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Exascale systems will require new approaches to performance observation, analysis, and

runtime decision-making to optimize for performance and efficiency. The standard “first-person”

model, in which multiple operating system processes and threads observe themselves and record

first-person performance profiles or traces for offline analysis, is not adequate to observe and

capture interactions at shared resources in highly concurrent, dynamic systems. Further, it does not

support mechanisms for runtime adaptation. Our approach, called APEX (Autonomic Performance

Environment for eXascale), provides mechanisms for sharing information among the layers of the

software stack, including hardware, operating and runtime systems, and application code, both new

and legacy. The performance measurement components share information across layers, merging

first-person data sets with information collected by third-person tools observing shared hardware

and software states at node- and global-levels. Critically, APEX provides a policy engine designed

to guide runtime adaptation mechanisms to make algorithmic changes, re-allocate resources, or

change scheduling rules when appropriate conditions occur.
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Introduction

The transition to extreme-scale computing poses new challenges in performance analysis

and optimization because of the anticipated high concurrency and dynamic operation that will

be required to make extreme-scale systems operate efficiently. Increasingly heterogeneous hard-

ware, deeper memory hierarchies, reliability concerns, and constraints posed by power limits

will contribute to dynamic environment in which hardware and software performances may vary

considerably during the application’s execution. Furthermore, emerging exascale programming

models will emphasize message-driven computation and finer-grained parallelism, resulting in

more asynchronous computation. It is no longer reasonable to expect that a post-mortem per-

formance measurement and analysis methodology will suffice to optimize applications in such

an environment.

Rather, there is a strong need for runtime performance observation that merges in real time

first-person (application perspective) with third-person (resource perspective) introspection, and

for in situ performance analytics to identify bottlenecks and their impact on specific sections of

code. This information can drive online dynamic feedback and adaptation techniques that can

be integrated with an exascale software stack. The goal is to create an autonomic capability in

the exascale system that can direct the application performance to more productive execution

outcomes. In this paper, we describe our prototype implementation of an Autonomic Perfor-

mance Environment for eXascale (APEX) that is the part of the OpenX integrated software

stack being developed in the DOE XPRESS project [9] (see Section 1). The APEX prototype

supports both introspection and policy-driven adaptation for performance and power optimiza-

tion objectives. We describe the APEX design and development in Section 2. Section 3 shows

several examples that demonstrate the effects of APEX-enabled execution. This focus on mak-
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ing guided adjustments to thread-scheduling controls for different policy objectives. Section 5

discusses the next steps in our research work.

1. XPRESS Project

The XPRESS project is organized into four major elements: system software, programming

models and languages, applications and cross-cutting issues. The HPX-3 runtime system [3,

18, 35] serves as a starting point as programming tools and operating system target at the

beginning of the XPRESS project. This has been complemented by the development of HPX-5,

which is being developed to add functionality for fault tolerance and power management, and

to provide a robust open-source runtime system. The LXK lightweight kernel operating system

based on the advanced Kitten operating system [7, 31] is being developed in response to the

new requirements for billion-way concurrency, introspective management of faults and power,

and management of a protected and dynamic global virtual name space. It targets projected

future directions of system architectures while running efficiently on near term systems. LXK is

co-designed with HPX around the centrepiece of the RIOS interface between the runtime and

operating system software. This interface will share information in both directions between the

two major software layers for performance, reliability and control of power consumption. The

Open-X software stack is shown in fig. 1.
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Figure 1. Major components of the OpenX architecture stack. APEX is the cross-cutting

instrumentation component

Two programming methods are employed to provide early means of conducting application

and kernel-driven experiments, as well as to the facilitate ease of programming and portability.

In addition to the native programming API provided by HPX-3 and HPX-5 and potentially

wrapped by Domain Specific Languages (DSLs), a low-level imperative programming interface,

XPI is being developed to expose the semantic constructs comprising the ParalleX execution

model [18] embodied in the experimental HPX runtime systems. The project is exploring legacy

mitigation to ensure the seamless transition to the OpenX software stack of codes written with

the help of MPI or OpenMP. The approach is to develop XPI interfaces for these programming
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models, thus provide interoperability between software modules in both forms, and provide a

path for incrementally extending parallelism within the MPI and OpenMP frameworks. APEX

provides performance instrumentation interfaces compatible with XPI, DSL, and legacy codes.

