
An Autonomic Performance Environment for Exascale

Kevin A. Huck 1, Allan Porterfield 2, Nick Chaimov 1, Hartmut Kaiser 3,

Allen D. Malony 1, Thomas Sterling 4, Rob Fowler 2

c© The Authors 2015. This paper is published with open access at SuperFri.org

Exascale systems will require new approaches to performance observation, analysis, and

runtime decision-making to optimize for performance and efficiency. The standard “first-person”

model, in which multiple operating system processes and threads observe themselves and record

first-person performance profiles or traces for offline analysis, is not adequate to observe and

capture interactions at shared resources in highly concurrent, dynamic systems. Further, it does not

support mechanisms for runtime adaptation. Our approach, called APEX (Autonomic Performance

Environment for eXascale), provides mechanisms for sharing information among the layers of the

software stack, including hardware, operating and runtime systems, and application code, both new

and legacy. The performance measurement components share information across layers, merging

first-person data sets with information collected by third-person tools observing shared hardware

and software states at node- and global-levels. Critically, APEX provides a policy engine designed

to guide runtime adaptation mechanisms to make algorithmic changes, re-allocate resources, or

change scheduling rules when appropriate conditions occur.

Keywords: ParalleX, HPX, exascale, performance measurement, adaptive runtimes.

Introduction

The transition to extreme-scale computing poses new challenges in performance analysis

and optimization because of the anticipated high concurrency and dynamic operation that will

be required to make extreme-scale systems operate efficiently. Increasingly heterogeneous hard-

ware, deeper memory hierarchies, reliability concerns, and constraints posed by power limits

will contribute to dynamic environment in which hardware and software performances may vary

considerably during the application’s execution. Furthermore, emerging exascale programming

models will emphasize message-driven computation and finer-grained parallelism, resulting in

more asynchronous computation. It is no longer reasonable to expect that a post-mortem per-

formance measurement and analysis methodology will suffice to optimize applications in such

an environment.

Rather, there is a strong need for runtime performance observation that merges in real time

first-person (application perspective) with third-person (resource perspective) introspection, and

for in situ performance analytics to identify bottlenecks and their impact on specific sections of

code. This information can drive online dynamic feedback and adaptation techniques that can

be integrated with an exascale software stack. The goal is to create an autonomic capability in

the exascale system that can direct the application performance to more productive execution

outcomes. In this paper, we describe our prototype implementation of an Autonomic Perfor-

mance Environment for eXascale (APEX) that is the part of the OpenX integrated software

stack being developed in the DOE XPRESS project [9] (see Section 1). The APEX prototype

supports both introspection and policy-driven adaptation for performance and power optimiza-

tion objectives. We describe the APEX design and development in Section 2. Section 3 shows

several examples that demonstrate the effects of APEX-enabled execution. This focus on mak-

1Performance Research Laboratory, University of Oregon, Eugene, OR 97405, USA
2Renaissance Computing Institute, University of North Carolina, Chapel Hill, NC 27517, USA
3The STE||AR Group, Louisiana State University, Baton Rouge, LA 70803, USA
4Center for Research in Extreme Scale Technologies, Indiana University, Bloomington, IN 47408, USA

DOI: 10.14529/jsfi150305

2015, Vol. 2, No. 3 49

ing guided adjustments to thread-scheduling controls for different policy objectives. Section 5

discusses the next steps in our research work.

1. XPRESS Project

The XPRESS project is organized into four major elements: system software, programming

models and languages, applications and cross-cutting issues. The HPX-3 runtime system [3,

18, 35] serves as a starting point as programming tools and operating system target at the

beginning of the XPRESS project. This has been complemented by the development of HPX-5,

which is being developed to add functionality for fault tolerance and power management, and

to provide a robust open-source runtime system. The LXK lightweight kernel operating system

based on the advanced Kitten operating system [7, 31] is being developed in response to the

new requirements for billion-way concurrency, introspective management of faults and power,

and management of a protected and dynamic global virtual name space. It targets projected

future directions of system architectures while running efficiently on near term systems. LXK is

co-designed with HPX around the centrepiece of the RIOS interface between the runtime and

operating system software. This interface will share information in both directions between the

two major software layers for performance, reliability and control of power consumption. The

Open-X software stack is shown in fig. 1.

Legacy
Applications

New Model
Applications

MPI
Metaprogramming

FrameworkDomain Specific
Active Library

Compiler

AGAS
name space
processor

LCO
dataflow, futures
synchronization

Lightweight
Threads

context manager

Parcels
message driven

computation

...

OpenMP

XPI

Task recognition Address
space control

Memory bank
control

OS
thread In

st
ru

m
en

ta
tio

n

Network
drivers

Distributed FrameworkOperating System

Hardware
Architecture

Operating
System

Instances

Runtime
System

Instances

RIOS
Interface / Control

{
{

Domain Specific
Language

+106 nodes ⇥ 103 cores / node + integration network

...

Figure 1. Major components of the OpenX architecture stack. APEX is the cross-cutting

instrumentation component

Two programming methods are employed to provide early means of conducting application

and kernel-driven experiments, as well as to the facilitate ease of programming and portability.

In addition to the native programming API provided by HPX-3 and HPX-5 and potentially

wrapped by Domain Specific Languages (DSLs), a low-level imperative programming interface,

XPI is being developed to expose the semantic constructs comprising the ParalleX execution

model [18] embodied in the experimental HPX runtime systems. The project is exploring legacy

mitigation to ensure the seamless transition to the OpenX software stack of codes written with

the help of MPI or OpenMP. The approach is to develop XPI interfaces for these programming

An Autonomic Performance Environment for Exascale

50 Supercomputing Frontiers and Innovations

models, thus provide interoperability between software modules in both forms, and provide a

path for incrementally extending parallelism within the MPI and OpenMP frameworks. APEX

provides performance instrumentation interfaces compatible with XPI, DSL, and legacy codes.

