsons, M., Peters, F., Sawyer, M. (eds.)

Parallel Computing: On the Road to Exascale. vol. 27, pp. 827–836. IOS Press (2016),

DOI: 10.3233/978-1-61499-621-7-827

19. Heinzeller, D., Duda, M.G., Kunstmann, H.: Towards convection-resolving, global

atmospheric simulations with the Model for Prediction Across Scales (MPAS) v3.1:

an extreme scaling experiment. Geoscientific Model Development 9(1), 77–110 (2016),

DOI: 10.5194/gmd-9-77-2016

20. IBM Corporation: IBM System BlueGene Solution Blue Gene/Q application development.

http://www.redbooks.ibm.com/, accessed: 2018-03-21

21. Jordan, J., Ippen, T., Helias, M., Kitayama, I., Sato, M., Igarashi, J., Diesmann, M., Kunkel,

S.: Extremely Scalable Spiking Neuronal Network Simulation Code: From Laptops to Ex-

ascale Computers. Frontiers in Neuroinformatics 12 (2018), DOI: 10.3389/fninf.2018.00002

22. Jülich Supercomputing Centre: The High-Q Club. http://www.fz-juelich.de/ias/jsc/

high-q-club, accessed: 2018-03-21

23. Klawonn, A., Lanser, M., Rheinbach, O.: FE2TI: Computational scale bridging for dual-

phase steels. In: Joubert, G.R., Leather, H., Parsons, M., Peters, F., Sawyer, M. (eds.)

The High-Q Club: Experience with Extreme-scaling Application Codes

76 Supercomputing Frontiers and Innovations

Parallel Computing: On the Road to Exascale. vol. 27, pp. 797–806. IOS Press (2016),

DOI: 10.3233/978-1-61499-621-7-797

24. Knüpfer, A., Rössel, C., an Mey, D., Biersdorff, S., Diethelm, K., Eschweiler, D., Geimer,

M., Gerndt, M., Lorenz, D., Malony, A., Nagel, W., Oleynik, Y., Philippen, P., Saviankou,

P., Schmidl, D., Shende, S., Tschüter, R., Wagner, M., Wesarg, B., Wolf, F.: Score-P:

A Joint Performance Measurement Run-Time Infrastructure for Periscope, Scalasca, TAU,

and Vampir. In: Tools for High Performance Computing 2011. pp. 79–91. Springer, Berlin,

Heidelberg (2012), DOI: 10.1007/978-3-642-31476-6 7

25. Mohr, B., Frings, W. (eds.): Jülich BlueGene/P Porting, Tuning & Scaling Workshop 2008,

Innovatives Supercomputing in Deutschland (InSiDE), vol. 6 (2008), http://inside.hlrs.

de/_old/htm/Edition_02_08/article_28.html, accessed: 2018-03-21

26. Mohr, B., Frings, W.: Jülich Blue Gene/P Extreme Scaling Workshop 2009. Tech.

Rep. FZJ-JSC-IB-2010-02, Jülich (2010), http://juser.fz-juelich.de/record/8924, ac-

cessed: 2018-03-21

27. Mohr, B., Frings, W.: Jülich Blue Gene/P Extreme Scaling Workshop 2010. Tech.

Rep. FZJ-JSC-IB-2010-03, Jülich (2010), http://juser.fz-juelich.de/record/9600, ac-

cessed: 2018-03-21

28. Mohr, B., Frings, W.: Jülich Blue Gene/P Extreme Scaling Workshop 2011. Tech. Rep. FZJ-

JSC-IB-2011-02, Jülich (2011), http://juser.fz-juelich.de/record/15866, accessed:

2018-03-21

29. Ovcharenko, A., Kumbhar, P., Hines, M., Cremonesi, F., Ewart, T., Yates, S., Schürmann,

F., Delalondre, F.: Simulating morphologically detailed neuronal networks at extreme scale.

In: Joubert, G.R., Leather, H., Parsons, M., Peters, F., Sawyer, M. (eds.) Parallel Comput-

ing: On the Road to Exascale. vol. 27, pp. 787–796. IOS Press (2016), DOI: 10.3233/978-1-

61499-621-7-787

30. Qi, J., Jain, K., Klimach, H., Roller, S., Schürmann, F., Delalondre, F.: Performance

evaluation of the LBM solver Musubi on various HPC architectures. In: Joubert, G.R.,

Leather, H., Parsons, M., Peters, F., Sawyer, M. (eds.) Parallel Computing: On the Road

to Exascale. vol. 27, pp. 807–816. IOS Press (2016), DOI: 10.3233/978-1-61499-621-7-807

31. Rohe, D.: Hierarchical Parallelisation of Functional Renormalisation Group Cal-

culations – hp-fRG. Computer Physics Communications 207, 160–169 (2015),

DOI: 10.1016/j.cpc.2016.05.024

32. Schumann, T., Frings, W., Peyser, A., Schenck, W., Thust, K., Eppler, J.M.: Modeling

the I/O behavior of the NEST simulator using a proxy. In: Conference Proceedings of

the YIC GACM 2015 / ed.: Stefanie Elgeti; Jaan-Willem Simon. 3rd ECCOMAS Young

Investigators Conference, Aachen (Germany), 20–23 July 2015, RWTH Aachen University

(2015), http://juser.fz-juelich.de/record/202952, accessed: 2018-03-21

33. Springer, P., Ismail, A.E., Bientinesi, P.: A Scalable, Linear-Time Dynamic Cutoff Algo-

rithm for Molecular Dynamics. In: Kunkel, J.M., Ludwig, T. (eds.) High Performance Com-

puting. pp. 155–170. Springer International Publishing, Cham (2015), DOI: 10.1007/978-3-

319-20119-1 12

D. Brömmel, W. Frings, B.J.N. Wylie, B. Mohr, P. Gibbon, T. Lippert

2018, Vol. 5, No. 1 77

34. Stephan, M., Doctor, J.: JUQUEEN: IBM BlueGene/Q supercomputer system at the

Jülich Supercomputing Centre. Journal of Large-Scale Research Facilities 1, 1–5 (2015),

DOI: 10.17815/jlsrf-1-18

The High-Q Club: Experience with Extreme-scaling Application Codes

78 Supercomputing Frontiers and Innovations

Exploiting the Performance Benefits of Storage Class Memory

for HPC and HPDA Workflows

Michèle Weiland1, Adrian Jackson1, Nick Johnson1, Mark Parsons1

c© The Authors 2018. This paper is published with open access at SuperFri.org

Byte-addressable storage class memory (SCM) is an upcoming technology that will trans-

form the memory and storage hierarchy of HPC systems by dramatically reducing the latency

gap between DRAM and persistent storage. In this paper, we discuss general SCM characteris-

tics, including the different hardware configurations and data access mechanisms SCM is likely to

provide. We outline the performance challenges I/O requirements place on traditional scientific

workflows and present how data access through SCM can have a beneficial impact on the perfor-

mance of such workflows, in particular those with large scale data dependencies. We describe the

system software components that are required to enabled workflow and data aware resource allo-

cation scheduling in order to optimise both system throughput and time to solution for individual

applications; these include a data scheduler and data movers. We also present an illustration of

the performance improvement potential of the technology, based on initial workflow performance

benchmarks with I/O dependencies.

Keywords: NVRAM, 3D XPoint, SCM, workflows, resource scheduling.

Introduction

Today’s supercomputers offer a computing environment that focuses on compute perfor-

mance first and foremost. The advent of byte-addressable non-volatile memory however means

that in the coming years supercomputers will have sufficient memory capacity per compute node

to no longer be exclusively used (and useful) for high-performance scientific computation (HPC),

but also for high-performance data analytics (HPDA). Rather than simply ingesting data that

was generated on a different system, input data for simulations will be prepared directly on the

supercomputer where the simulation will be executed, and simulation output will be analysed

and post-processed there as well. We predict that the mix of applications running on supercom-

puters will become broader: in addition to the largely compute intensive HPC applications, there

will be memory and I/O intensive HPDA applications as full scientific workflows are enabled

on a single system. This break in the status quo motivates the contributions of this paper: a

discussion of the performance benefits of non-volatile memory, in particular with a view to opti-

mising the end-to-end performance of workflows with complex compute and data dependencies;

and a description of the system software infrastructure that is necessary to support them.

1. Storage Class Memory

Byte-addressable, non-volatile memory (hereafter referred to as Storage Class Memory, or

SCM) represents the latest advance in memory technologies. SCM promises to deliver both

greater performance and endurance than existing storage technologies, as well as increased den-

sity in comparison to DRAM. Compute platforms with SCM will have access to non-volatile

memory that is capable of storing several TBs of data per node. This very large memory ca-

pacity for servers, and long term high-performance persistent storage within the memory space

of the servers, means that new techniques for performing I/O will emerge. SCM enables Direct

1EPCC, The University of Edinburgh, Edinburgh, United Kingdom

DOI: 10.14529/jsfi180105

2018, Vol. 5, No. 1 79

access (DAX) from applications to individual bytes of data; this is fundamentally different from

the block-oriented way I/O is currently implemented [9].

Several manufacturers are working on delivering byte-addressable SCM to the market within

the next few years. The development that is furthest advanced to date is the result of a collabo-

ration by Intel and Micron, the 3D XPointTM NVDIMM [3]. As the name implies, this SCM sits

in the DIMM slots next to the CPU and alongside DRAM, with access to the NVDIMM space

managed via the processor’s memory controller. Unlike DRAM however, data that is stored

on the NVDIMM is persistent, which means that it can be used as a (potentially long-term)

storage environment as well as memory. 3D XPointTM NVDIMMs can be used in two differ-

ent modes [6], which have implications for how applications can exploit these memory spaces.

Changing between the two modes requires a system reboot.

1.1. Data Access

SCM has the potential to enable synchronous byte-level I/O, moving away from the asyn-

chronous block-based file I/O applications currently rely on. In current asynchronous I/O, ap-

plications pass data to the operating system (O/S) which then uses driver software to issue an

I/O command, adding the I/O request into a queue on a hardware controller. The hardware

controller will process that command when ready, notifying the O/S that the I/O operation has

finished through an interrupt to the device driver.

SCM can be accessed simply by using a load or store instruction, as with any other memory

operation an application undertakes. This may require an additional instruction to ensure the

data is persistent (fully committed to the non-volatile memory), if persistence is required by

an application, or such persistence guarantees may be provided by the hardware through fault

tolerant power supplies protecting volatile memory within the system (such as asynchronous

DRAM refresh). With SCM providing significantly lower latencies than external storage devices,

the traditional I/O block access model, using interrupts, becomes inefficient because of the

overhead of context switches between user and kernel mode (which can take thousands of CPU

cycles). Furthermore, with SCM it becomes possible to implement remote access to data stored

in the memory using RDMA technology over a suitable interconnect. Using high performance

networks can enable access to data stored in SCM in remote nodes faster than accessing local

high performance SSDs via traditional I/O interfaces and stacks inside a node. Therefore, it is

possible to use SCM to greatly improve I/O performance within a server, increase the memory

capacity of a server, or provide a remote data store with high performance access for a group

of servers to share. Such storage hardware can also be scaled up by adding more SCM memory

in a server, or adding more nodes to the remote data store, allowing the I/O performance of a

system to scale as required.

However, if SCM is provisioned in the servers in a supercomputer, there must be software

support for managing data within the SCM. This includes moving data as required for the jobs

running on the system, and providing the functionality to let applications run on any server and

still utilise the SCM for fast I/O and storage (i.e. applications should be able to access SCM in

remote nodes if the system is configured with SCM only in a subset of all nodes).

As SCM is persistent, it also has the potential to be used to implement techniques for re-

siliency, providing backup for data from active applications, or providing long term storage for

databases or data stores required by a range of applications. With support from the system

software, servers could be enabled to handle power loss without experiencing data loss, effi-

Exploiting the Performance Benefits of Storage Class Memory for HPC and HPDA...