Essential cross-cutting functions include automatic control and introspection, resilience,

power management and heterogeneity. Power-management software in combination with antic-

ipated energy-efficient hardware will achieve much greater resource utilization per joule while

reducing data movement dramatically, a major source of power consumption through active

locality management. APEX represents the initial research prototype for introspection and dy-

namic control required for the XPRESS project.

2. APEX Design

2.1. Overview

APEX aims to enable autonomic behavior in software by providing the means for applica-

tions, runtimes, and operating systems to observe and control their performance. Autonomic

behavior requires performance awareness (introspection) and performance control/adaptation.

APEX is designed around these two main components. APEX provides introspection from both

top-down and bottom-up perspectives, including node-wide resource utilization data, energy

consumption, and health information, all accessed in real-time. The introspection results are

combined and associated with policy rules in order to provide the feedback control mechanism.
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Figure 2. APEX design

2.2. Introspection

APEX collects top-down introspection data from a runtime system, library, or high-level ap-

plication through an event-based inspector API. The software to be controlled it is instrumented

with this event API. APEX recognizes several types of logistic events such as initialization, ter-

mination, setting a process rank (e.g., an MPI rank, or HPX locality ID), and creating a new

thread. For measurement, APEX has instrumented timer-start and timer-stop calls, as well as

sampled counter values (e.g., bytes transferred, queue length, idle rate). These API calls enter

APEX as events. Internally, APEX has several event listeners that perform actions based on

the types of events that are passed in to APEX. Events are either handled by listeners immedi-

ately using synchronous code execution or are handled using asynchronous method invocation.

For the asynchronous processing, the event is stored internally on a queue for background pro-

cessing, and the execution control is quickly returned to the code that called the APEX API.
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Custom events are also available to trigger specific policy engine rules. Further explanation of

this behavior is presented in Section 2.4.

Bottom-up introspection data is collected from the operating system and hardware using

periodic sampling. These measurements do not use events, but some additional OS threads

are spawned to periodically read values directly from available sources. On Unix-like systems,

the /proc virtual filesystem files provide access to CPU, memory, network, disk, process, and

operating system statistics. Resource Centric Reflection (RCR) [21, 22] provides a user-level

API to access any counter available through PAPI, PERF EVENTS, or a hardware instruction.

RCRdaemon runs on protection ring 0 and supplies information about hardware resources shared

by more than one core (e.g., energy consumption, Last Level Cache events, or memory-controller

usage) in a data structure that can be read at user-level. RCRdaemon uses a self-describing

hierarchical data structure in a shared memory region to transmit protected counter values in

an application-agnostic manner. The power interface reads these values and can be used by any

application to acquire power/energy information. RCR calipers can be placed around any code

region (up to the entire application) to measure energy used by that region. On Cray systems

the access to the protection level 0 is denied, but the Cray PM Counters [23] facility is available.

RCRdaemon was therefore modified to get its data from this source. The values were then placed

into the same data structure previously used. The user API was unchanged. Updates occur at

the same rate as Cray updates /proc.

2.3. Event Listeners

As mentioned in Section 2.2, APEX events are processed by event listeners. Each listener

is implemented as a C++ class, and as events pass through APEX, each instantiated listener

is the given access to the event object. The listeners implement handler methods for each event

type available in the system. Notable event listeners in APEX include the Profiling Listener,

the Concurrency Listener, the Policy Engine Listener, and the TAU Listener.

The profiling listener implements timer and counter measurement back-end processing

in APEX. The salient events processed by the profiling listener include the timer start,

timer stop, and sample value events. When the profiling listener gets a timer start event,

it creates a profiler object, generates a timestamp, and returns a handle to the profiler object.

When the profiling listener gets a timer stop event, it takes a second timestamp, puts the

profiler object in a single-producer-single-consumer (spsc) queue for back-end processing, and

returns. Each OS thread in the process has its own spsc queue to avoid contention. Similarly,

when the profiling listener gets a sample value event, it creates a profiler object, puts it in

the spsc queue for back-end processing, and returns. The profiling listener has a background

consumer thread that waits for a signal that indicates that data has been pushed onto one of

the queues. When the consumer thread has been signalled, it clears all of the spsc queues of

pending work by removing a profiler object from the queue and updates the per-thread and

per-process statistical profile for the running application. The current executing profile can be

queried subsequently at runtime through an introspection API. The optional TAU listener is

similar to the profiling listener with the exception that all processing is done synchronously

through the TAU measurement library in order to generate a detailed profile or trace for offline,

post-mortem performance analysis.