Essential cross-cutting functions include automatic control and introspection, resilience,

power management and heterogeneity. Power-management software in combination with antic-

ipated energy-efficient hardware will achieve much greater resource utilization per joule while

reducing data movement dramatically, a major source of power consumption through active

locality management. APEX represents the initial research prototype for introspection and dy-

namic control required for the XPRESS project.

2. APEX Design

2.1. Overview

APEX aims to enable autonomic behavior in software by providing the means for applica-

tions, runtimes, and operating systems to observe and control their performance. Autonomic

behavior requires performance awareness (introspection) and performance control/adaptation.

APEX is designed around these two main components. APEX provides introspection from both

top-down and bottom-up perspectives, including node-wide resource utilization data, energy

consumption, and health information, all accessed in real-time. The introspection results are

combined and associated with policy rules in order to provide the feedback control mechanism.

APEX IntrospectionAPEX Introspection

Synchronous

APEX PolicyAPEX Policy

Asynchronous

Triggered Periodic

APEX StateHPXHPX

Application

RCR
Toolkit

RCR
Toolkit

events

m
et

a
ev

en
ts

. . .

Node 1 Node N

actuators

Figure 2. APEX design

2.2. Introspection

APEX collects top-down introspection data from a runtime system, library, or high-level ap-

plication through an event-based inspector API. The software to be controlled it is instrumented

with this event API. APEX recognizes several types of logistic events such as initialization, ter-

mination, setting a process rank (e.g., an MPI rank, or HPX locality ID), and creating a new

thread. For measurement, APEX has instrumented timer-start and timer-stop calls, as well as

sampled counter values (e.g., bytes transferred, queue length, idle rate). These API calls enter

APEX as events. Internally, APEX has several event listeners that perform actions based on

the types of events that are passed in to APEX. Events are either handled by listeners immedi-

ately using synchronous code execution or are handled using asynchronous method invocation.

For the asynchronous processing, the event is stored internally on a queue for background pro-

cessing, and the execution control is quickly returned to the code that called the APEX API.

K.A. Huck, A. Porterfield, N. Chaimov, H. Kaiser, A.D. Malony, T. Sterling, R. Fowler

2015, Vol. 2, No. 3 51

Custom events are also available to trigger specific policy engine rules. Further explanation of

this behavior is presented in Section 2.4.

Bottom-up introspection data is collected from the operating system and hardware using

periodic sampling. These measurements do not use events, but some additional OS threads

are spawned to periodically read values directly from available sources. On Unix-like systems,

the /proc virtual filesystem files provide access to CPU, memory, network, disk, process, and

operating system statistics. Resource Centric Reflection (RCR) [21, 22] provides a user-level

API to access any counter available through PAPI, PERF EVENTS, or a hardware instruction.

RCRdaemon runs on protection ring 0 and supplies information about hardware resources shared

by more than one core (e.g., energy consumption, Last Level Cache events, or memory-controller

usage) in a data structure that can be read at user-level. RCRdaemon uses a self-describing

hierarchical data structure in a shared memory region to transmit protected counter values in

an application-agnostic manner. The power interface reads these values and can be used by any

application to acquire power/energy information. RCR calipers can be placed around any code

region (up to the entire application) to measure energy used by that region. On Cray systems

the access to the protection level 0 is denied, but the Cray PM Counters [23] facility is available.

RCRdaemon was therefore modified to get its data from this source. The values were then placed

into the same data structure previously used. The user API was unchanged. Updates occur at

the same rate as Cray updates /proc.

2.3. Event Listeners

As mentioned in Section 2.2, APEX events are processed by event listeners. Each listener

is implemented as a C++ class, and as events pass through APEX, each instantiated listener

is the given access to the event object. The listeners implement handler methods for each event

type available in the system. Notable event listeners in APEX include the Profiling Listener,

the Concurrency Listener, the Policy Engine Listener, and the TAU Listener.

The profiling listener implements timer and counter measurement back-end processing

in APEX. The salient events processed by the profiling listener include the timer start,

timer stop, and sample value events. When the profiling listener gets a timer start event,

it creates a profiler object, generates a timestamp, and returns a handle to the profiler object.

When the profiling listener gets a timer stop event, it takes a second timestamp, puts the

profiler object in a single-producer-single-consumer (spsc) queue for back-end processing, and

returns. Each OS thread in the process has its own spsc queue to avoid contention. Similarly,

when the profiling listener gets a sample value event, it creates a profiler object, puts it in

the spsc queue for back-end processing, and returns. The profiling listener has a background

consumer thread that waits for a signal that indicates that data has been pushed onto one of

the queues. When the consumer thread has been signalled, it clears all of the spsc queues of

pending work by removing a profiler object from the queue and updates the per-thread and

per-process statistical profile for the running application. The current executing profile can be

queried subsequently at runtime through an introspection API. The optional TAU listener is

similar to the profiling listener with the exception that all processing is done synchronously

through the TAU measurement library in order to generate a detailed profile or trace for offline,

post-mortem performance analysis.

The concurrency listener works as follows. The salient events processed by the profiling

listener are the timer start and timer stop events. When the concurrency listener gets a

An Autonomic Performance Environment for Exascale

52 Supercomputing Frontiers and Innovations

timer start event, it pushes the timer ID onto a thread-specific stack, and returns. When the

profiling listener gets a timer stop event, it pops a timer ID off of the thread-specific stack. The

concurrency listener also has a background consumer thread that periodically examines the top

of each thread’s timer stack and builds a histogram reporting the task currently being executed

by each thread during that time quantum. At the end of execution, the histograms are written

to files on disk and gnuplot [37] is used to visualize a concurrency graph of the application.

Fig. 3–7 are examples of concurrency graphs. The concurrency listener does not have a role in

runtime adaptation and is instantiated only when concurrency graphs are desired.