80 Supercomputing Frontiers and Innovations

ciently and transparently recovering from power failure. Applications could resume from their

latest running state and maintaining data, with little performance overhead, especially com-

pared to current techniques of writing data to external storage devices such as high performance

filesystems.

1.2. 1-Level Memory

The first of the two modes that SCM can operate in is 1-level memory, or 1LM, which

views main memory (DRAM) and NVRAM as two separate memory spaces, both accessible by

applications (see Fig. 1). This mode is conceptually similar to the Flat Mode configuration of

the high bandwidth, on-package, MCDRAM in current Intel Xeon PhiTM processors (code name

Knights Landing or KNL) [10]. DRAM is managed via standard memory APIs, such as malloc,

and represents the only visible memory space for the operating system. The NVRAM on the

other hand is managed by persistent memory and filesystem APIs, such as pmem i/o [8] and

mmap, and presents the non-volatile part of the system memory. Both allow access via direct

CPU load and store instructions. In order to take advantage of SCM in 1LM mode, either the

system software, or the applications have to be adapted to be able to manually use these two

distinct address spaces.

Node

DRAM

Memory levels

NVRAM

CPU

Application
Direct
regions

OS Main Memory

2-Level Memory

*https://www.google.com/patents/US20150178204 19

Figure 1. 1LM mode, where DRAM and NVRAM are two separate memory spaces

1.3. 2-Level Memory

2-level memory, or 2LM, configures DRAM as a cache in front of the NVRAM (see Fig. 2).

Applications only see the memory space of the SCM; data that is being used is transparently

stored in DRAM, and moved to SCM when no longer immediately required by the memory

controller (as in standard CPU caches). This is very similar to the Cache Mode configuration

of MCDRAM on KNL processors. This mode of operation does not require applications to be

altered to exploit the capacity of SCM, and aims to give memory access performance at near

to main memory speeds whilst providing the large memory space of SCM. Exactly how well the

main memory cache performs depends on the specific memory requirements and access pattern

of a given application. Furthermore, in this mode the persistence of the NVRAM contents cannot

be guaranteed, due to the volatile nature of the DRAM cache that, at any given time, may hold

updated versions of data stored in NVRAM. Therefore, the non-volatile characteristics of SCM

are not exploited in this mode of operation. In 2LM mode, it is also possible to divide the SCM

space into two partitions: memory (not persistent) and “app direct” (persistent).

M. Weiland, A. Jackson, N. Johnson, M. Parsons

2018, Vol. 5, No. 1 81

Node

DRAM

Memory levels

NVRAMCPU

1-Level Memory

Cache OS Main Memory

*https://www.google.com/patents/US20150178204
18

Figure 2. 2LM mode, where DRAM is a cache to the NVRAM memory space

1 #SBATCH −−ntasks=64

2 #SBATCH −−time=01:00:00

3

4 cd job1

5 mpirun −n 64 ./job1

6 cd ../job2

7 mpirun −n 32 ./job2

8 cd ../job3

9 mpirun −n 1 ./job3

Figure 3. Single SLURM script submission: there is no queuing time between jobs, but the

maximum number of resources is used throughout

2. Workflows

Many scientific simulations are the result of a workflow, i.e. a series of applications that

each perform a specific task within the simulation, rather than that of a single application [2]. A

workflow may include steps such as data pre-processing and manipulation, computational sim-

ulation, output reduction and post-processing, or visualisation. The capacity and performance

characteristics of SCM mean that steps of a workflow that would previously have been executed

away from the main supercomputer (e.g. on a dedicated high-memory system) are more likely to

be performed in situ. Moving the entire workflow onto a single system simplifies the simulation

setup and removes the need to make simulation data available across multiple systems. Users

currently set up such workflows in three different ways:

1. By putting all the jobs into a single script, requesting the maximum number of resources to

be required by the steps of the workflow at any point in time (see Fig. 3).

2. By creating a chain of jobs, each requesting the correct amount of resources, for example

by submitting the next job in the workflow through inserting a job submission command at

the end of the preceding job (see Fig. 4).

3. By specifying dependency conditions using the job scheduler (see Fig. 5).

Only the final one of these three options implicitly supports the notion that there can be a

dependency between jobs, however the dependency in this case is limited to being temporal.

Two different types of workflows can be envisaged: firstly, monolithic workflows are com-

prised of applications that each use the same amount of resources (i.e. the same number of

compute nodes); and secondly, composite workflows that consist of applications with varying

demands on the resources. The example in Fig. 3 is an instance of composite workflow.

Exploiting the Performance Benefits of Storage Class Memory for HPC and HPDA...

82 Supercomputing Frontiers and Innovations

1 #SBATCH −−ntasks=64

2 #SBATCH −−time=01:00:00

3

4 cd job1

5 mpirun −n 64 ./job1

6 cd ../job2

7 sbatch job2.sh

Figure 4. Basic job chaining in a SLURM script: the chained job will be put into the queue as

if it was submitted manually

1 JOB1 ID=$(sbatch job1.sh)

2 echo $JOB1 ID

3 sbatch −−dependency=afterok:$JOB1 ID job2.sh

Figure 5. Defining a dependency in SLURM: the scheduler uses the job ID to check that the

preceding job has completed successfully, and the next job is then submitted into the queue

All of the three workflow setup approaches can have drawbacks: the first approach minimises

the end-to-end runtime Tall, because there is a single queuing penalty Tqueue at the start of the

job which has to be added on to the time when the job is running Trun. However, unless all the

workflow steps require the same number of compute nodes, i.e. unless the workflow is monolithic,

this approach is wasteful in terms of resources, because the maximum number of compute nodes

Rmax is used for the entire duration of the job:

Tall = Tqueue +
N∑

i=1

T(i,run), (1)

Rall = Rmax ∗ Tall. (2)

If there is a large discrepancy between the resources required by each workflow step (say

if one of the steps is serial and another uses hundreds of nodes), not only does this approach

quickly become very expensive, it also impacts the utilisation of the system, because although

nodes are allocated to a job, they are not active all the time the job is executing but remain

remain unavailable for other jobs.

The second and third approaches minimise resource utilisation in the composite workflow

case, because for each step N , the correct amount of resources is requested. The time to comple-

tion for the workflow however will now have to include additional queuing time Tqueue on top of

compute time Trun for each of the N steps of the workflow. On a busy machine where queuing

times are long, this approach can have a significant impact on the total time to solution:

Rall =

N∑

i=1

Ri ∗ Ti, (3)

Tall =
N∑

i=1

T(i,queue) + T(i,run). (4)

M. Weiland, A. Jackson, N. Johnson, M. Parsons

2018, Vol. 5, No. 1 83

2.1. Workflows with Data Dependencies

On today’s supercomputers, data dependencies with workflows are largely implemented by

sharing data through files that are written to, and read from, a shared file system. Therefore,

regardless of the approach that is taken for the execution of the workflow, Trun includes reading

data from the file system at the start of a job, and writing results back at the end, in addition

to performing the computation:

Trun = TI/O + Tcompute. (5)

The aim is to minimise both the resource utilisation Rall and the time to solution Tall by

providing true support for complex workflows within the job scheduler, and by reducing the I/O

component TI/O of the runtime as much as possible through allowing workflows to share data

without writing to a file system that is external to the compute nodes.

For supercomputers that execute a lot of data-intensive workflows, I/O performance presents

a considerable performance bottleneck that the arrival of SCM will help alleviate. On a system

with SCM, the data that is produced as part of a workflow can be kept on the compute nodes

to be consumed in situ until the workflow concludes. In 1LM mode for instance, this could be

achieved by simply using local files. In order to achieve this, the job scheduler and resource

manager must understand and support the notions of both workflows and of data locality, so

that individual steps of a workflow are placed on compute nodes that (ideally) already have a

copy of the data.
Workflows

Time

Re
so

ur
ce

s

Job 1

Job 3Job 2

Read-in, write-out
Temporary files 30

Figure 6. Example of a workflow where information is shared by writing out and reading in

data. Data written by Job 1 is ingested by Job 2; and data written by Job 2 is in turn ingested

by Job 3

Providing support for workflows without impacting the throughput of standard jobs is po-

tentially complex if no restrictions are applied to the workflows. We therefore limit our support

to workflows with the following properties:

1. At the time of submission of the workflow, the full workflow must be known, i.e. no extra

steps can be added while the workflow is active.

2. A workflow must have data dependencies.

Exploiting the Performance Benefits of Storage Class Memory for HPC and HPDA...

84 Supercomputing Frontiers and Innovations

3. The temporal dependencies of the workflow steps must be fixed, i.e. each job must know

which job(s) immediately precede(s) and follow(s) it, and this cannot be changed.

4. As part of the workflow description, the data that is shared between the different jobs is

listed explicitly, and only this data forms part of the workflow.

2.2. Using SCM to Optimise Resource Usage and Time to Solution

SCM brings the opportunity for supercomputers to start offering more fundamental support

for workflows with data dependencies. SCM can adopt the role of large (persistent) memory or

of a fast storage device (or a combination of the two), which means that compute nodes with

local SCM will be able to tackle a much wider workload than traditional HPC systems. The

key benefit SCM offers is that it will allow applications to ingest and output data (in any form)

with minimal involvement from the external file system. Prior to a job running, its associated

input data can be pre-loaded onto the SCM of the compute nodes that will be allocated to the

job. Similarly, a job can write its final output data locally to SCM; once the job has completed,

and assuming the output data does not need to be read by another job, the data can be moved

off the compute node and onto external storage. The benefit is that compute resources are

used primarily for compute, and not for I/O, and time to solution and system throughput both

improve. In theory, once data has been moved from the network attached storage to the compute

node, it can remain there and be accessible until it is explicitly removed. In practice, there are

a number of questions that arise, such as: who is responsible for moving data to and from a

compute node; how long should data be kept on a compute node when it is not being used;

what is the impact of moving data in the background on the performance of all jobs; and how

does workflow support fit into a charging model for users. In order for workflow support to be

transparent to the user (a key requirement for usability), the system software must address these

questions.

3. Outline of Required System Software

The system software provides the functionality necessary to fulfil the requirements listed

above. From the perspective of providing transparent support for workflows, with not only

temporal but also data dependencies, a number of scenarios are supported:

• Applications can request to share data through SCM. This functionality is primarily for

sharing data between different components of the same computational workflow, but it

could also be used to share a common dataset between a group of users.

• A user can request for data to be loaded into SCM prior to a job starting, or for it to be

moved off SCM after a job has completed. This is not dissimilar to current Burst Buffer

technology and is not limited to workflows, but it supports the notion that data can be

moved in the background, while nodes are performing computations.

• Data access is restricted to the owner of the job or workflow, or to users that are explicitly

granted access. Encryption of data is enabled in order to make sure those access restrictions

are maintained.

• A user can choose between 1LM and 2LM mode, if they are supported by the SCM hard-

ware. Rebooting a node into a particular mode is achieved through the resource manager,

i.e. the user can specify the job environment in the batch submission script.

M. Weiland, A. Jackson, N. Johnson, M. Parsons

2018, Vol. 5, No. 1 85

• The resource manager can allocate nodes based on storage/memory capacity, as well as

compute. If data can be temporarily stored on a compute node, the capacity for storage

or memory that is available to other jobs will be reduced for the duration.

Figure 7. Sequence diagram describing how the workload manager, schedulers and data movers

implement a workflow

Figure 7 shows the main components that enable a workflow with data dependencies on a

system with SCM: the workload manager, the job and data schedulers, and the data movers.

Exploiting the Performance Benefits of Storage Class Memory for HPC and HPDA...