The concurrency listener works as follows. The salient events processed by the profiling

listener are the timer start and timer stop events. When the concurrency listener gets a
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timer start event, it pushes the timer ID onto a thread-specific stack, and returns. When the

profiling listener gets a timer stop event, it pops a timer ID off of the thread-specific stack. The

concurrency listener also has a background consumer thread that periodically examines the top

of each thread’s timer stack and builds a histogram reporting the task currently being executed

by each thread during that time quantum. At the end of execution, the histograms are written

to files on disk and gnuplot [37] is used to visualize a concurrency graph of the application.

Fig. 3–7 are examples of concurrency graphs. The concurrency listener does not have a role in

runtime adaptation and is instantiated only when concurrency graphs are desired.

2.4. The Policy Engine

The most important listener component in APEX is the Policy Engine. The policy engine

provides autonomic controls to an application, library, runtime, or operating system using the

introspection measurements described in Section 2.2. Policies are rules that decide on outcomes

based on the observed state captured by APEX. The rules are encoded as callback functions

that are registered with APEX and are either triggered or periodic. Triggered policies are invoked

by an APEX event, whereas periodic policies, by definition, are executed at set intervals. The

policy rule functions have access to the APEX API in order to request profile values from any

measurement collected by APEX. Using these values to make logical decisions, the functions

can change the behavior of the application by whatever means available, such as throttling

threads, changing task granularity, or triggering data movement such as mesh refinement or

repartitioning. In this way, the policy engine enables runtime adaptation using introspection

data, engages actuators across stack layers, and can be used to invoke online auto-tuning support.

2.5. Global Performance Views

Thus far in the discussion performance introspection has been limited to local node obser-

vations. No performance information from remote nodes or processes is available implicitly to

the local policy functions. However, there are situations in which global performance informa-

tion is necessary to make runtime adaptation decisions for problems such as load balancing.

In those cases, APEX provides a skeleton interface for exchanging local information in a dis-

tributed application scenario. The global exchange of local performance data in APEX is similar

to that provided by TAUg [16], in which TAU performance data collected by an MPI application

was exchanged using MPI functions. Rather than be tied directly to a specific communication

infrastructure, APEX provides a skeleton interface to be populated using the distributed com-

munication library used in the application to be controlled. Examples implemented so far include

HPX-3, HPX-5 and MPI. The interface that the runtime has to implement includes two func-

tions: action apex get value() – each node gets local data to be reduced and performs an

optional put (if implementing a push model) and action apex reduce() – each node performs

an optional get (if implementing a pull model), all remote node data is aggregated at root node,

and an optional push broadcasts the aggregated result back out to the non-root nodes. Ideally,

puts and gets are performed using one-sided communication such as remote distributed memory

accesses (RDMA) or by using a Global Address Space (PGAS or AGAS).
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2.6. HPX Integration

APEX is integrated with operating systems, runtime systems, libraries, and applications

by instrumenting the code with calls to the APEX introspection API, as well as by registering

desired policy functions and global communication. Because both HPX-3 and HPX-5 are task-

based runtime systems, we added the instrumentation in the respective task schedulers, placing

timer start/stop calls just before and after task functions are executed, taking special care to

avoid measuring internal lightweight tasks such as “no-op”. Sample value() calls were added to

capture internal runtime statistics (i.e., number of yields, steals, spins, etc.) and we added other

instrumentation for initialization, thread creation and termination. Where applicable, we wrote

policy functions and added the code to register the policy functions to perform adaptation of the

runtime system. All the examples described in Section 3 modify runtime behavior in the same

way, by setting a cap on the maximum number of active worker threads, so we also modified

the HPX thread scheduler loop for worker threads to check the cap value and de-activate the

worker thread if the number of active threads is greater than the thread cap. Even though we are

measuring nearly every task executed by the runtime, our measurements show that the overhead

introduced by APEX does not exceed 2% and is usually less than 1%, depending on the granu-

larity of the executed tasks. We believe that this is due to our asynchronous profile-processing

combined with the small but sufficient amount of available processing capacity headroom when

executing on many-core nodes. Global performance data is exchanged in HPX using the Active

Global Address Space (AGAS).