2.4. The Policy Engine

The most important listener component in APEX is the Policy Engine. The policy engine

provides autonomic controls to an application, library, runtime, or operating system using the

introspection measurements described in Section 2.2. Policies are rules that decide on outcomes

based on the observed state captured by APEX. The rules are encoded as callback functions

that are registered with APEX and are either triggered or periodic. Triggered policies are invoked

by an APEX event, whereas periodic policies, by definition, are executed at set intervals. The

policy rule functions have access to the APEX API in order to request profile values from any

measurement collected by APEX. Using these values to make logical decisions, the functions

can change the behavior of the application by whatever means available, such as throttling

threads, changing task granularity, or triggering data movement such as mesh refinement or

repartitioning. In this way, the policy engine enables runtime adaptation using introspection

data, engages actuators across stack layers, and can be used to invoke online auto-tuning support.

2.5. Global Performance Views

Thus far in the discussion performance introspection has been limited to local node obser-

vations. No performance information from remote nodes or processes is available implicitly to

the local policy functions. However, there are situations in which global performance informa-

tion is necessary to make runtime adaptation decisions for problems such as load balancing.

In those cases, APEX provides a skeleton interface for exchanging local information in a dis-

tributed application scenario. The global exchange of local performance data in APEX is similar

to that provided by TAUg [16], in which TAU performance data collected by an MPI application

was exchanged using MPI functions. Rather than be tied directly to a specific communication

infrastructure, APEX provides a skeleton interface to be populated using the distributed com-

munication library used in the application to be controlled. Examples implemented so far include

HPX-3, HPX-5 and MPI. The interface that the runtime has to implement includes two func-

tions: action apex get value() – each node gets local data to be reduced and performs an

optional put (if implementing a push model) and action apex reduce() – each node performs

an optional get (if implementing a pull model), all remote node data is aggregated at root node,

and an optional push broadcasts the aggregated result back out to the non-root nodes. Ideally,

puts and gets are performed using one-sided communication such as remote distributed memory

accesses (RDMA) or by using a Global Address Space (PGAS or AGAS).

K.A. Huck, A. Porterfield, N. Chaimov, H. Kaiser, A.D. Malony, T. Sterling, R. Fowler

2015, Vol. 2, No. 3 53

2.6. HPX Integration

APEX is integrated with operating systems, runtime systems, libraries, and applications

by instrumenting the code with calls to the APEX introspection API, as well as by registering

desired policy functions and global communication. Because both HPX-3 and HPX-5 are task-

based runtime systems, we added the instrumentation in the respective task schedulers, placing

timer start/stop calls just before and after task functions are executed, taking special care to

avoid measuring internal lightweight tasks such as “no-op”. Sample value() calls were added to

capture internal runtime statistics (i.e., number of yields, steals, spins, etc.) and we added other

instrumentation for initialization, thread creation and termination. Where applicable, we wrote

policy functions and added the code to register the policy functions to perform adaptation of the

runtime system. All the examples described in Section 3 modify runtime behavior in the same

way, by setting a cap on the maximum number of active worker threads, so we also modified

the HPX thread scheduler loop for worker threads to check the cap value and de-activate the

worker thread if the number of active threads is greater than the thread cap. Even though we are

measuring nearly every task executed by the runtime, our measurements show that the overhead

introduced by APEX does not exceed 2% and is usually less than 1%, depending on the granu-

larity of the executed tasks. We believe that this is due to our asynchronous profile-processing

combined with the small but sufficient amount of available processing capacity headroom when

executing on many-core nodes. Global performance data is exchanged in HPX using the Active

Global Address Space (AGAS).

3. Experimental Results

In order to demonstrate the features and capabilities of APEX, we integrated it with two

distinct but related runtimes, HPX-3 and HPX-5. We implemented a variety of policy rules, and

we present a selection of them here, along with the applications that best demonstrate them. In

this section we present the following examples:

• HPX-3 1-D stencil code, runtime optimized for best performance

• HPX-5 Single-source, shortest-path benchmark, runtime optimized for highest throughput

• HPX-5 LULESH kernel, runtime modified to stay under a user-specified power cap

• HPX-3 miniGhost kernel, runtime modified to stay under a user-specified power cap

All of the experiments described below were conducted on Edison, a Cray XC30 system deployed

at NERSC [36]. Edison has 5576 nodes with two 12-core Intel “Ivy Bridge” processors operating

at 2.4 GHz, with a total of 48 threads per node (24 physical cores w/hyperthreading). The

network on Edison is a Cray Aries interconnect with Dragonfly topology, with 23.7 TB/s global

bandwidth. As LXK hadn’t been integrated with HPX yet, the applications were executed on

the Compute Node Linux (CNL) operating system.

3.1. HPX-3 1-D Stencil Code

The 1D stencil code is a simple, iterative heat-diffusion solver using a 3-point stencil, used

as an example code for HPX-3, and for which multiple versions are available with different

optimizations applied. The simplest version represents the computation for each data point as

an individual future, but the performance of this version is extremely poor as the task granularity

is far too small. The version with good performance partitions the data into a user-configurable

number of equally-sized chunks, with the computation on each chunk being represented as a

An Autonomic Performance Environment for Exascale

54 Supercomputing Frontiers and Innovations

future. Within a node, performance initially increases with an increasing the number of worker

threads, but then decreases.

Fig. 3a shows the runtime (blue line) of the 1D stencil code as function of number of worker

threads from 1 to 24, which is the number of physical cores available on Edison nodes. It also

shows that runtime is highly correlated with the average thread queue length (red line), which

is a counter exposed by the HPX-3 runtime representing the number of tasks waiting to execute

on worker threads. APEX can query the thread queue length while the program is executing

and adjusting dynamically the number of worker threads allocated to minimize runtime.