86 Supercomputing Frontiers and Innovations

3.1. Workload Manager and Job Scheduler

As shown earlier, workload managers (the example in Fig. 5 shows SLURM [5]) allow for

users to define temporal dependencies between applications. However what is currently not

commonly possible on supercomputers is for data dependencies to be defined in the same way.

One reason for this is that HPC systems mostly do not have local storage, and it is therefore

not possible to keep data close to where the computation takes place: if the data has to be read

from or written to an external file system, there are no performance advantages to be gained

from understanding the data dependencies.

The workload manager must also be able to query a node’s mode of operation, and the

amount of free storage (or memory, depending on how the SCM is used) that can be assigned

to a job. This latter point is particularly important if data is left on a node for a period of time,

e.g. because the next step in a workflow is not ready, and the node’s compute capabilities can

be used for other work.

The data dependency requirements of a job or workflow are described in the submission

script in a similar way in which the compute resource needs would be outlined today. In addition

to listing the walltime and number of processes or nodes, the I/O requirements (including the size

of the data) are also described. With this additional information, and the workload manager’s

ability to query the system state, the job scheduler can (if there is sufficient capacity) assign the

components of a workflow to be near the data that forms part of this workflow.

The job scheduler is aware of the SCM resources in the system at all times, and it allows users

to specify SCM requirements and data movement requirements, to understand the configuration

of the compute nodes and to allow users to specify configuration requirements of compute nodes

for their jobs. The job scheduler communicates with all job scheduling and data scheduling

components of the system software, to enable the system to run in as efficient a manner as

possible and ensure user data is secure and safe. The job scheduler consists of multiple scheduling

components, including components that can schedule jobs based on data location or energy

policies.

3.2. Data Scheduler

The data scheduler operates under the instruction from other software components, be they

system software (e.g. the workload manager or job scheduler), or directly through the request

of an application. The main responsibility of the data scheduler is to orchestrate the migration

of data. This can be between the different hardware levels within a single node, independently

from an application, or between different nodes in the system, specifically to and from SCM on

other nodes over the high performance interconnect.

The data scheduler also keeps track of data and what hardware that data is located in.

On the compute nodes, the data scheduler component provides the local functionality to move

data between storage levels (e.g. filesystem, SCM, DRAM) as instructed by the higher level

component.

3.3. Data Movers

Data movers are simple software components that are used by the data scheduler to un-

dertake specific data operations, such as copying data between different filesystems, from local

to remote compute nodes, and between different data storage targets (for instance between an

M. Weiland, A. Jackson, N. Johnson, M. Parsons

2018, Vol. 5, No. 1 87

object store and a filesystem). Separate data movers implement different operations, allowing

targeted optimisations for each operation.

4. Assessing the Performance Optimisation Potential

To evaluate the potential for workflow optimisation that SCM, and an SCM aware job

scheduler, can enable we undertook some benchmarking of the I/O costs that a workflow can

experience. For these tests we create separate producer and consumer applications, that either

generate or read a set of data files. The applications can generate or utilise different numbers or

sizes of files to enable a range of different types of workflow interaction to be explored. These

applications do not perform any other work, and thus only represent the I/O aspects of the

workflow, but they do allow us understand the potential for performance optimisation from

SCM functionality over a range of hardware and workflow configurations. We evaluate workflow

I/O costs, writing data from the producer and reading data with the consumer, using a single

compute node, with three different hardware configurations:

1. External Lustre filesystem;

2. Internal SSD storage device;

3. Memory mapped filesystem.

The external Lustre filesystem is equivalent to many current HPC system configurations. The

internal SSD storage device represents compute node local storage, but without the potential

read and write performance that true SCM hardware offers. The memory mapped filesystem

represents performance that is closer to SCM technology. File-based I/O is generally subject to

O/S level caching, keeping recent data in memory for re-use rather than requiring the data to

be fetched from disk. Such caching can offer significant performance benefits for recently used

file data, but is not representative of workflows where applications could be run on different

nodes or at different times, and therefore would not be able to benefit from such I/O caching.

Therefore, we ran our single producer-consumer benchmarks both with and without I/O caching

to enable the evaluation of the benefit of such functionality and the impact of being unable to

utilise it.

The data is collected on a single dual-socket node containing 2 Intel Xeon Platinum 8160F

CPUs (24 cores @ 2.10 GHz each) with 192GB of DDR4 memory and a local 800GB Intel SSD

DC S3710 Series SSD device. The node is connected to a 750GB Lustre (version 2.9) filesystem.

Table 1 presents the average of 5 runs of each benchmark on the different hardware options we

have previously outlined without I/O caching, using the following file configurations:

• 10 files, each of 1GB (10 x 1GB);

• 100 files, each of 100MB (100 x 100MB);

• 1,000 files, each of 10MB (1,000 x 10MB).

The results presented are using a single producer and a single consumer application on the

node. It is evident from Tab. 1 that significant savings can be made to the workflow overheads

associated with transferring data between workflow components. Simple writing to a local storage

device (SSD) rather than the external filesystem reduces the I/O cost by up to five times.

Moving from writing to a traditional storage device to writing data to memory brings even

larger benefits, with the best performance around twelve times faster than writing to the local

disk, and around fifty eight times faster than writing to the external filesystem. Whilst SCM is

unlikely to achieve performance as good as memory mapped filesystem hosted on DRAM, these

Exploiting the Performance Benefits of Storage Class Memory for HPC and HPDA...

88 Supercomputing Frontiers and Innovations

Table 1. Performance of workflow benchmark without I/O

caching (single producer-consumer), using three different

file configurations. The performance is reported as time in

seconds. Times in brackets are (write/read) times for the

(producer/consumer)

Hardware 10 x 1GB 100 x 100MB 1000 x 10MB

Lustre 291.41 (137.77/153.64) 216.68 (105.34/111.34) 196.80 (102.42/94.38)

SSD 61.26 (34.39/26.87) 54.53 (29.05/25.48) 54.44 (28.09/26.35)

Memory 4.97 (3.02/1.95) 4.47 (2.99/1.48) 4.70 (3.16/1.54)

Table 2. Performance of workflow benchmark with I/O

caching (single producer-consumer), using three different

file configurations. The performance is reported as time in

seconds. Times in brackets are the (write/read) times for

the (producer/consumer)

Hardware 10 x 1GB 100 x 100MB 1000 x 10MB

Lustre 144.36 (138.94/5.38) 104.26 (102.09/2.18) 103.90 (102.24/1.64)

SSD 36.12 (34.37/2.04) 30.73 (29.11/1.62) 30.08 (28.28/1.80)

Memory 4.62 (3.00/1.62) 4.66 (3.04/1.62) 4.91 (3.25/1.66)

results indicate the performance differences between storage devices, such as fast SSDs, and true

memory technologies.

Table 2 presents the average of 5 runs of the same benchmarks, but this time with I/O

caching enabled, highlighting the performance optimisation potential enabled by a SCM and data

aware job scheduler. It is evident from the results in the table that both the external filesystem

and internal storage device benefit significantly from I/O caching enabled at the operating

system level. The retention of data within the compute node can improve the performance even

with fast I/O devices. We note that I/O caching does not significantly impact the memory

mapped filesystem as that approach is already keeping data in memory rather than requiring

I/O to access the underlying persistent storage device. As well as evaluating a single producer-

consumer combination, we also evaluated the performance impact of workflow optimisation with

SCM using multiple producer-consumers on a single node. We benchmarked using 36 producers

and 36 consumers, running the same tests as before, albeit with smaller numbers of files to

enable the benchmarks to finish in a reasonable time, and the data to be resident in memory.

Table 3 presents the results of the no-caching test, with the main number as the maximum

runtime (maximum write time plus maximum read time) for the workflow, and the number in

brackets as the minimum runtime (minimum write time plus minimum read time). It is evident

from the table that the performance impact of multiple processes undertaking I/O at the same,

or similar, times is significantly larger with the external filesystem than that with the local

device or writing data to memory.

The performance differential between the Lustre and SSD benchmarks is larger for the mul-

tiple process tests (≈ 5.7 − 6.4×) than for the single process tests (≈ 3.6 − 4.6×). The Memory

benchmark performance is in fact significantly faster than the single producer-consumer bench-

M. Weiland, A. Jackson, N. Johnson, M. Parsons

2018, Vol. 5, No. 1 89

Table 3. Performance of workflow benchmark without I/O

caching (36 producer-consumers). Performance is reported

as maximum time in seconds (minimum time in brackets)

Hardware 1 x 1GB 10 x 100MB 100 x 10MB

Lustre 978.25 (790.15) 911.58 (591.07) 906.87 (829.00)

SSD 152.00 (142.99) 155.63 (138.14) 158.12 (150.78)

Memory 0.84 (0.77) 1.06 (0.79) 1.03 (0.66)

Table 4. Characteristics of the jobs used in the illustration

of the optimisation potential

Job ID Number of nodes TI/O (s) Tcompute (s) Trun (s) Part of Workflow?

1 4 10 + 30 50 90 y

2 1 10 + 0 180 190 n

3 15 10 + 0 30 40 n

4 1 20 + 10 400 430 n

5 7 10 + 10 70 90 n

6 15 10 + 10 20 40 n

7 4 30 + 120 180 330 y

8 8 0 + 60 250 310 n

9 4 10 + 30 10 50 y

10 2 20 + 30 150 200 n

marks, however we believe this is because I/O for the small data sizes used in these benchmarks

can exploit cache memory more efficiently. Furthermore, the performance variability of node

local I/O (SSD) is also significantly smaller (≈ 5% − 12%) than for the external filesystem

(≈ 9% − 54%), demonstrating another potential benefit of SCM (reduced performance variabil-

ity).

4.1. Illustration of Optimisation Potential

In this section, we give a simple example of how data aware workflow scheduling using SCM

can improve both the performance of the workflow itself, and improve the resource usage on the

system. We assume a system with 20 nodes and schedule 10 very short jobs onto these nodes. The

characteristics of the jobs are described in Tab. 4; for illustration purposes, each job is broken

down into three distinct phases (input, compute and output), and may or may not be part of a

workflow. Jobs that are not part of a workflow are scheduled onto the system by incrementing

ID in a round-robin fashion, if there is sufficient space to accommodate them. Jobs that are part

of a workflow required the preceding components of the workflow to be completed before they

can be executed; in our example, Jobs 1, 7 and 9 form a workflow with data dependencies. It is

assumed that no data is stored locally by default.

Exploiting the Performance Benefits of Storage Class Memory for HPC and HPDA...

90 Supercomputing Frontiers and Innovations

Pa
rt

 1

Pa
rt

 2

Pa
rt

 3

Pa
rt

s 1
, 2

 a
nd

 3

F
ig
u
re

8
.

T
im

el
in

e
of

ex
am

p
le

jo
b

s
b

ei
n

g
sc

h
ed

u
le

d
,

w
it

h
ou

t
aw

ar
en

es
s

of
d
at

a
d

ep
en

d
en

ci
es

w
it

h
in

a
w

or
k
fl

ow
.

T
im

e
to

so
lu

ti
o
n

fo
r

a
ll

th
re

e
p

a
rt

s

(J
ob

s
1,

7
an

d
9)

of
th

e
w

or
k
fl

ow
:

49
0s

Pa
rt

 1

Pa
rt

 2

Pa
rt

 3

Pa
rt

s 1
, 2

 a
nd

 3

F
ig
u
re

9
.

T
im

el
in

e
of

ex
am

p
le

jo
b

s
b

ei
n
g

sc
h

ed
u

le
d

,
w

it
h

aw
ar

en
es

s
of

d
at

a
d

ep
en

d
en

ci
es

w
it

h
in

a
w

or
k
fl

ow
a
n

d
av

o
id

in
g

w
ri

ti
n

g
to

/
re

a
d

in
g

fr
o
m

th
e

ex
te

rn
al

fi
le

sy
st

em
.