3. Experimental Results

In order to demonstrate the features and capabilities of APEX, we integrated it with two

distinct but related runtimes, HPX-3 and HPX-5. We implemented a variety of policy rules, and

we present a selection of them here, along with the applications that best demonstrate them. In

this section we present the following examples:

• HPX-3 1-D stencil code, runtime optimized for best performance

• HPX-5 Single-source, shortest-path benchmark, runtime optimized for highest throughput

• HPX-5 LULESH kernel, runtime modified to stay under a user-specified power cap

• HPX-3 miniGhost kernel, runtime modified to stay under a user-specified power cap

All of the experiments described below were conducted on Edison, a Cray XC30 system deployed

at NERSC [36]. Edison has 5576 nodes with two 12-core Intel “Ivy Bridge” processors operating

at 2.4 GHz, with a total of 48 threads per node (24 physical cores w/hyperthreading). The

network on Edison is a Cray Aries interconnect with Dragonfly topology, with 23.7 TB/s global

bandwidth. As LXK hadn’t been integrated with HPX yet, the applications were executed on

the Compute Node Linux (CNL) operating system.

3.1. HPX-3 1-D Stencil Code

The 1D stencil code is a simple, iterative heat-diffusion solver using a 3-point stencil, used

as an example code for HPX-3, and for which multiple versions are available with different

optimizations applied. The simplest version represents the computation for each data point as

an individual future, but the performance of this version is extremely poor as the task granularity

is far too small. The version with good performance partitions the data into a user-configurable

number of equally-sized chunks, with the computation on each chunk being represented as a
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future. Within a node, performance initially increases with an increasing the number of worker

threads, but then decreases.

Fig. 3a shows the runtime (blue line) of the 1D stencil code as function of number of worker

threads from 1 to 24, which is the number of physical cores available on Edison nodes. It also

shows that runtime is highly correlated with the average thread queue length (red line), which

is a counter exposed by the HPX-3 runtime representing the number of tasks waiting to execute

on worker threads. APEX can query the thread queue length while the program is executing

and adjusting dynamically the number of worker threads allocated to minimize runtime.

Fig. 3b shows the concurrency graph for the execution of the 1D stencil code run on

100,000,000 elements partitioned into 1000 chunks with 48 worker threads, which is the number

of logical cores available on the Edison node with hyperthreading enabled. Actual concurrency

is substantially lower, as many tasks wait on dependencies to complete before become eligible to

run, and there is a substantial variability in actual concurrency over time. This execution takes

138 seconds to run. Fig. 3c shows the concurrency graph for an execution of the same problem

size but with 12 worker threads, which produces the shortest runtime of any number of worker

threads. That execution takes 61 seconds to run.

Fig. 3d shows the concurrency graph for the same problem size and an initial number of

worker threads of 48, but using discrete hill-climbing search to minimize the average thread

queue length. It converges on 13 worker threads (vs. the optimal value of 12) and acts in an

enough quick way so that the overall runtime is nearly as fast (64 seconds) as starting with the

optimal number.

3.2. HPX-5 SSSP benchmark

The Single Source, Shortest Path graph search benchmark (SSSP) 5 is a candidate for in-

clusion in the Graph500 6 benchmark kernels. Given an initial graph, the SSSP benchmark

computation finds the shortest distance from a given starting vertex to every other vertex in the

graph. In the HPX-5 implementation, a large graph is loaded and distributed across localities, a

point is selected at random, and the shortest path between it and all other points is found. The

search runs for a fixed length of time and terminates when the accumulated time performing

searches exceeds the specified length of time. Key constraints of the benchmark are that only

one initial vertex search is performed at a time, and no memoization between searches is allowed.

The dataset used in this example is the Random4-n.10 dataset, executed for 60 seconds worth

of timed searches. For this benchmark, the metric of interest is total throughput, not time to

completion. The code was run on 10 nodes, using 24 threads per node (no hyperthreading).

The APEX Policy rule used for optimization of SSSP was the maximization of the number of

calls to handle queue action(), used as proxy for the “throughput” metric. The primary met-

ric for this benchmark is Traversed Edges Per Second (TEPS), and the queue contains vertices

to be explored. The policy function adjusts the thread concurrency to maximize throughput,

using the Parallel Rank Order search strategy provided by the auto-tuning and optimization

search framework Active Harmony [10]. The initial value for the thread cap was set at 24, with

a minimum value of 6. The policy function was registered to execute on a periodic basis (1Hz),

adjusting the thread cap to a new value as specified by the optimization search.