Fig. 3b shows the concurrency graph for the execution of the 1D stencil code run on

100,000,000 elements partitioned into 1000 chunks with 48 worker threads, which is the number

of logical cores available on the Edison node with hyperthreading enabled. Actual concurrency

is substantially lower, as many tasks wait on dependencies to complete before become eligible to

run, and there is a substantial variability in actual concurrency over time. This execution takes

138 seconds to run. Fig. 3c shows the concurrency graph for an execution of the same problem

size but with 12 worker threads, which produces the shortest runtime of any number of worker

threads. That execution takes 61 seconds to run.

Fig. 3d shows the concurrency graph for the same problem size and an initial number of

worker threads of 48, but using discrete hill-climbing search to minimize the average thread

queue length. It converges on 13 worker threads (vs. the optimal value of 12) and acts in an

enough quick way so that the overall runtime is nearly as fast (64 seconds) as starting with the

optimal number.

3.2. HPX-5 SSSP benchmark

The Single Source, Shortest Path graph search benchmark (SSSP) 5 is a candidate for in-

clusion in the Graph500 6 benchmark kernels. Given an initial graph, the SSSP benchmark

computation finds the shortest distance from a given starting vertex to every other vertex in the

graph. In the HPX-5 implementation, a large graph is loaded and distributed across localities, a

point is selected at random, and the shortest path between it and all other points is found. The

search runs for a fixed length of time and terminates when the accumulated time performing

searches exceeds the specified length of time. Key constraints of the benchmark are that only

one initial vertex search is performed at a time, and no memoization between searches is allowed.

The dataset used in this example is the Random4-n.10 dataset, executed for 60 seconds worth

of timed searches. For this benchmark, the metric of interest is total throughput, not time to

completion. The code was run on 10 nodes, using 24 threads per node (no hyperthreading).

The APEX Policy rule used for optimization of SSSP was the maximization of the number of

calls to handle queue action(), used as proxy for the “throughput” metric. The primary met-

ric for this benchmark is Traversed Edges Per Second (TEPS), and the queue contains vertices

to be explored. The policy function adjusts the thread concurrency to maximize throughput,

using the Parallel Rank Order search strategy provided by the auto-tuning and optimization

search framework Active Harmony [10]. The initial value for the thread cap was set at 24, with

a minimum value of 6. The policy function was registered to execute on a periodic basis (1Hz),

adjusting the thread cap to a new value as specified by the optimization search.

5http://hpx.crest.iu.edu/applications
6http://www.graph500.org

K.A. Huck, A. Porterfield, N. Chaimov, H. Kaiser, A.D. Malony, T. Sterling, R. Fowler

2015, Vol. 2, No. 3 55

53

63

73

83

93

103

113

123

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Th
re
ad

'Q
ue

ue
'Le

ng
th

Ru
nt
im

e'
(s
)

Number'of'Worker'Threads

1d_stencil

a) 1D stencil strong scaling. This chart shows the

correlation between the execution time (blue line)

and the queue lengths (red line) when running with

different numbers of threads on Edison

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0

 300

C
o

n
c
u

rr
e

n
c
y

P
o

w
e

r

Time

partition_data
do_work_action

hpx::lcos::local::dataflow::execute
primary_namespace_bulk_service_action

primary_namespace_service_action
other

thread cap
power

b) 1D Stencil unthrottled. This concurrency chart

shows a stacked bar chart with the periodic (1 Hz)

status of each OS thread. The max number of

threads is 48, and the instantaneous power for each

sample is the black line

 0

 2

 4

 6

 8

 10

 12

 0

 300

C
o

n
c
u

rr
e

n
c
y

P
o

w
e

r

Time

partition_data
do_work_action

hpx::lcos::local::dataflow::execute
primary_namespace_bulk_service_action

primary_namespace_service_action
other

thread cap
power

c) 1D Stencil with ideal number of threads. This

concurrency chart shows the periodic (1 Hz) status

of each OS thread. The number of threads is fixed

at 12, and the instantaneous power for each sample

is the black line

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0

 300

C
o

n
c
u

rr
e

n
c
y

P
o

w
e

r

Time

partition_data
do_work_action

hpx::lcos::local::dataflow::execute
primary_namespace_bulk_service_action

primary_namespace_service_action
other

thread cap
power

d) 1D Stencil throttled by APEX. This concurrency

chart shows the periodic (1 Hz) status of each OS

thread. The number of active threads starts at 48,

but is throttled while APEX searches for an optimal

number of active threads to minimize execution

time. The evolving thread cap is the red line, and

the instantaneous power draw is the black line

Figure 3. 1D Stencil

Fig. 4a shows the cumulative concurrency graph across all 10 nodes for the baseline execu-

tion. The concurrency charts show a stacked bar chart with the periodic (1Hz) instantaneous

status of all threads. The red line indicates the maximum total number of threads (fixed at 240),

and the black line is the instantaneous power measurement for each sample. In this run, 1962

searches are performed in 60 seconds. The graph shows that nearly all 240 threads are busy, and

power consumption is about 240 W per node.

Fig. 4b shows the cumulative concurrency graph across all 10 nodes for the throttled execu-

tion using the policy engine. The total maximum number of threads starts at 240, but is throttled

while Active Harmony is searching for an optimal number of active threads to maximize trans-

action throughput. As in the baseline figure, the evolving thread cap is the red line and the

An Autonomic Performance Environment for Exascale

56 Supercomputing Frontiers and Innovations

instantaneous power for each sample is the black line. In this execution, 6929 searches were per-

formed in 60 seconds. When the search converges, only 61 (6 threads on 9 nodes, 7 threads on one

node) threads are active. As a side-effect, power consumption is much lower, about 150 W per

node. Most importantly, the number of searches done in the 60 seconds is several times higher.

Fig. 4c shows the correlation between the throughput (total calls to handle queue action())

and the evolving thread cap.