T
im

e
to

so
lu

ti
on

fo
r

al
l

th
re

e
p

ar
ts

(J
ob

s
1,

7
an

d
9)

of
th

e
w

or
k
fl

ow
:

28
0s

M. Weiland, A. Jackson, N. Johnson, M. Parsons

2018, Vol. 5, No. 1 91

Figure 8 shows a timeline of the allocation of the example jobs using a standard scheduler

that is not aware of data dependencies inside a workflow. As can be seen from the timeline, parts

1 and 2 of the workflow happen to be scheduled onto the same nodes by chance (i.e. node 0–3).

However, the 3rd component of the workflow is scheduled on nodes 16–19, because another job

has taken over the resources used by the first two parts of the workflow. Despite parts 1 and

2 of the workflow being scheduled on the same resources, Job 1 has to write its output to the

external file system. This data represents the input for Job 7, which in turn has to reload the

data from the external file system. The total individual runtimes for the workflow components

Trun are 90s, 330s and 50s, a total of 470s. However, because Job 9 is held in the queue for a

short amount of time (in this example 20s), the total time to solution Tall increases to 490s.

Figure 9 illustrates how the allocation changes if the scheduler understands data dependen-

cies and the importance of data locality in workflows. Two separate optimisations occur: firstly,

the 3 parts of the workflow are now scheduled to use the same nodes 0-3; secondly, and as a

direct result of the first step, data can now be kept locally on the compute nodes. There is no

need to access the external file system. I/O cost will be close to DRAM speed and thus vastly

reduced even when compared to SSD. In our example here, we assume (for simplicity) that I/O

cost tends to 0 when using SCM. The first job in the workflow still needs to read its input from

external storage, and the final job needs to write back to external storage, but all other I/O can

be local. This results in the following runtimes per job:

Trun,Job1 = 10s + 50s = 60s,

Trun,Job7 = 0s + 180s = 180s,

Trun,Job9 = 30s + 10s = 40s.

(6)

As the jobs are scheduled consecutively onto the same nodes, there is no additional queuing

time, and Tall is simply the sum of the individual runtimes, i.e. 280s.

As a further optimisation, which we do not consider in this example, it is possible to pre-load

and post-move the input/output data of particularly data-intensive jobs in the background, prior

to them starting execution, or after they have completed. This increases the resource allocation

constraints that the scheduler has to work around, however, the potential gains in time to

solution and resource utilisation are significant.

5. Related Work

Recent years have seen a lot of research emerge around the topics of I/O performance

(notably with the arrival of new storage technologies), scheduling of large-scale systems and

scientific workflows. Daley et al. [1] assess how Burst Buffers can alleviate the I/O bottleneck

of some scientific workflows, and acknowledge the associated data management challenges. Also

primarily focussed on Burst Buffers, Herbein et al. [4] discuss a technique for making scheduling

policies I/O aware, taking into account the different bandwidths of the storage hierarchy in order

to avoid I/O contention. Rodrigo et al. [7] address the idea of workflow-aware scheduling, having

recognised that workloads on HPC system are a more commonly comprised of an interdependent

series of jobs. They propose a workflow-aware extension to the the widely used SLURM scheduler,

which goes beyond the simple temporal dependencies between jobs that are supported in most

resource managers.

Exploiting the Performance Benefits of Storage Class Memory for HPC and HPDA...

92 Supercomputing Frontiers and Innovations

Conclusions

In this paper, we outline the opportunities for performance improvements that byte-

addressable storage class memory, such as the upcoming 3D XPointTM NVDIMMs can bring

in particular to data intensive applications. We also present the system software that needs to

be put in place in order to support data aware workflow scheduling using persistent memory.

Overall, the benefits are clear: if a workflow can be scheduled so that its time to solution is

decreased, but without impinging on other jobs, the system resources are freed up sooner and

the total workload throughput for the HPC system is improved.

Acknowledgements

The NEXTGenIO project has received funding from the European Union’s H2020 Research

and Innovation Programme under Grant Agreement no 671951. The project works on addressing

the I/O challenge, a key bottleneck as the HPC community is moving towards the Exascale.

NEXTGenIO is an internal collaboration between research organisations and industry to de-

velop a prototype hardware platform that uses on-node SCM to bridge the latency gap between

memory and storage. The project is also developing the necessary system software to enable the

transparent use of SCM, with the aim to improve application performance, as well as system

utilisation and workload throughput.

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-

mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work

without further permission provided the original work is properly cited.

References

1. Daley, C., Ghoshal, D., Lockwood, G., Dosanjh, S., Ramakrishnan, L., Wright, N.: Perfor-

mance Characterization of Scientific Workflows for the Optimal Use of Burst Buffers. Future

Generation Computer Systems (2017), DOI: 10.1016/j.future.2017.12.022

2. Deelman, E., Peterka, T., Altintas, I., Carothers, C.D., van Dam, K.K., Moreland, K.,

Parashar, M., Ramakrishnan, L., Taufer, M., Vetter, J.: The Future of Scientific Workflows.

The International Journal of High Performance Computing Applications 32(1), 159–175

(2018), DOI: 10.1177/1094342017704893

3. Hady, F.T., Foong, A., Veal, B., Williams, D.: Platform Storage Performance with

3D XPoint Technology. Proceedings of the IEEE 105(9), 1822–1833 (Sept 2017),

DOI: 10.1109/JPROC.2017.2731776

4. Herbein, S., Ahn, D.H., Lipari, D., Scogland, T.R., Stearman, M., Grondona, M., Gar-

lick, J., Springmeyer, B., Taufer, M.: Scalable I/O-Aware Job Scheduling for Burst Buffer

Enabled HPC Clusters. In: Proceedings of the 25th ACM International Symposium on High-

Performance Parallel and Distributed Computing. pp. 69–80. HPDC ’16, ACM, New York,

NY, USA (2016), DOI: 10.1145/2907294.2907316

5. Jette, M.A., Yoo, A.B., Grondona, M.: SLURM: Simple Linux Utility for Resource Manage-

ment. In: In Lecture Notes in Computer Science: Proceedings of Job Scheduling Strategies

for Parallel Processing (JSSPP) 2003. pp. 44–60. Springer-Verlag (2002)

M. Weiland, A. Jackson, N. Johnson, M. Parsons

2018, Vol. 5, No. 1 93

6. Joydeep, R., Varghese, G., Inder M., S., Jeffrey R., W.: Intel Patent on Multi-Level Memory

Configuration for Non-Volatile Memory Technology. https://www.google.com/patents/

US20150178204 (2013), accessed: 2018-04-11

7. Rodrigo, G.P., Elmroth, E., Östberg, P.O., Ramakrishnan, L.: Enabling Workflow-Aware

Scheduling on HPC Systems. In: Proceedings of the 26th International Symposium on High-

Performance Parallel and Distributed Computing. pp. 3–14. HPDC ’17, ACM, New York,

NY, USA (2017), DOI: 10.1145/3078597.3078604

8. Rudoff, A.: Persistent Memory Programming. http://pmem.io (2017), accessed: 2018-04-11

9. Rudoff, A.: Persistent Memory: The Value to HPC and the Challenges. In: Proceedings

of the Workshop on Memory Centric Programming for HPC. pp. 7–10. MCHPC’17, ACM,

New York, NY, USA (2017), DOI: 10.1145/3145617.3158213

10. Sunny, G.: Getting Ready for Intel c© Xeon PhiTM Processor Product Family. https://

software.intel.com/en-us/articles/getting-ready-for-KNL (2017), accessed: 2018-

04-11

Exploiting the Performance Benefits of Storage Class Memory for HPC and HPDA...

94 Supercomputing Frontiers and Innovations

A General Guide to Applying Machine Learning to Computer

Architecture

Daniel Nemirovsky1, Tugberk Arkose1, Nikola Markovic2, Mario

Nemirovsky1,3, Osman Unsal1,4, Adrian Cristal1,4, Mateo Valero1,4

c© The Authors 2018. This paper is published with open access at SuperFri.org

The resurgence of machine learning since the late 1990s has been enabled by significant ad-

vances in computing performance and the growth of big data. The ability of these algorithms

to detect complex patterns in data which are extremely difficult to achieve manually, helps to

produce effective predictive models. Whilst computer architects have been accelerating the per-

formance of machine learning algorithms with GPUs and custom hardware, there have been few

implementations leveraging these algorithms to improve the computer system performance. The

work that has been conducted, however, has produced considerably promising results.

The purpose of this paper is to serve as a foundational base and guide to future computer

architecture research seeking to make use of machine learning models for improving system ef-

ficiency. We describe a method that highlights when, why, and how to utilize machine learning

models for improving system performance and provide a relevant example showcasing the effec-

tiveness of applying machine learning in computer architecture. We describe a process of data

generation every execution quantum and parameter engineering. This is followed by a survey of a

set of popular machine learning models. We discuss their strengths and weaknesses and provide

an evaluation of implementations for the purpose of creating a workload performance predictor

for different core types in an x86 processor. The predictions can then be exploited by a sched-

uler for heterogeneous processors to improve the system throughput. The algorithms of focus are

stochastic gradient descent based linear regression, decision trees, random forests, artificial neural

networks, and k-nearest neighbors.

Keywords: machine learning, computer architecture, data science, parameter engineering, per-

formance prediction, scheduling.

Introduction

Thanks to the increasing amounts of processing power and data generation over the last

decade, there have been impressive machine learning applications in computer vision and natu-

ral language processing [11], gaming [16], and content recommendation systems [13] to name a

few. The growth of data, use cases, and increasing popularity have triggered a rise of frameworks,

which allow easier implementations of machine learning models which can run on commodity

GPUs without developers having to build the models from scratch. A couple of popular frame-

works include TensorFlow [1] and Caffe [8].

The rising popularity of machine learning and desire to perform larger and faster compu-

tations has encouraged the development of hardware accelerators [15] that can compete with

GPUs while consuming much less energy especially for deep convolution networks (CNNs) [20].

Computer architects have focused so rigorously on specialized hardware for machine learning

that as of yet, there has been limited research making use of machine learning algorithms to

improve computer performance.

1Barcelona Supercomputing Center, Barcelona, Spain
2Microsoft, Belgrade, Serbia
3ICREA, Barcelona, Spain
4Polytechnic University of Catalonia, Barcelona, Spain

DOI: 10.14529/jsfi180106

2018, Vol. 5, No. 1 95

However, the few works that have done so in the areas of CPU scheduling [18, 19], cache

replacement [10, 25], and branch prediction [9] have shown tremendous promise. These are but a

few of the opportunities we foresee where machine learning could provide a significant advantage

towards improving the efficiency of computer systems.

The goal of this work is to incentivize and provide a general guide to computer architects for

applying machine learning to improve system performance. We describe a method that highlights

when, why, and how to utilize machine learning models for improving system performance

and provide a case study showcasing the effectiveness of applying machine learning to predict

workload performance on an x86 core at the execution quantum granularity. The predictors can

take input data gathered from different core types therefore acting as a cross core type predictor.

The predictions can then be exploited by a scheduler for heterogeneous CMPs to improve system

throughput. The machine learning algorithms within the scope of this work include stochastic

gradient descent based linear regression, decision trees, random forests, artificial neural networks,

and k-nearest neighbors.

The outline consists of firstly defining a problem (Section 1) which includes the overarching

goals, constraints, and important attributes. This is followed by an exploration into how to

understanding the data that can be generated, and whether a non linear prediction model

is needed (Section 2). If so, then machine learning algorithms can be identified, trained, fine

tuned, evaluated and integrated into a overarching solution (Section 3).5 Prior to the conclusion,

Section 4 explores related work and useful references for applying machine learning to computer

architecture.