5http://hpx.crest.iu.edu/applications
6http://www.graph500.org
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Fig. 4a shows the cumulative concurrency graph across all 10 nodes for the baseline execu-

tion. The concurrency charts show a stacked bar chart with the periodic (1Hz) instantaneous

status of all threads. The red line indicates the maximum total number of threads (fixed at 240),

and the black line is the instantaneous power measurement for each sample. In this run, 1962

searches are performed in 60 seconds. The graph shows that nearly all 240 threads are busy, and

power consumption is about 240 W per node.

Fig. 4b shows the cumulative concurrency graph across all 10 nodes for the throttled execu-

tion using the policy engine. The total maximum number of threads starts at 240, but is throttled

while Active Harmony is searching for an optimal number of active threads to maximize trans-

action throughput. As in the baseline figure, the evolving thread cap is the red line and the
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instantaneous power for each sample is the black line. In this execution, 6929 searches were per-

formed in 60 seconds. When the search converges, only 61 (6 threads on 9 nodes, 7 threads on one

node) threads are active. As a side-effect, power consumption is much lower, about 150 W per

node. Most importantly, the number of searches done in the 60 seconds is several times higher.

Fig. 4c shows the correlation between the throughput (total calls to handle queue action())

and the evolving thread cap.

Tab. 4d shows a comparison of key metrics between the baseline and the runtime optimized

executions of SSSP. In the throttled execution, the total cycles and instruction counts are re-

duced, while the number of L2 cache misses increases slightly. Because the graph is distributed,

visiting remote vertices requires network communication. The network request causes a worker

thread to yield the task waiting on the network request to perform other work, rather than block

and wait on the result. The yield process is implemented using locks, so increased requests for

the network lead to lock contention in the runtime. The yield algorithm also includes a small

amount of “busy work”, which explains the reduction in instructions. Essentially, this appli-

cation implementation appears to be network-bound, so reducing the number of active worker

threads decreases the contention for yielded tasks. As it can be seen in the table, the TEPS

metrics are increased considerably by throttling, resulting in greater throughput. It is important

to note that the problem is not with the runtime, but with the nature of the implementation.

Because the graph is distributed, the threads contend while waiting on remote actions.
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3.3. HPX-5 LULESH kernel

The Livermore Unstructured Lagrangian Explicit Shock Hydrodynamics (LULESH) bench-

mark is one of the proxy applications for the US Department of Energy co-design efforts for

exascale. LULESH is an application from the Lawrence Livermore National Laboratory (LLNL)

that is used to model and study hydrodynamics, the motion of materials relative to each other

when subject to forces. The HPX-5 LULESH implementation was written by the HPX-5 re-

searchers at Indiana University. Because LULESH is CPU bound in most implementations, it is

an interesting test case to demonstrate what happens when executed under a power cap. As it is

CPU bound, reducing the power consumption typically involves using fewer threads or slowing

down the CPU clock speed, which will affect performance.

For this example, we developed an APEX policy for maintaining power draw within a

high/low range. The policy will periodically check the power draw, and if the current power

draw is greater than the high power cap, the thread cap will be reduced. If the power draw

is lower than the low power cap, the thread cap will be increased. The policy rule is a simple

hill-climbing algorithm with hysteresis, using a running average of the last N observations. In

our tests, we set N = 3. We modified the HPX-5 thread scheduler algorithm to check the thread

cap on every iteration of the main worker loop. If a thread is not holding any resources and

the number of active workers is greater than the current thread cap, the thread goes into an

idle state until signaled to resume work. If the number of active workers is less than the cap,

an active worker signals an idle thread to resume working. A quiescent node of Edison draws

approximately 40W, whereas a fully loaded node draws as much as 300W. We used a high power

cap of 220W and a low cap of 200W. We executed LULESH with 8000 sub-domains, nx = 64,

for 100 iterations on 334 nodes of Edison (8016 total cores).

Fig. 5a shows the cumulative concurrency graph across all 334 nodes for the baseline exe-

cution. The total runtime of the application is 118 seconds. The red line shows the maximum

concurrency, 8000 threads (fixed). The black line shows the cumulative power draw across all

334 nodes. The power consumption has peaks around 9.3kW, about 278W per node. The aver-

age power draw per node was around 236W. The total energy usage was measured as 9.327MJ

(megajoules). The stacked bar chart shows which tasks were executing when APEX sampled

them with a 4Hz period.