Tab. 4d shows a comparison of key metrics between the baseline and the runtime optimized

executions of SSSP. In the throttled execution, the total cycles and instruction counts are re-

duced, while the number of L2 cache misses increases slightly. Because the graph is distributed,

visiting remote vertices requires network communication. The network request causes a worker

thread to yield the task waiting on the network request to perform other work, rather than block

and wait on the result. The yield process is implemented using locks, so increased requests for

the network lead to lock contention in the runtime. The yield algorithm also includes a small

amount of “busy work”, which explains the reduction in instructions. Essentially, this appli-

cation implementation appears to be network-bound, so reducing the number of active worker

threads decreases the contention for yielded tasks. As it can be seen in the table, the TEPS

metrics are increased considerably by throttling, resulting in greater throughput. It is important

to note that the problem is not with the runtime, but with the nature of the implementation.

Because the graph is distributed, the threads contend while waiting on remote actions.

 0

 50

 100

 150

 200

 250

 0

 500

 1000

 1500

 2000

 2500

C
on

cu
rre

nc
y

Po
w

er

Time

hpxlcosetactionPINNED
lcowaitPINNED

resetvertexaction
ssspvisitvertexaction

callssspaction
ssspdeletequeuesaction

ssspdcprocessvertexaction
handlequeueaction

dimacschecksumaction
dimacssenddistaction

gtepscalculateaction
sendterminationcountaction

other
initvertexdistanceaction
dimacsvisitvertexaction

gtepssenddistaction
probeDEFAULT

gtepsvisitvertexaction
thread cap

power

a) SSSP Baseline

 0

 50

 100

 150

 200

 250

 0

 500

 1000

 1500

 2000

 2500

C
on

cu
rre

nc
y

Po
w

er

Time

hpx143fixDEFAULT
hpxlcosetactionPINNED

lcowaitPINNED
resetvertexaction

edgelistfromfileaction
ssspvisitvertexaction

callssspaction
ssspdeletequeuesaction

ssspdcprocessvertexaction
handlequeueaction

dimacschecksumaction

dimacsvisitvertexaction
dimacssenddistaction
gtepscalculateaction

sendterminationcountaction
other

probeDEFAULT
initvertexdistanceaction

gtepssenddistaction
gtepsvisitvertexaction

thread cap
power

b) SSSP Throttled, with power consumption side

effect

 0

 50

 100

 150

 200

 250

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

C
on

cu
rre

nc
y

Th
ro

ug
hp

ut

Time

hpx143fixDEFAULT
hpxlcosetactionPINNED

lcowaitPINNED
resetvertexaction

edgelistfromfileaction
ssspvisitvertexaction

callssspaction
ssspdeletequeuesaction

ssspdcprocessvertexaction
handlequeueaction

dimacschecksumaction

dimacsvisitvertexaction
dimacssenddistaction
gtepscalculateaction

sendterminationcountaction
other

probeDEFAULT
initvertexdistanceaction

gtepssenddistaction
gtepsvisitvertexaction

thread cap
Throughput

c) SSSP Throttled, with throughput metric

correlation to thread cap

Metric Baseline Throttled

Searches 1962 6929

Cycles 6.9E + 12 2.8E + 12

Instructions 3.2E + 12 2.0E + 12

L2TCM 8.0E + 9 8.6E + 9

IPC 0.45896 0.71626

INS/L2TCM 397.52 235.23

min. TEPS 7.2E + 04 9.5E + 04

med. TEPS 1.4E + 05 5.0E + 05

max. TEPS 2.5E + 05 7.6E + 05

d) Metric comparison between the baseline and

throttled executions of SSSP

Figure 4. SSSP Benchmark

K.A. Huck, A. Porterfield, N. Chaimov, H. Kaiser, A.D. Malony, T. Sterling, R. Fowler

2015, Vol. 2, No. 3 57

3.3. HPX-5 LULESH kernel

The Livermore Unstructured Lagrangian Explicit Shock Hydrodynamics (LULESH) bench-

mark is one of the proxy applications for the US Department of Energy co-design efforts for

exascale. LULESH is an application from the Lawrence Livermore National Laboratory (LLNL)

that is used to model and study hydrodynamics, the motion of materials relative to each other

when subject to forces. The HPX-5 LULESH implementation was written by the HPX-5 re-

searchers at Indiana University. Because LULESH is CPU bound in most implementations, it is

an interesting test case to demonstrate what happens when executed under a power cap. As it is

CPU bound, reducing the power consumption typically involves using fewer threads or slowing

down the CPU clock speed, which will affect performance.

For this example, we developed an APEX policy for maintaining power draw within a

high/low range. The policy will periodically check the power draw, and if the current power

draw is greater than the high power cap, the thread cap will be reduced. If the power draw

is lower than the low power cap, the thread cap will be increased. The policy rule is a simple

hill-climbing algorithm with hysteresis, using a running average of the last N observations. In

our tests, we set N = 3. We modified the HPX-5 thread scheduler algorithm to check the thread

cap on every iteration of the main worker loop. If a thread is not holding any resources and

the number of active workers is greater than the current thread cap, the thread goes into an

idle state until signaled to resume work. If the number of active workers is less than the cap,

an active worker signals an idle thread to resume working. A quiescent node of Edison draws

approximately 40W, whereas a fully loaded node draws as much as 300W. We used a high power

cap of 220W and a low cap of 200W. We executed LULESH with 8000 sub-domains, nx = 64,

for 100 iterations on 334 nodes of Edison (8016 total cores).

Fig. 5a shows the cumulative concurrency graph across all 334 nodes for the baseline exe-

cution. The total runtime of the application is 118 seconds. The red line shows the maximum

concurrency, 8000 threads (fixed). The black line shows the cumulative power draw across all

334 nodes. The power consumption has peaks around 9.3kW, about 278W per node. The aver-

age power draw per node was around 236W. The total energy usage was measured as 9.327MJ

(megajoules). The stacked bar chart shows which tasks were executing when APEX sampled

them with a 4Hz period.