1. Clarifying a Computer Architecture Problem for Machine

Learning

Conducting an exploratory analysis of a target system, workloads, and improvement goals

is the first step in clarifying if and how machine learning can be utilized within the scope of the

problem. As computer architects, we seek to improve the efficiency and performance of computer

systems, therefore it is important to identify the components and metrics that characterize the

system and improvement goals such as instructions per cycle (IPC), latencies (cycles or seconds),

or energy consumed (Joules). Different target systems will generally have different constraints.

For example, the specific metrics that define the improvement goals of a distributed datacenter

(e.g., response time as a metric) may differ from those for improving a system on a chip (e.g.,

millions of instructions per second or MIPS) or graphical processing unit (e.g., floating point

operations per second or FLOPS). Moreover, even when the metrics are the same (e.g., power

requirements in Watts), the solutions may target components at different scales (e.g., circuit

level - RTL design, microarchitecture - instruction window width, SoC level - cache/memory

organization, and cluster level - interconnection layout and distribution of tasks). Identifying

the target workloads (e.g., computational, memory, and/or I/O intensive) that will be executed

is also useful for determining the expected behaviors of the components and whether system

modifications are likely to translate into significant performance benefits.

Before deciding to apply machine learning, it is often useful to ask what additional knowledge

would help improve the main components of interest in a computer system. In other words, which

5The full code complementing this work can be found at: https://github.com/dnemirov/ml computer

architecture.

A General Guide to Applying Machine Learning to Computer Architecture

96 Supercomputing Frontiers and Innovations

metrics that characterize the runtime behavior of a system and its components are valuable to

know a priori. For example, if we are looking to improve the efficiency of a cache, it may be

useful to know the access patterns and adapt the cache accordingly.

Predictors can provide additional knowledge about runtime behavior, but they should be

complemented by mechanisms that transform the extra knowledge into system improvements.

Viable predictor implementations should be assessed based on their accuracy, overheads, and

feasibility of the mechanism that will exploit the prediction. It is also beneficial to analyze how

different prediction accuracies can affect system improvements and overheads.

Though conventional branch predictors are typically not based on machine learning algo-

rithms, the example is illuminative. It highlights how a prediction method relies not only on

a predictor, but also a mechanism to exploit the predicted value and to handle inaccuracies.

Branch prediction uses a predictor to estimate the outcomes of conditional branches. It takes an

input (e.g., a branch instruction) and based on its prediction algorithm (e.g., 2-bit saturating

counter [27]), produces an output (e.g., taken or not taken). Due to the latency constraints of

how long it takes to make a prediction, branch predictors are generally implemented in hardware.

The prediction is exploited by a mechanism in the microarchitecture which allows the processor

to continue to execute instructions and roll back the execution state in case of a misprediction

(at the cost of precious execution cycles). Depending on the constraints, the predictors and the

mechanisms that exploit the predictions can be implemented in software and/or hardware.

Separately, CPU scheduling on a heterogeneous chip multiprocessor (CMP) can benefit

from knowing a priori knowledge about how each software thread will perform on the different

hardware cores. The metric in this case is not based on a binary classification as in the branch

predictor, but instead can use the number of instructions per cycle (IPC) as a metric to gauge

performance and system throughput. In this work, we will focus on understanding when and

how to utilize machine learning algorithms to improve system performance. Specifically, the

next sections present a case study of utilizing machine learning algorithms to improve system

performance by focusing on predicting workload performance in IPC based on data collected

every execution quantum (1ms).

2. Understanding Data

After specifying a problem by identifying the target system, workloads, and performance

metrics, it is important to identify what available data is available and how it can be collected.

The data that will be generated is dependent upon the simulation framework that will be used

to conduct the execution experiments.

2.1. Simulation Framework

For this work, we utilize the Sniper [3] simulation platform. Sniper is a popular hardware-

validated parallel x86-64 multicore simulator capable of executing multithreaded applications as

well as running multiple programs concurrently. The simulator can be configured to run both

homogeneous and heterogeneous multicore architectures and uses the interval core model to

obtain performance results.

We have set up the Sniper simulation framework to simulate a commodity x86 Nehalem

processor (specifics detailed in Tab. 1). To model how the system performs under a variety of

D. Nemirovsky, T. Arkose, N. Markovic, M. Nemirovsky, O. Unsal, A. Cristal, M. Valero

2018, Vol. 5, No. 1 97

computational intensive target workloads, the simulation executes applications from two different

benchmark suites, SPEC2006 [7] and SPLASH-2 [26].

The SPEC2006 benchmark suite is an industry-standardized, CPU-intensive benchmark

suite, stressing a system’s processor and memory subsystem. The SPLASH-2 benchmark suite

is composed of a mix of different multithreaded kernels and applications focusing on high per-

formance computing, graphics, and signal processing. The entirety of the benchmark suites (26

SPEC2006 and 13 SPLASH-2 workloads) are used with the exception of those which did not

compile in our platform (dealII, sphinx3, volrend, and wrf).

Table 1. Simulated CPU configuration

Architecture x86 Nehalem based

Frequency 2.66 GHz

Out of Order 4-wide issue width, 12-stage out-of-order, 128-entry ROB,

and 48-entry LD/ST queue

L1 caches Separate instruction and data 32KB write-through, 4-cycle

latency, 8-way set associative, LRU replacement

L2 cache Unified 256KB write-back, 8-cycle latency, 8-way set asso-

ciative, LRU replacement

L3 cache 4MB, write-back, 30 cycle latency, 16-way set associative

Memory Modeling all queues and delays, 120 cycle latency, controller

bandwidth 7.6 GB/s

2.2. Data Generation

System simulators provide increased design flexibility compared to physical devices while

offering detailed insights into runtime behaviors. An added benefit of using Sniper is the ability to

output the statistics of different runtime behaviors (hereinafter referred to as attributes). Some

of the statistics of interest include the number of micro operations (uops), branch prediction

results, and cache and TLB accesses and misses. We have configured Sniper to periodically

output a set of statistics that is generalized into nine ratio based attributes plus one IPC target

value shown in Tab. 2. Generalizing the input attributes to the predictors enables predicting a

workload’s performance on a certain core type while possibly using input from executions on

a different core type but with the same ISA. For example, to predict how a thread currently

executing on a large core will perform on a small core, the attribute values collected during the

previous execution quantum on the large core are generalized into ratios and provided as input

to the predictor for small core which outputs an estimated IPC on the small core. Ratio based

attributes are also useful for conducting a system analysis based on the predictions for synthetic

workloads that have different ratio values for the attributes.

Each workload from both benchmark suites is executed on the simulated x86 processor, and

the attributes are collected every execution quantum until the workload finishes. The amount

of time needed to finish executing the workloads varies and as a result, the total data collected

averaged to about 550 samples per workload and a total of 21,441 samples for all 39 workloads.

A General Guide to Applying Machine Learning to Computer Architecture

98 Supercomputing Frontiers and Innovations

2.3. Data Division

Before conducting any further data analysis, it is important to separate the data into a

train set which we can poke into and analyze and a separate test set that will be used to

evaluate the final models. Exploring the complete data without separating it into a train and

test set biases any analysis due to a priori knowledge about the test set. A common technique

is to set aside between 70%-80% of the data for the train set and 20%-30% for the test set.

However, as described above, the two benchmark suites not only contain a different amount

of individual benchmarks (26 SPEC2006 vs 13 SPLASH-2), but the completion times vary

between the benchmarks as well. This results in different quantities of data samples available

for each benchmark. As an additional measure to guard against biasing the training for the test

set, instead of combining all the samples from all workloads into on large data set and then

separating it into train and test sets, we separate the workloads themselves into different data

sets. Therefore, the train set consists of roughly 70% or 19 benchmarks from SPEC2006 and

70% or 10 benchmarks from SPLASH-2. That leaves 7 SPEC2006 and 3 SPLASH-2 workloads

for the test set. There are numerous possible combinations of which benchmarks to select for the

train and test sets. To account for this, we train and evaluate the machine learning model 1000

different times each using a different combinations of benchmarks for the train and test sets

chosen at random. The evaluation results in Section 3.3 are based on the averages and standard

deviation of the 1,000 different train and test error results.

Another method for accounting for benchmark idiosyncrasies could be using an equal number

of samples from each of the workloads in the train set during the learning phase. However, this

would affect how representative the train set will be of the amount of time the system is executing

the target workloads. It is important to note that any transformation on the train set such as

normalization is also performed on the test set.

2.4. Data Exploration

Exploring the data requires a mix of domain knowledge and utilizing several techniques

with which to understand the distribution attributes and their relation to one another. Based

on computer architecture domain knowledge, we can deduce that certain of the attributes may be

highly correlated (e.g., IPC and L3 miss rate). Cleaning the data sets ensures that the amount of

memory and computational overheads needed to work with the data sets is condensed. Removing

noisy and/or redundant attributes can also be useful for reducing errors in our predictors later

on.

A useful approach is to plot the Pearson correlations between the attributes in the train

data set as is shown in Fig. 1. The darker red represents a higher positive correlation and the

deeper blue represents a strong negative correlation. Confirming our intuition, there are several

attributes that are highly correlated with one another including percentage of branch operations

and the branch miss rate, as well as the miss rates of the caches. If any pair of attributes is

highly correlated (say a threshold of > 0.9), it may be beneficial for the model efficiency to either

remove one of the pairs or combine both attributes onto a single new attribute. A comparison

can then be made using a model trained with all of the attributes compared to one trained

with a reduced attribute set. In this work, the attributes do not seem to exhibit extremely high

correlation (> 0.9) so we keep all the attributes for training.

D. Nemirovsky, T. Arkose, N. Markovic, M. Nemirovsky, O. Unsal, A. Cristal, M. Valero

2018, Vol. 5, No. 1 99

Training and evaluating a simple linear regression model using IPC and each of the attributes

independently can provide baseline error measurements and indicate whether it may be useful

to apply non linear machine learning algorithms.

Figure 1. Pearson correlation heatmap of the attributes. The values of the attributes are based

on ratio percentages (e.g., uopFP is the percentage of micro operations that are floating point)

Figure 2 shows the linear regression predictors based on the L3 miss rate attribute which

has the closest correlation with the IPC. The plot visualizes how the prediction line is not able

to capture the non-linear relationship of the training data and target value for even the most

correlated attribute. This observation is highlighted in Tab. 2 which presents the root mean

square error (RMSE) on the training set for each of the separate linear models trained using

an individual attribute as the input x and the IPC as the target y. The resulting errors are

considerable given that they are around 0.7 and that the average IPC range is between 0 and 4.

This reveals that there is an opportunity for improvement using machine learning predictors.

Visualizing the distributions of the attributes in the train data set can provide additional

insights into range of values for the attributes. The histograms of the IPC, L3 cache miss rate,

branch misprediction rate, and percentage FP uops are plotted in Fig. 3. We can observe that

(i) there are disproportionately more occurrences within a particular range of values for each

of these attributes, (ii) the values of the attributes are in significantly different scales, and

(iii) a majority of the distributions have long tails. Such varied scales and distributions make

it harder for most machine learning algorithms to learn effectively. Therefore, we can utilize

standardization techniques to transform the scale and distribution of these attributes and make

detecting patterns and relationships easier for the machine learning algorithms. A method to

do this is to subtract the mean value then divide by the variance, therefore transforming the

values of the features to have a zero mean and unit variance (X−µ
σ). This does not bound values

to a specific range and is able to deal with outliers in a manner which other methods such as

min-max scaling cannot.