Fig. 5b shows the cumulative concurrency graph across all 334 nodes for the throttled

execution using the policy engine. The key difference between the two executions is that the total

energy draw for the throttled execution was only 8.180MJ (approximately 12.3% less) while the

execution time was not affected. The red line shows the thread cap as it is modified by the policy.

The black line shows the reflected reduction in power draw with some localized fluctuations.

The average power draw per node for this run was 207 W. Once the search had converged, this

execution used less than 1/4 of the number of threads, but runtime was unaffected.

Like the SSSP benchmark, the throttled version of LULESH does not yield tasks as much

as the original. A sampled TAU profile showed much less time spent in yielding activity – when

a worker thread surrenders its task in order to stay busy while waiting on a remote result. Our

conclusion is that the assignment of sub-domains to localities in HPX does not maintain spatial

locality, but rather assigns them round-robin to distribute the work. The HPX-5 implementation

is being rewritten in order to exploit spatial locality and put less pressure on the network.
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Figure 5. LULESH Benchmark

3.4. HPX-3 miniGhost kernel

MiniGhost [5], developed as part of the Mantevo project [14], is a finite difference miniapp

simulating heat diffusion over a three-dimensional domain. The original version uses OpenMP

intra-node and MPI inter-node. It has been ported to HPX-3 [2]; this version uses HPX for

both intra- and inter-node parallelism. The HPX version provides better performance than the

original OpenMP version.

Fig. 6 shows that there are diminishing returns from allocating additional worker threads to

MiniGhost. This suggests that we can throttle the application by cutting back on the number

of worker threads to reduce energy usage while avoiding substantial performance degradation.
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Fig. 7a shows the concurrency with 48 worker threads, the number of logical cores on an Edison

node. While not all available worker threads are used, the application will often use slightly

more than 24 available physical cores. With 48 worker threads, MiniGhost runs in 92 seconds

and uses about 275 Watts of power. Fig. 7b shows the concurrency when the initial number of

worker threads is set to 48 but the thread cap is dynamically adjusted to keep power at or below

200 Watts. APEX converges on the thread cap of 20, yielding 200 Watts of power usage, a 33%

of reduction in power, and the runtime of 103 seconds, 12% of increase in runtime.
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4. Related Work

Several performance tools use measurement for the purposes of offline performance analysis,

including TAU [32], HPCToolkit [1], Scalasca [38], Vampir [20], Extrae [27] and others. All

are powerful and capable tools in their own right. These tools, however, were designed for

offline performance analysis and tuning, focusing on first-person performance measurement of

tied tasks on a per-thread (OS thread) basis. New and emerging exascale programming models

present technical challenges that the designers of those measurement systems had not considered,

such as untied task execution and migration, runtime thread control and execution, third-person

observation, and runtime performance tuning. Also, as these tools are inescapably intrusive, they

are not designed to be integrated permanently into an application for continuous performance

introspection, but rather to be used in an iterative execute-analyze-tune cycle. In contrast,

APEX is designed to perform asynchronous first- and third-person measurement for the sole

purpose of supporting runtime introspection and performance adaptation.

One of the most active research areas in HPC is to reduce energy consumption while main-

taining and even improving performance. For example, Curtis-Maury et al. [11] demonstrated

the ability to build a runtime-adaptable optimization that both converges on the best perform-

ing configuration and reduces power consumption. This result is due to the observation that

some parallel applications have diminishing returns with respect to scalability, and additional

hardware merely consumes more power without improving performance. Rountree et al. [30]

demonstrate the use of dynamic voltage scaling to save energy while minimizing impact on the

performance. Their Adagio approach attempts to scale computation and communication in dis-

tributed MPI applications using only local information acquired and applied at runtime in order

to eliminate slack at synchronization points. Rountree et al. [29] have subsequently explored the
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inherent variation among processors and the range of effects that placing a hard power cap has

on applications with different characteristics.

With respect to runtime thread scheduling, Olivier et al. [26] demonstrated that a hierar-

chical, cache-aware thread scheduler performs better than a flat task scheduling in conjunction

with load balancing (via task stealing) within cache and/or NUMA domains. While this is a

form of runtime adaptation, it is an approach targeting one issue and does not react to runtime

measurements, but rather uses thread affinity and memory hierarchy information at startup.