Fig. 5b shows the cumulative concurrency graph across all 334 nodes for the throttled

execution using the policy engine. The key difference between the two executions is that the total

energy draw for the throttled execution was only 8.180MJ (approximately 12.3% less) while the

execution time was not affected. The red line shows the thread cap as it is modified by the policy.

The black line shows the reflected reduction in power draw with some localized fluctuations.

The average power draw per node for this run was 207 W. Once the search had converged, this

execution used less than 1/4 of the number of threads, but runtime was unaffected.

Like the SSSP benchmark, the throttled version of LULESH does not yield tasks as much

as the original. A sampled TAU profile showed much less time spent in yielding activity – when

a worker thread surrenders its task in order to stay busy while waiting on a remote result. Our

conclusion is that the assignment of sub-domains to localities in HPX does not maintain spatial

locality, but rather assigns them round-robin to distribute the work. The HPX-5 implementation

is being rewritten in order to exploit spatial locality and put less pressure on the network.

An Autonomic Performance Environment for Exascale

58 Supercomputing Frontiers and Innovations

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000
C

on
cu

rre
nc

y

Po
w

er

Time

probehandler
pwclcogetrequesthandler

advanceDomainaction
PosVelresultaction
MonoQresultaction

other
SBN3sendsaction

MonoQsendsaction
SBN3resultaction

PosVelsendsaction
SBN1resultaction

thread cap
power

a) LULESH Baseline

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

C
on

cu
rre

nc
y

Po
w

er

Time

probehandler
advanceDomainaction

PosVelresultaction
PosVelsendsaction
MonoQresultaction

other
SBN3resultaction

MonoQsendsaction
SBN3sendsaction

initDomainaction
thread cap

power

b) LULESH Throttled

Figure 5. LULESH Benchmark

3.4. HPX-3 miniGhost kernel

MiniGhost [5], developed as part of the Mantevo project [14], is a finite difference miniapp

simulating heat diffusion over a three-dimensional domain. The original version uses OpenMP

intra-node and MPI inter-node. It has been ported to HPX-3 [2]; this version uses HPX for

both intra- and inter-node parallelism. The HPX version provides better performance than the

original OpenMP version.

Fig. 6 shows that there are diminishing returns from allocating additional worker threads to

MiniGhost. This suggests that we can throttle the application by cutting back on the number

of worker threads to reduce energy usage while avoiding substantial performance degradation.

0

20

40

60

80

100

120

140

160

180

0 5 10 15 20 25 30 35 40 45

Ru
nt
im
e
(s
)

HPX worker threads

Minighost

Figure 6. miniGhost strong scaling

Fig. 7a shows the concurrency with 48 worker threads, the number of logical cores on an Edison

node. While not all available worker threads are used, the application will often use slightly

more than 24 available physical cores. With 48 worker threads, MiniGhost runs in 92 seconds

and uses about 275 Watts of power. Fig. 7b shows the concurrency when the initial number of

worker threads is set to 48 but the thread cap is dynamically adjusted to keep power at or below

200 Watts. APEX converges on the thread cap of 20, yielding 200 Watts of power usage, a 33%

of reduction in power, and the runtime of 103 seconds, 12% of increase in runtime.

K.A. Huck, A. Porterfield, N. Chaimov, H. Kaiser, A.D. Malony, T. Sterling, R. Fowler

2015, Vol. 2, No. 3 59

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0

 300
C

o
n

c
u

rr
e

n
c
y

P
o

w
e

r

Time

continuation::async
hpx_main

other
thread cap

power

a) miniGhost Baseline. This concurrency chart

shows a stacked bar chart with the periodic (1Hz)

status of each thread. The max number of threads

is 48 (red line), and the instantaneous power for

each sample is the black line

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0

 300

C
o

n
c
u

rr
e

n
c
y

P
o

w
e

r

Time

continuation::async
hpx_main

other
thread cap

power

b) miniGhost Throttled. This concurrency chart

shows a stacked bar chart with the periodic (1Hz)

status of each thread. The max number of threads

starts at 48, but is throttled while APEX searches

for an optimal number of active threads to keep

under the power cap. The evolving thread cap is

the red line and the instantaneous power for each

sample is the black line

Figure 7. miniGhost Benchmark

4. Related Work

Several performance tools use measurement for the purposes of offline performance analysis,

including TAU [32], HPCToolkit [1], Scalasca [38], Vampir [20], Extrae [27] and others. All

are powerful and capable tools in their own right. These tools, however, were designed for

offline performance analysis and tuning, focusing on first-person performance measurement of

tied tasks on a per-thread (OS thread) basis. New and emerging exascale programming models

present technical challenges that the designers of those measurement systems had not considered,

such as untied task execution and migration, runtime thread control and execution, third-person

observation, and runtime performance tuning. Also, as these tools are inescapably intrusive, they

are not designed to be integrated permanently into an application for continuous performance

introspection, but rather to be used in an iterative execute-analyze-tune cycle. In contrast,

APEX is designed to perform asynchronous first- and third-person measurement for the sole

purpose of supporting runtime introspection and performance adaptation.

One of the most active research areas in HPC is to reduce energy consumption while main-

taining and even improving performance. For example, Curtis-Maury et al. [11] demonstrated

the ability to build a runtime-adaptable optimization that both converges on the best perform-

ing configuration and reduces power consumption. This result is due to the observation that

some parallel applications have diminishing returns with respect to scalability, and additional

hardware merely consumes more power without improving performance. Rountree et al. [30]

demonstrate the use of dynamic voltage scaling to save energy while minimizing impact on the

performance. Their Adagio approach attempts to scale computation and communication in dis-

tributed MPI applications using only local information acquired and applied at runtime in order

to eliminate slack at synchronization points. Rountree et al. [29] have subsequently explored the

An Autonomic Performance Environment for Exascale

60 Supercomputing Frontiers and Innovations

inherent variation among processors and the range of effects that placing a hard power cap has

on applications with different characteristics.