A General Guide to Applying Machine Learning to Computer Architecture

100 Supercomputing Frontiers and Innovations

Figure 2. Scatter plot of L3 miss rate vs IPC from the training data set. Also plotted is the

single-attribute (L3 miss rate) based linear regression prediction line in blue

Table 2. Runtime attributes expressed as ratio values

collected each 1ms execution quantum. Also shows each

attribute’s correlation with target IPC and the RMSE of

the predictions against the training data set using simple

linear regression

Attribute Correlation

with IPC

Linear reg

RMSE

% uopLD -0.1538 0.7414

% uopST 0.0176 0.7502

% uopBR -0.0077 0.7503

% uopFP 0.1157 0.7453

% uopGeneric -0.0700 0.7485

BR miss % -0.2399 0.7284

DL1 miss % -0.4599 0.6663

L2 miss % -0.5172 0.6422

L3 miss % -0.5527 0.6253

3. A Case Study in Applying Machine Learning to Solve

Computer Architecture Problems

Given that simple linear models leave much to be desired in terms of prediction error, it

is a reasonable next step to see if machine learning based predictors can do better and by

how much. This section demonstrates how to utilize machine learning algorithms with the data

that has been generated, cleaned, and normalized to create predictors capable of estimating the

D. Nemirovsky, T. Arkose, N. Markovic, M. Nemirovsky, O. Unsal, A. Cristal, M. Valero

2018, Vol. 5, No. 1 101

Figure 3. Histograms of the attributes branch misprediction rate, IPC, L3 miss rate, and per-

centage of FP uops. The y axis values are based on the quantity of instances from a total of over

13,000 samples which fall into the attribute range in the x axis

performance (measured in IPC) of a workload on an x86 core during an execution quantum. The

goal of the predictor is to achieve low error and be able to predict using input data collected

from executions on different core types. This enables cross core workload performance prediction

which can be useful for a scheduler to improve system throughput. We analyze a set of popular

machine learning algorithms, fine tune their learning and architectures, and lastly evaluate the

final predictor errors.

3.1. Machine Learning Algorithms

In contrast to unsupervised learning which is useful for finding patterns in unstructured

data, supervised training allows a machine learning model to learn to predict classes or values

based on minimizing a loss function that quantifies the error between the predicted values and

the target values. Since the data we have collected is labelled (i.e., the target IPC values are

available in the data sets), we will focus on supervised machine learning methods. Moreover,

since IPC is a continuous and not a categorical value, the machine learning models of interest

are regressors, meaning they predict a continuous numerical value and not a class. Other areas in

computer architecture may require the prediction of classes such as the case of branch prediction

(i.e., a binary classification prediction of either branch taken or not taken).

The machine learning algorithms within the scope of this work are linear regression us-

ing stochastic gradient descent (SGD), decision trees, random forests, artificial neural networks

(ANNs), and k -nearest neighbors (kNN). The computational cost and prediction ability of the

A General Guide to Applying Machine Learning to Computer Architecture

102 Supercomputing Frontiers and Innovations

machine learning algorithms is regulated through hyperparameters which define the architecture

of the specific algorithms. An overview of each of these algorithms and their hyperparameters

is described below. All models are implemented using the Scikit-Learn Python framework [21]

which offers a powerful toolbox of machine learning algorithms as well as preprocessing (e.g.,

normalization methods) and fine tuning methods (e.g., cross-validation and grid search meth-

ods). Implementations for production purposes requiring strict timing constraints could instead

implement the algorithms directly in a lower level language (e.g., C) and rely on hardware

acceleration to reduce training and prediction latency.

3.1.1. Linear Regression Using Stochastic Gradient dDescent (SGD)

Stochastic gradient descent (SGD) is useful machine learning alternative for finding a linear

model without having to utilize the normal equation which does not scale well with large data

sets since it requires inverting an input matrix which carries a complexity of O(n2.3) to O(n3).

This algorithm finds a linear function (e.g., f(x) = w0+w1x1+w2x2+ ...+wnxn) that uses SGD

for training to learn the set of weights w1...n that should be multiplied to every input parameter

x1...n and bias term w0. It is straightforward to implement and generally provides low variance

but high error (i.e., bias), especially when used to approximate non linear functions. This model

will use SGD to approximate a linear equation using all nine of the attributes plus an intercept

term.

During training, the model predicts an output for every sample from the train dataset and

compares it to the target value using a loss function. The result of the loss function is what the

algorithm will try to minimize at every step of the training. Though we calculate the loss for

every sample, the weights can be updated after every sample chosen randomly from the training

data set (SGD), after calculating the sum of the losses for a subset of the total train data set

(mini batch), or after calculating the sum of the losses for the entire train data set (full batch).

Here we utilize SGD to update the weights.

For regression, we use the mean squared error loss function MSE = 1
m

∑m
i=1(yi− ŷi)2, where

m is the number of samples in the training batch, yi is the target IPC value, and the predicted

IPC value is ŷi = w0+w1x1+w2x2+...+wnxn. To update the weights, the partial derivative of the

loss function with respect to the weight is multiplied with a learning rate hyperparameter α and

then added to the old weight value. This is represented by the formula w
(new)
i = wi +α ∗ ∂MSE

∂wi
.

The learning rate may be either static (e.g., α = 0.01) or dynamically adjustable as is the case

with momentum optimization [22]. The learning terminates when the algorithm converges to a

minimum loss. This is always the case when using the MSE loss function for linear regression

since it is a convex function. To prevent overfitting, especially for high dimensional training

data sets, it is useful to add L1 (β
∑
w2
j) and/or L2 (β

∑ | wj |) regularization terms to the loss

function to constrain the weights. Once trained, this linear model can be then used to make

predictions by simply computing a weighed sum of the input parameters and a bias term. The

principal hyperparameters of this model are the polynomial degree of the inputs, L1 and L2

regularization terms, loss function, and learning rate.

3.1.2. Decision Trees

Decision trees are able to predict a target value by inferring rules from the data features and

creating a binary tree to express the model. A benefit of decision trees is that they do not require

D. Nemirovsky, T. Arkose, N. Markovic, M. Nemirovsky, O. Unsal, A. Cristal, M. Valero

2018, Vol. 5, No. 1 103

the data to be normalized before training or predicting, thus reducing the amount of preparation

time. The algorithm builds a binary tree node by node by focusing on a single attribute k and

a threshold value for that attribute tk at a time. The algorithm relies on splitting the training

data set by using a loss function J which minimizes the MSE, J(k, tk) = mleft

m MSEleft +
mright

m MSEright. A node’s MSE value is calculated by using the predicted value, ŷ is based on

averaging the target y value for all m instances belonging to that node.

Decision trees are simple to build and interpret. They also make it possible to rank the

feature importances based on how close they are to the root of the tree (i.e., node depth).

However, they are sensitive to rotations and small variations in the training data set which are

aligned along non-orthogonal decision boundaries. Decision trees are non-parametric and also

tend to overfit the training data set if left unconstrained during the construction of the binary

tree. Reducing the degrees of freedom helps to reduce overfitting at the cost of increased error.

A few interesting hyperparameters to help regularize the decision tree is setting its maximum

depth and number of leaf nodes as well as the minimum number of instances a leaf or node must

contain to split.

3.1.3. Random Forests

Random forests are an ensemble of shallow decision trees (i.e., estimators), each of which

is trained on different random subset of the training data set and attributes. The technique

for random sampling of the training data using replacement is known as bagging [2]. For this

work, the random subsets are chosen using the random patches [14] technique which applies

the bagging method to both training data and attributes. The output prediction of the random

forest is the average of the predictions from all of the estimators. The increased diversity of the

subsets and estimators results in larger individual bias (i.e., error) of each estimator but less

variance overall than a single decision tree. This approach generally yields a better model than

using a single decision tree except when features are highly correlated. It also tends to overfit if

not adequately constrained. Random forests enable ranking feature importances by computing

the average tree depth of a feature in all estimators. Their hyperparameters include many of

those of the decision tree as well as the number of small decision trees estimators to use.

3.1.4. Artificial Neural Networks (ANNs)

ANN is a popular learning algorithm that is used to learn a non-linear function f(x) = y

through the use of training on an input set x and a target y. The relationships learned by the

ANNs are often hard to identify and program manually, yet they can be lightweight and flexible

to implement. They are capable of approximating complex non-linear functions and computing

predictions quickly, but deep ANNs are also prone to overfitting the training data set.

An ANN consists of a set of input attributes (also known as input parameters) x1, x2, ..., xd
of d dimensions. In the fully-feedforward ANN that is implemented, all of these inputs are

connected to every unit in the first hidden layer of the ANN, the outputs of each layer then

connect to all the units of the next layer and so on in unidirectional fashion. Each input xi is

assigned a numerical weight wi,j for its connection to unit j. The sum of all incoming connections

to a unit multiplied by their corresponding weight is then performed (zj =
∑d
i=1 xi ∗ wi,j) before

being passed into the unit’s non-linear activate function h(zj). The activate function used in

this work is the rectified linear (ReLU) function expressed as h(z) = max(0, z). ReLU is fast to

A General Guide to Applying Machine Learning to Computer Architecture

104 Supercomputing Frontiers and Innovations

compute and does not have a maximum saturation such as sigmoid or the hyperbolic tangent

function which helps in reducing vanishing gradients during backpropagation (discussed below).

The output of the activate function from the units from the lth layer is fed to the input of

the units of the (l + 1)th layer. The final prediction is based on the outputs from all the units

of the last hidden layer without passing through the activation function. The weights of the

ANN are randomly initialized using Glorot initialization [5] from a uniform distribution between

+/−
√

6
ninputs+noutputs

.

To train an ANN, the backpropagation algorithm is utilized which defines a method to

propagate the gradient of the loss function with respect to the ANN weights backwards from

the final layer to the first. To update the weights, these partial derivatives, which represent

the slope of the loss function with resect to the weights, are multiplied by the learning rate

hyperparameter α and then added to the old weight value. This is represented by the formula

wi,j = wi,j + α ∗ ∂MSE
∂wi,j

. Similar to linear regression using SGD, we can utilize stochastic, mini

batch, or full batch gradient descent to update the weights L1 and L2 regularization to reduce

overfitting. Learning terminates upon convergence (when the partial derivatives have zero slope),

after a given number of training epochs (an epoch is a full training pass over all batch iterations),

or when the loss function of a validation set (discussed below) starts to steadily increase. The

main ANN hyperparameters are the number of units, number of layers, activation function, loss

function, batch size, regularization terms, and learning rate.

3.1.5. k-Nearest Neighbors (kNN)

The kNN algorithm predicts the IPC value for a new instance by firstly comparing its

distance to all available data points and identifying the k -nearest data point neighbors. It then

outputs the average of the IPC value of the k nearest data points as its prediction for the

new instance. The distance formula used can vary (in this work the Euclidean one is used),

but the dimensions of the inputs correspond to the number of attributes of the data points.

The neighbors can be weighed either uniformly or by their distance to the new instance. The

hyperparameter k acts to regularize the algorithm with a higher value generally reducing noise.

Typically the kNN algorithm is one of the most straightforward machine learning methods to

understand and implement. It is also advantageous because the algorithm is non-parameterized

(i.e., does not make assumptions on the input data probability distribution) and easily adapts

to changes in new data. The main drawbacks include prediction computation cost as well as its

sensitivity to localized anomalies and biases. kNN is a lazy learning technique meaning that the

computation is done at prediction time as opposed to training. To predict for a new instance,

the algorithm must compute the distances of the new instance with all existing data points to

find the nearest k neighbors.

3.1.6. Overheads

When deciding upon a model to implement to help solve a specific problem, it is critical

to compare their overheads and see if they fall within the given problem’s constraints. This is

especially the case in computer architecture where even minimal latency and memory overheads

may outweigh the benefits of a proposed solution.

Tab. 3 compares the computational and memory complexities for the different machine

learning models. The training computational complexity is generally higher than when predicting

D. Nemirovsky, T. Arkose, N. Markovic, M. Nemirovsky, O. Unsal, A. Cristal, M. Valero

2018, Vol. 5, No. 1 105

Table 3. Complexity overheads of machine learning models

Model Training Predicting Memory Notes

SGD linear

regression

O(ndi) O(d) O(d) Where n is #training

samples, d is #input

dimensions (attributes),

and i is #iterations.