Similarly, Charm++ [19, 39] has mechanisms for distributed dynamic load-balancing based on

runtime information. Other researchers have used Charm++ as a platform for developing ad-

ditional runtime load-balancing strategies [17] both between nodes and within a node using

cache/memory hierarchical information. PICS [34] allows runtime adaptivity in Charm++ by

allowing the application to register control points [12] specifying what effect application parame-

ters have on various categories of performance-effecting properties. For example, the application

can register that a variable controlling the size of a subproblem will change the grain size and

degree of parallelism. Based on runtime performance measurement, the system selects a property

to adjust and adjusts registered control points accordingly.

The OmpSs runtime system has demonstrated the ability to schedule an appropriate kernel

implementation based on available heterogeneous hardware choices [13, 28]. In this implemen-

tation, DGEMM tasks are scheduled on either CPU or GPU resources depending on the input

size, available hardware, and prior performance results.

The Open Tool for Parameter Optimization [8] tunes parameters exposed by the OpenMPI

runtime. In OpenMPI, many runtime tasks are delegated to modules, which implement differ-

ent versions of communication algorithms (such as collectives) and map MPI operations onto

lower-level network operations (such as for TCP, InfiniBand, Cray Gemini/Aries, etc.). These

modules expose a set of tunable parameters, called MCA parameters, as the result of which a

typical installation will have several hundred. OTPO searches for parameters giving the best

performance, as measured by latency or bandwidth of network operations.

The AutoTune project [24] is developing the Periscope Tuning Framework, an extension to

the earlier Periscope [6] performance analysis and diagnosis tool which allows plugins to provide

new functionality. PTF has been used for runtime energy tuning using DVFS and for tuning of

MPI runtime parameters [25], and it has been integrated with several parallel pattern libraries

to tune parameters such as how many CPU cores and acclelerators to use in heterogenous codes

and what scheduling policies to use [4]. APEX differs from PTF in being more deeply integrated

with runtimes and in providing tuning capabilities based on a global performance view.

Hoffman et al. [15] have developed an interface for diverse applications to report a perfor-

mance measure in a generic way so that operating systems and runtimes can adapt themselves

to optimize application performance. In their Application Heartbeats framework, applications

signal a “heartbeat” as they make progress in a computation; for example, a video-encoding

application could signal a heartbeat each time it processes a frame. The system then tries to

optimize the observed “heart rate”. They provide examples of optimizations purely within an

application, such as a video encoder switching algorithms and altering parameters to algorithms

to meet a target frame rate, and outside applications, such as a computer-vision application

that adjusts the number of cores that it uses to find the smallest number of cores necessary to

achieve real-time video processing.
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5. Conclusion

The quest for exascale brings fundamentally new challenges to performance and productiv-

ity. The solutions that will likely usher in the exascale era will require software designers and

users to embrace performance heterogeneity and variability. We believe that any successful im-

plementation will have to integrate performance introspection, in situ analysis and adaptation

in an exascale system stack. The XPRESS project has developed a prototype of APEX inte-

grated with HPX-3 and HPX-5 for use in OpenX. We have demonstrated APEX with several

benchmark examples, and we believe that the APEX framework is generally applicable to other

X-stack runtime efforts.

There is considerable work that can be done with respect to APEX. In the short term,

we would like to conduct more robust application experiments and to explore behavior larger

scales on different platforms. As more applications are developed using HPX, we hope to have

a greater opportunity to demonstrate the APEX capabilities for runtime adaptation. With that

in mind, new applications will present more and better policy (optimization) rules, both for

specific applications and to generalize them in the operating system and runtime libraries. In

particular, we are interested in possible policy rules that address heterogeneous HPX-3 code

that can be executed on GPGPUs, as well as many-core architectures such as the Intel Phi. We

plan to develop more policy rules that specifically address the SLOWER design principles of the

ParalleX model [33]. We soon will be exploring the multi-objective optimization opportunities

available in the development branch of Active Harmony. With that support, we can tune with

respect to both performance and energy efficiency, as well as to any other application-specific

metrics. Finally, we believe that APEX has applications outside of the XPRESS project, and that

it can be successfully integrated into other runtime systems and parallel execution models with

controllable parameters, including OpenMP, MPI, and OmpSs. It can serve as a framework for

triggering application-specific optimizations such as adaptive mesh refinement, load balancing,

and other dynamic behavior.
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