With respect to runtime thread scheduling, Olivier et al. [26] demonstrated that a hierar-

chical, cache-aware thread scheduler performs better than a flat task scheduling in conjunction

with load balancing (via task stealing) within cache and/or NUMA domains. While this is a

form of runtime adaptation, it is an approach targeting one issue and does not react to runtime

measurements, but rather uses thread affinity and memory hierarchy information at startup.

Similarly, Charm++ [19, 39] has mechanisms for distributed dynamic load-balancing based on

runtime information. Other researchers have used Charm++ as a platform for developing ad-

ditional runtime load-balancing strategies [17] both between nodes and within a node using

cache/memory hierarchical information. PICS [34] allows runtime adaptivity in Charm++ by

allowing the application to register control points [12] specifying what effect application parame-

ters have on various categories of performance-effecting properties. For example, the application

can register that a variable controlling the size of a subproblem will change the grain size and

degree of parallelism. Based on runtime performance measurement, the system selects a property

to adjust and adjusts registered control points accordingly.

The OmpSs runtime system has demonstrated the ability to schedule an appropriate kernel

implementation based on available heterogeneous hardware choices [13, 28]. In this implemen-

tation, DGEMM tasks are scheduled on either CPU or GPU resources depending on the input

size, available hardware, and prior performance results.

The Open Tool for Parameter Optimization [8] tunes parameters exposed by the OpenMPI

runtime. In OpenMPI, many runtime tasks are delegated to modules, which implement differ-

ent versions of communication algorithms (such as collectives) and map MPI operations onto

lower-level network operations (such as for TCP, InfiniBand, Cray Gemini/Aries, etc.). These

modules expose a set of tunable parameters, called MCA parameters, as the result of which a

typical installation will have several hundred. OTPO searches for parameters giving the best

performance, as measured by latency or bandwidth of network operations.

The AutoTune project [24] is developing the Periscope Tuning Framework, an extension to

the earlier Periscope [6] performance analysis and diagnosis tool which allows plugins to provide

new functionality. PTF has been used for runtime energy tuning using DVFS and for tuning of

MPI runtime parameters [25], and it has been integrated with several parallel pattern libraries

to tune parameters such as how many CPU cores and acclelerators to use in heterogenous codes

and what scheduling policies to use [4]. APEX differs from PTF in being more deeply integrated

with runtimes and in providing tuning capabilities based on a global performance view.

Hoffman et al. [15] have developed an interface for diverse applications to report a perfor-

mance measure in a generic way so that operating systems and runtimes can adapt themselves

to optimize application performance. In their Application Heartbeats framework, applications

signal a “heartbeat” as they make progress in a computation; for example, a video-encoding

application could signal a heartbeat each time it processes a frame. The system then tries to

optimize the observed “heart rate”. They provide examples of optimizations purely within an

application, such as a video encoder switching algorithms and altering parameters to algorithms

to meet a target frame rate, and outside applications, such as a computer-vision application

that adjusts the number of cores that it uses to find the smallest number of cores necessary to

achieve real-time video processing.

K.A. Huck, A. Porterfield, N. Chaimov, H. Kaiser, A.D. Malony, T. Sterling, R. Fowler

2015, Vol. 2, No. 3 61

5. Conclusion

The quest for exascale brings fundamentally new challenges to performance and productiv-

ity. The solutions that will likely usher in the exascale era will require software designers and

users to embrace performance heterogeneity and variability. We believe that any successful im-

plementation will have to integrate performance introspection, in situ analysis and adaptation

in an exascale system stack. The XPRESS project has developed a prototype of APEX inte-

grated with HPX-3 and HPX-5 for use in OpenX. We have demonstrated APEX with several

benchmark examples, and we believe that the APEX framework is generally applicable to other

X-stack runtime efforts.

There is considerable work that can be done with respect to APEX. In the short term,

we would like to conduct more robust application experiments and to explore behavior larger

scales on different platforms. As more applications are developed using HPX, we hope to have

a greater opportunity to demonstrate the APEX capabilities for runtime adaptation. With that

in mind, new applications will present more and better policy (optimization) rules, both for

specific applications and to generalize them in the operating system and runtime libraries. In

particular, we are interested in possible policy rules that address heterogeneous HPX-3 code

that can be executed on GPGPUs, as well as many-core architectures such as the Intel Phi. We

plan to develop more policy rules that specifically address the SLOWER design principles of the

ParalleX model [33]. We soon will be exploring the multi-objective optimization opportunities

available in the development branch of Active Harmony. With that support, we can tune with

respect to both performance and energy efficiency, as well as to any other application-specific

metrics. Finally, we believe that APEX has applications outside of the XPRESS project, and that

it can be successfully integrated into other runtime systems and parallel execution models with

controllable parameters, including OpenMP, MPI, and OmpSs. It can serve as a framework for

triggering application-specific optimizations such as adaptive mesh refinement, load balancing,

and other dynamic behavior.

Support for this work was provided through the X-Stack Software Research and Scien-

tific Discovery through Advanced Computing (SciDAC) programs funded by the U.S. De-

partment of Energy, Office of Science, Advanced Scientific Computing Research (and Basic

Energy Sciences/Biological and Environmental Research/High Energy Physics/Fusion Energy

Sciences/Nuclear Physics) under award numbers DE-SC0008638, DE-SC0008704, DE-FG02-

11ER26050 and DE-SC0006925. Sandia National Laboratories is a multi-program laboratory

managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Mar-

tin Corporation, for the U.S. DOE’s National Nuclear Security Administration under contract

DE-AC04-94AL85000. This research used resources of the National Energy Research Scientific

Computing Center, a DOE Office of Science User Facility supported by the Office of Science of

the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-

mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work

without further permission provided the original work is properly cited.