Decision

tree

O(nd log(d)) O(log(d)) O(log(d)) n and d same as SGD.

Random

forest

O(tnd log(d)) O(t log(d)) O(t log(d)) Where t is #of decision

tree estimators. Both n

and d are typically sub-

sets.

ANN O(nedu)) O(du) O(du) Where e is #training

epochs, and u is the to-

tal # units.

kNN - O(nd + nk) O(nd) Where k is #neighbors.

because the algorithms tend to perform several sequential iterations over the learning data set

in order to reduce the loss function. As a greedy algorithm, however, kNN does not require to be

trained to compute a prediction hence it has no training computational complexity. Conversely,

kNN requires large prediction computational and memory complexity since it needs to calculate

the distance between the new instance with all previous data points.

The computations for training and prediction are floating point arithmetic operations and

the memory complexity represent the amount of data that needs to be stored and loaded. For

example, an ANN composed of 11 input parameters, two hidden layers of 6 units and one

output unit consists of about (11 + 1) ∗ 6 + (6 + 1) ∗ 6 + (6 + 1) ∗ 1) = 121 floating point

(FP) weights (the +1 is due to the bias term) needed to be stored and loaded. The amount

of FP computations needed to be performed at each layer l of the ANN consists of a set of

FP multiplication and addition operations, FPopsl = dlul + (dl − 1)ul, can be separated into

multiplication and addition FP ops. In this case, dl is the input dimension to the lth layer, and

ul is the number of units in the lth layer of the ANN. The computations needed for each ANN

prediction is (12 ∗ 6 + 11 ∗ 6) + (7 ∗ 6 + 6 ∗ 6) + (7 ∗ 1 + 6 ∗ 1) = 199 FP ops. It is up to the

architect to analyze whether these computations and memory footprints can be handled in an

efficient manner so as to keep the overheads within the constraints.

3.2. Model Validation and Fine Tuning

In order to fine tune an algorithm’s hyperparameters, it is useful to determine whether

it suffers from high bias (i.e., prediction error) and/or high variance (i.e., overfitting) when

predicting for the training data set and for the testing data set. A useful performance measure

often utilized for evaluating regression problems is root mean squared error (RMSE). It provides

a measure of the standard deviation of the prediction errors, and for normally distributed errors

approximately 68% of the errors will fall within the RMSE value.

A General Guide to Applying Machine Learning to Computer Architecture

106 Supercomputing Frontiers and Innovations

However, adjusting the hyperparameters based on how the algorithm predicts for the test

data set will bias the training for the test data set. To make sure the testing data set is used for

a final unbiased evaluation of the algorithms, the evaluation for fine tuning the models is made

using a separate validation data set.

The validation data set is a random subset of the training data set that is kept aside (i.e.,

not used during the training phase) to evaluate the bias and variance of the algorithms. A more

sophisticated and balanced validation method that is capable of using all of the training data for

both training and evaluation is known as k-fold cross-validation. This method randomly splits

the training data set into k subsets called folds. A model is then trained k times using a different

evaluation fold each time and training using the remaining k− 1 folds. For example, to train an

ANN using 5-fold cross validation, the training data set will be divided into 5 folds (i.e., 5 data

subsets each containing 20% of the total instances in the training data set). The ANN model

will be trained 5 different times, each time using a different fold for evaluation and the other

four folds for training. The final k evaluation errors can be averaged to produce a single value

and additionally provide a standard deviation precision measurement.

To fine tune a model, k -fold cross-validation can be combined with a hyperparameter grid

search technique. The validation curves illustrate how different hyperparameter values affect a

model’s training and validation errors. Deciding on a hyperparameter value using the validation

curves is intuitive since the validation error curve will tend to decrease as the model becomes

more powerful, but then increase at the point where the model complexity increases to the point

of it overfitting. For example, based on the validation curve of the ANN in Fig. 4, the model

chosen has 1 hidden layer of 100 hidden units. As is shown in the validation curve in Fig. 5,

the kNN prediction error increases significantly after around k = 5. The hyperparameters of the

other models were chosen using a similar grid search and validation curve analyses.

Figure 4. Validation curve of the ANN. The x axis ticks represent different models having

(#hidden units, #hidden layers)

Once a set of hyperparameters for a model is chosen, it is useful to plot the learning curves,

which visualize how the training and validation errors change as the model learns with more and

D. Nemirovsky, T. Arkose, N. Markovic, M. Nemirovsky, O. Unsal, A. Cristal, M. Valero

2018, Vol. 5, No. 1 107

more of the training data. The learning curve for the SGD linear regression model is shown in

Fig. 6. The shaded regions around the darker lines represent the standard deviations of the errors

from the different cross-validation folds. Apparent from the figure is that as more train data is

used during the training phase, the error decreases for the validation data set, but increases for

the training data set. The standard deviations are also considerable due to the large variations

between the instances and poor ability of the model to capture non linearities.

Figure 5. Validation curve of the kNN model. The x axis ticks represent values for k

Figure 6. Learning curve of the SGD linear regression model. As the model is able to train using

more data, the error decreases for the validation data set but increases for the training data set

Generally, the training error will increase as the number of instances for training increases,

though it will tend to settle lower than the validation error. The bias depends upon how much

A General Guide to Applying Machine Learning to Computer Architecture

108 Supercomputing Frontiers and Innovations

error (i.e., how high on the y axis) the training error settles at, and the variance depends upon the

gap between the training and validation curves. Greater bias indicate more error and greater

variance denotes that the model has probably overfit to the training data and will perform

significantly worse on unseen data than on the train set. A solution to high bias is to increase

the complexity of the model and the number and/or quality of attributes and data. To reduce

variance, it is often useful to simplify the model by reducing complexity or adding regularization,

remove input attributes, and increase the diversity and quantity of the data. If the right tails of

the learning curves do not settle, then adding more training data could serve to reduce the bias.

Figure 7. The feature importances of the random forest model

As mentioned previously, the decision tree and random forest algorithms are capable of

ranking the importance of the input attributes. The feature importance of the trained random

forest model is shown in Fig. 7. These relate closely to the correlations with the IPC that

were shown in Tab. 2. If further reduction of attributes is desired (e.g., to reduce overfitting

or computational or memory complexity), then feature importances will help to highlight the

attributes which are most useful. For example, we could reduce the amount of attributes from

9 to 5 by keeping only those with importance value over 0.1. Then we could train a separate

random forest model using these 5 attributes and compare the error and overhead results to

decide which to implement.

Once a preferred set of input attributes and hyperparameters is identified using the com-

bination of these techniques, a final version of the model is trained using the full training data

set.

3.3. Final Model Results

At this point, the final machine learning models are fine tuned and trained with the whole

training data set. They are ready to predict the IPC for execution quantum samples in the test

data set. Tab. 4 describes the hyperparameters of the final models and compares their errors on

the training, and test data sets. The results are based on the averages and standard deviation of

the errors after 1,000 different runs, each time with a different set of benchmarks for the train

D. Nemirovsky, T. Arkose, N. Markovic, M. Nemirovsky, O. Unsal, A. Cristal, M. Valero

2018, Vol. 5, No. 1 109

and test data sets. In general, the models exhibit high variance but low bias especially compared

to the single attribute linear regression predictors from Section 2.4.

Table 4. Final machine learning model results. Final

hyperparameters and root mean squared error (RMSE) for

models with original attributes and ratio transformed

attributes

Model Final hyperparame-

ters

Train error Test error Test Stdev

SGD linear re-

gression using all

9 attributes

L1 regularization 0.3954 0.5248 0.1405

Decision tree tree depth = 25, min

leaf samples = 2, min

split samples = 2

0.0255 0.6310 0.1909

Random forest num estimators = 20,

max features to evalu-

ate = 3

0.0188 0.4981 0.1567

ANN 1 hidden layer, 100 hid-

den units, 400 epochs

0.0738 0.5839 0.2127

kNN k=5, distance based

neighbor weights

≈ 0 0.5516 0.1571

The significantly larger errors and standard deviation on the test set are curious and also

indicative of high variance and could be the result of overfitting to the training set, but also

that the diversity found in the training set unlike that contained in the test data set. Fig. 8

provides a 2-D visualization comparing how the SGD linear regressor and random forest models

make their predictions as opposed to the simple single-feature linear regression model from

Section 2.4. Apparent from the figure is that the machine learning based models, especially the

random forest, tend to predict the training data exceptionally well but may also be a product

of overfitting.

The k-nearest neighbors algorithm particularly suffers from high variance with nearly zero

error on the training set and over 0.5 for the test. This is likely due to having many similar

instances in the training data set. The training instances close to the testing instances also

seemed to perform very differently which skewed the model’s prediction. The decision tree model

also exhibits significant variance between the train and test errors. This is the case even after

fine tuning the model using cross validation and a hyperparameter grid search, again due to

poor representation of the test data within the training data set.

For future models, it would be useful to gather more data from a wider set of benchmark

suites and ensure that the training data is representative of the diversity of the benchmarks that

will need to be predicted for during testing. Retraining the models as the system executes new

data, the so-called online training, can also help to reduce the variance of the model.

A General Guide to Applying Machine Learning to Computer Architecture

110 Supercomputing Frontiers and Innovations

Figure 8. Scatter plot of L3 miss rate vs IPC from the training data set. Also plotted are

the predictions based on the single-attribute linear regression, the multi-attribute SGD linear

regression, and the random forest

The model that has the lowest prediction error on the test set is the random forest. SGD

linear regression comes in at second, has the least variance between the train and test sets.

However, it also suffers from an order of magnitude higher training error than any other models.

In case of similar applications being frequently run on a system, the machine learning models

would be able to predict significantly better than the SGD regressor, especially if making use of

online learning. Though the random forest produces the least amount of test prediction error,

any final implementation choice will depend upon a careful comparison of the target benchmarks,

errors, and performance and space requirements.

3.4. Exploiting the Predictors

Once a final predictor has been chosen to be implemented, a mechanism must be identified

which is able to exploit the extra system knowledge and translate it into system efficiency gains.

The added knowledge gained thanks to the use of a predictor such as an ANN, is the IPC

value for a benchmark on a hardware core for an execution quantum. A useful mechanism to

exploit knowing how well workloads would perform on different core types would be a resource

manager such as a CPU scheduler for heterogeneous systems. Given that several workloads may

be running concurrently on a heterogeneous system composed of several cores of different types,

the scheduler can utilize a specific IPC predictor per core type to predict how the workloads

will perform on all other core types. The scheduler can then compare all the different possible

workload to core mapping combinations and choose the one that results in the highest system

IPC.

An implementation approach is to modify the scheduler code within the OS to collect the

attributes and also run the predictions using the trained machine learning algorithms. This is the

approach taken in [18, 19] and has been shown to produce around 30% performance improve-

ments over state-of-the-art schedulers. Other examples of machine learning predictors being

D. Nemirovsky, T. Arkose, N. Markovic, M. Nemirovsky, O. Unsal, A. Cristal, M. Valero

2018, Vol. 5, No. 1 111

exploited by mechanisms to improve system performance are in the area of branch prediction [9]

and cache line reusability [10, 25]. Knowledge is powerful when exploited adeptly.

4. Related Work

The application of machine learning to the field of computer architecture is currently in its

inceptive stages with the few exploratory studies showing impressive promise. Recently, there

has been pioneering studies conducted on applying machine/deep learning to CPU scheduling.

In the works [18, 19] artificial neural network performance predictors are used by the scheduler

to improve the system throughput over a Linux based scheduler by over 30%. Other approaches

to using machine/deep learning for scheduling has been to classify applications, as well as to

identify process attributes and a program’s execution history. This is the approach of [17] which

used decision trees to characterize whole programs and customize CPU time slices to reduce

application turn around time by decreasing the amount of context swaps. The work presented

in [12] studies using structural similarity accuracy values and support vector machines and linear

regression to predict thread performance on different core types at a high granularity level (1

second). In the study [6], CPU burst times of whole jobs for computational grids are estimated

using a machine learning approach. An approach that utilized machine learning for selecting

whether to execute a task on a CPU or GPU based on the size of the input data is done by

Shulga et al. [24]. Fedorova et al. [4] proposes an algorithm that uses reinforcement learning to

maximize normalized aggregate IPC. They demonstrate the need for balanced core assignment

but do not provide an implementation.

For branch prediction, Jimenez et al. [9] proposed using a perceptron based predictor in order

to improve CPU performance. Several studies have applied machine learning for the purpose

of cache management. In the work [10, 25] the authors propose perceptron learning for reuse

prediction and also present a prediction method for future reuse of cache blocks using different

types of parameters. Predicting L2 cache behavior is done using machine learning for the purpose

of adapting a process scheduler for reducing shared L2 contention in [23].

Conclusion

The revitalization of machine learning has led to a vast and diverse set of useful applications

that affect daily lives. The ability of the algorithms to learn complex non-linear relationships

between the attributes of the data and the target values has led to them being utilized as powerful

prediction models. While there has been much interest recently in accelerating machine learning

algorithms with custom hardware, there have been few applications of machine learning to

improve system performance.

The goal of this paper has been to serve as a foundational base and guide to future computer

architecture research seeking to make use of machine learning models for improving system

efficiency. We have described a process to highlight when, why, and how to utilize machine

learning models for improving system performance and provided a relevant example showcasing

the ability of machine learning based cross core IPC predictors to help enable CPU schedulers

to improve system throughput.

We have analyzed a set of popular machine learning models including stochastic gradient

descent based linear regression, decision trees, random forests, artificial neural networks, and

k-nearest neighbors. This was followed by a discussion of the algorithms’ inner workings, com-

A General Guide to Applying Machine Learning to Computer Architecture

112 Supercomputing Frontiers and Innovations

putational and memory complexities, and a process to fine tune and evaluate the models. After

comparing the results of the predictors, the random forest narrowly produces the lowest root

mean squared error in its testing predictions. Finally, we discussed how the predictor can be

exploited by a mechanism such as a scheduler for heterogeneous systems in order to improve the

overall system performance.

For future work, reinforcement learning may be a fruitful option to explore in using machine

learning to improve scheduling. Predicting application performance and energy consumption,

cache accesses, memory and I/O latencies, branch conditions, and interference effects between

threads are just a few examples of useful knowledge that can help to improve system performance

and energy efficiency if adequately exploited. In addition, testing the implementations on real

systems is a pragmatic approach forward that helps to validate and continue pioneer applying

machine learning to computer architecture.

Acknowledgements

This work has been supported by the European Research Council (ERC) Advanced Grant

RoMoL (Grant Agreemnt 321253) and by the Spanish Ministry of Science and Innovation (con-

tract TIN 2015-65316P).

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-

mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work

without further permission provided the original work is properly cited.

References

1. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat,

S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray,

D.G., Steiner, B., Tucker, P.A., Vasudevan, V., Warden, P., Wicke, M., Yu, Y., Zhang,

X.: Tensorflow: A system for large-scale machine learning. CoRR abs/1605.08695 (2016),

http://arxiv.org/abs/1605.08695, accessed: 2018-03-01

2. Breiman, L.: Bagging predictors. Machine Learning 24(2), 123–140 (Aug 1996),

DOI: 10.1007/bf00058655

3. Carlson, T.E., Heirman, W., Eeckhout, L.: Sniper: exploring the level of abstraction for

scalable and accurate parallel multi-core simulation. In: Proceedings of 2011 International

Conference for High Performance Computing, Networking, Storage and Analysis on - SC.

ACM Press (2011), DOI: 10.1145/2063384.2063454

4. Fedorova, A., Vengerov, D., Doucette, D.: Operating system scheduling on heterogeneous

core systems. In: Proceedings of the Workshop on Operating System Support for Heteroge-

neous Multicore Architectures (2007), http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

10.1.1.369.7891

5. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural

networks. In: Teh, Y.W., Titterington, M. (eds.) Proceedings of the Thirteenth International

Conference on Artificial Intelligence and Statistics, 13–15 May 2010, Chia Laguna Resort,

D. Nemirovsky, T. Arkose, N. Markovic, M. Nemirovsky, O. Unsal, A. Cristal, M. Valero

2018, Vol. 5, No. 1 113

Sardinia, Italy. Proceedings of Machine Learning Research, vol. 9, pp. 249–256. PMLR

(2010), http://proceedings.mlr.press/v9/glorot10a.html, accessed: 2018-03-01

6. Helmy, T., Al-Azani, S., Bin-Obaidellah, O.: A machine learning-based approach to estimate

the CPU-burst time for processes in the computational grids. In: 2015 3rd International

Conference on Artificial Intelligence, Modelling and Simulation (AIMS). IEEE (Dec 2015),

DOI: 10.1109/aims.2015.11

7. Henning, J.L.: SPEC CPU2006 benchmark descriptions. ACM SIGARCH Computer Archi-

tecture News 34(4), 1–17 (Sep 2006), DOI: 10.1145/1186736.1186737

8. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S.,

Darrell, T.: Caffe: Convolutional architecture for fast feature embedding. In: Proceedings

of the 22Nd ACM International Conference on Multimedia. pp. 675–678. MM ’14, ACM,

New York, NY, USA (2014), DOI: 10.1145/2647868.2654889

9. Jimenez, D.A., Lin, C.: Dynamic branch prediction with perceptrons. In: Proceedings

HPCA Seventh International Symposium on High-Performance Computer Architecture. pp.

197–206. IEEE Comput. Soc (2001), DOI: 10.1109/HPCA.2001.903263

10. Jiménez, D.A., Teran, E.: Multiperspective reuse prediction. In: Proceedings of the 50th

Annual IEEE/ACM International Symposium on Microarchitecture - MICRO-50. pp. 436–

448. ACM Press (2017), DOI: 10.1145/3123939.3123942

11. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (May 2015),

DOI: 10.1038/nature14539

12. Li, C.V., Petrucci, V., Mosse, D.: Predicting thread profiles across core types via machine

learning on heterogeneous multiprocessors. In: 2016 VI Brazilian Symposium on Computing

Systems Engineering (SBESC). IEEE (Nov 2016), DOI: 10.1109/sbesc.2016.017

13. Linden, G., Smith, B., York, J.: Amazon.com recommendations: item-to-item collaborative

filtering. IEEE Internet Computing 7(1), 76–80 (Jan 2003), DOI: 10.1109/mic.2003.1167344

14. Louppe, G., Geurts, P.: Ensembles on random patches. In: Machine Learning and

Knowledge Discovery in Databases, pp. 346–361. Springer Berlin Heidelberg (2012),

DOI: 10.1007/978-3-642-33460-3 28

15. Misra, J., Saha, I.: Artificial neural networks in hardware: A survey of two decades of

progress. Neurocomputing 74(1-3), 239–255 (Dec 2010), DOI: 10.1016/j.neucom.2010.03.021

16. Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., Riedmiller,

M.A.: Playing atari with deep reinforcement learning. CoRR abs/1312.5602 (2013), http:

//arxiv.org/abs/1312.5602, accessed: 2018-03-01

17. Negi, A., Kumar, P.: Applying machine learning techniques to improve linux process

scheduling. In: TENCON 2005 - 2005 IEEE Region 10 Conference. pp. 1–6. IEEE (Nov

2005), DOI: 10.1109/tencon.2005.300837

18. Nemirovsky, D., Arkose, T., Markovic, N., Nemirovsky, M., Unsal, O., Cristal, A.: A ma-

chine learning approach for performance prediction and scheduling on heterogeneous CPUs.

A General Guide to Applying Machine Learning to Computer Architecture

114 Supercomputing Frontiers and Innovations

In: 2017 29th International Symposium on Computer Architecture and High Performance

Computing (SBAC-PAD). pp. 121–128. IEEE (Oct 2017), DOI: 10.1109/sbac-pad.2017.23

19. Nemirovsky, D., Arkose, T., Markovic, N., Nemirovsky, M., Unsal, O., Cristal, A., Valero,

M.: A deep learning mapper (DLM) for scheduling on heterogeneous systems. In: Commu-

nications in Computer and Information Science, pp. 3–20. Springer International Publishing

(Dec 2017), DOI: 10.1007/978-3-319-73353-1 1

20. Ovtcharov, K., Ruwase, O., Kim, J.Y., Fowers, J., Strauss, K., Chung, E.S.: Toward accel-

erating deep learning at scale using specialized hardware in the datacenter. In: 2015 IEEE

Hot Chips 27 Symposium (HCS). IEEE (Aug 2015), DOI: 10.1109/hotchips.2015.7477459

21. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,

M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau,

D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine learning in python.

The Journal of Machine Learning Research 12, 2825–2830 (Nov 2011), http://dl.acm.org/

citation.cfm?id=1953048.2078195, accessed: 2018-03-01

22. Polyak, B.: Some methods of speeding up the convergence of iteration methods.

USSR Computational Mathematics and Mathematical Physics 4(5), 1–17 (Jan 1964),

DOI: 10.1016/0041-5553(64)90137-5

23. Rai, J.K., Negi, A., Wankar, R., Nayak, K.D.: A machine learning based meta-scheduler for

multi-core processors. International Journal of Adaptive, Resilient and Autonomic Systems

1(4), 46–59 (Oct 2010), DOI: 10.4018/jaras.2010100104

24. Shulga, D.A., Kapustin, A.A., Kozlov, A.A., Kozyrev, A.A., Rovnyagin, M.M.: The schedul-

ing based on machine learning for heterogeneous CPU/GPU systems. In: 2016 IEEE NW

Russia Young Researchers in Electrical and Electronic Engineering Conference (EICon-

RusNW). IEEE (Feb 2016), DOI: 10.1109/eiconrusnw.2016.7448189

25. Teran, E., Wang, Z., Jimenez, D.A.: Perceptron learning for reuse prediction. In: 2016 49th

Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). IEEE (Oct

2016), DOI: 10.1109/micro.2016.7783705

26. Woo, S., Ohara, M., Torrie, E., Singh, J., Gupta, A.: The SPLASH-2 pro-

grams: characterization and methodological considerations. In: Proceedings 22nd An-

nual International Symposium on Computer Architecture. pp. 24–36. ACM (Jun 1995),

DOI: 10.1109/isca.1995.524546

27. Yeh, T.Y., Patt, Y.N.: Two-level adaptive training branch prediction. In: Proceedings of

the 24th annual international symposium on Microarchitecture - MICRO 24. ACM Press

(1991), DOI: 10.1145/123465.123475

D. Nemirovsky, T. Arkose, N. Markovic, M. Nemirovsky, O. Unsal, A. Cristal, M. Valero

2018, Vol. 5, No. 1 115

	A. Antonov, J. Dongarra, V. Voevodin
	D. Chapp, K. Sato, D.H. Ahn, M. Taufer
	J. Lüttgau, M. Kuhn, K. Duwe, Y. Alforov, E. Betke, J. Kunkel, T. Ludwig
	D. Brömmel, W. Frings, B.J.N. Wylie, B. Mohr, P. Gibbon, T. Lippert
	M. Weiland, A. Jackson, N. Johnson, M. Parsons
	D. Nemirovsky, T. Arkose, N. Markovic, M. Nemirovsky, O. Unsal, A. Cristal, M. Valero