An Autonomic Performance Environment for Exascale

62 Supercomputing Frontiers and Innovations

References

1. L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-Crummey, and

N. R. Tallent. Hpctoolkit: tools for performance analysis of optimized parallel programs

http://hpctoolkit.org. Concurr. Comput. : Pract. Exper., 22:685–701, April 2010. DOI:

10.1002/cpe.v22:6.

2. Vinay C Amatya. Parallel Processes in HPX: Designing an Infrastructure for Adaptive

Resource Management. PhD thesis, Louisiana State University, 2014.

3. Matthew Anderson, Maciej Brodowicz, Hartmut Kaiser, and Thomas L. Sterling. An Ap-

plication Driven Analysis of the ParalleX Execution Model. CoRR, abs/1109.5201, 2011.

http://arxiv.org/abs/1109.5201.

4. Enes Bajrovic, Siegfried Benkner, Jiri Dokulil, and Martin Sandrieser. Autotuning of pat-

tern runtimes for accelerated parallel systems. In PARCO 2013, September 2013, Munich,

Germany, September 2013.

5. Richard F Barrett, Courtenay T Vaughan, and Michael A Heroux. MiniGhost: a miniapp

for exploring boundary exchange strategies using stencil computations in scientific parallel

computing. Technical Report SAND2012-10431, 2011.

6. Shajulin Benedict, Ventsislav Petkov, and Michael Gerndt. Periscope: An online-based

distributed performance analysis tool. In Tools for High Performance Computing 2009,

pages 1–16. Springer. DOI: 10.1007/978-3-642-11261-4 1.

7. Ron Brightwell and Kevin Pedretti. An intra-node implementation of OpenSHMEM us-

ing virtual address space mapping. In Fifth Partitioned Global Address Space Conference,

October 2011.

8. Mohamad Chaarawi, Jeffrey M. Squyres, Edgar Gabriel, and Saber Feki. A tool for opti-

mizing runtime parameters of open MPI. In Recent Advances in Parallel Virtual Machine

and Message Passing Interface, number 5205 in Lecture Notes in Computer Science, pages

210–217. Springer Berlin Heidelberg. DOI: 10.1007/978-3-540-87475-1 30.

9. Sandia Corporation. eXascale PRogramming Environment and System Software (XPRESS).

http://xstack.sandia.gov/xpress/, April 2015.

10. Cristian Ţăpuş, I-Hsin Chung, and Jeffrey K. Hollingsworth. Active harmony: Towards

automated performance tuning. In 2002 ACM/IEEE Conference on Supercomputing, SC

’02, pages 1–11, Los Alamitos, CA, USA, 2002. IEEE Computer Society Press.

11. Matthew Curtis-Maury, James Dzierwa, Christos D. Antonopoulos, and Dimitrios S.

Nikolopoulos. Online power-performance adaptation of multithreaded programs using hard-

ware event-based prediction. In 20th Annual International Conference on Supercomputing,

ICS ’06, pages 157–166, New York, NY, USA, 2006. ACM. DOI: 10.1145/1183401.1183426.

12. Isaac J Dooley. Intelligent runtime tuning of parallel applications with control points. PhD

thesis, University of Illinois at Urbana-Champaign, 2011.

13. Alejandro Duran, Eduard Ayguadé, Rosa M. Badia, Jesüs Labarta, Luis Martinell,

Xavier Martorell, and Judit Planas. OmpSs: A proposal for programming heteroge-

neous multi-core architectures. Parallel Processing Letters, 21(02):173–193, 2011. DOI:

10.1142/S0129626411000151.

14. Michael Heroux and Richard Barrett. Mantevo project, 2011.

K.A. Huck, A. Porterfield, N. Chaimov, H. Kaiser, A.D. Malony, T. Sterling, R. Fowler

2015, Vol. 2, No. 3 63

15. Henry Hoffmann, Jonathan Eastep, Marco D. Santambrogio, Jason E. Miller, and Anant

Agarwal. Application heartbeats: A generic interface for specifying program performance

and goals in autonomous computing environments. In 7th International Conference on

Autonomic Computing, ICAC ’10, pages 79–88, New York, NY, USA, 2010. ACM. DOI:

10.1145/1809049.1809065.

16. Kevin A. Huck, Allen D. Malony, Sameer Shende, and Alan Morris. TAUg: Runtime global

performance data access using MPI. In Recent Advances in Parallel Virtual Machine and

Message Passing Interface, volume 4192 of Lecture Notes in Computer Science, pages 313–

321. Springer Berlin Heidelberg, 2006. DOI: 10.1007/11846802 44.

17. E. Jeannot, E. Meneses, G. Mercier, F. Tessier, and Gengbin Zheng. Communication and

topology-aware load balancing in charm++ with treematch. In Cluster Computing (CLUS-

TER), 2013 IEEE International Conference on, pages 1–8, Sept 2013. DOI: 10.1109/CLUS-

TER.2013.6702666.

18. Hartmut Kaiser, Maciej Brodowicz, and Thomas Sterling. ParalleX: An advanced par-

allel execution model for scaling-impaired applications. In Parallel Processing Work-

shops, pages 394–401, Los Alamitos, CA, USA, 2009. IEEE Computer Society. DOI:

10.1109/ICPPW.2009.14.

19. Laxmikant V. Kale and Gengbin Zheng. Charm++ and AMPI: Adaptive Runtime

Strategies via Migratable Objects. In Advanced Computational Infrastructures for

Parallel and Distributed Applications, pages 265–282. Wiley-Interscience, 2009. DOI:

10.1002/9780470558027.ch13.

20. Andreas Knüpfer, Holger Brunst, Jens Doleschal, Matthias Jurenz, Matthias Lieber, Holger

Mickler, Matthias S Müller, and Wolfgang E Nagel. The Vampir performance analysis

tool-set. In Tools for High Performance Computing, pages 139–155. Springer, 2008. DOI:

10.1007/978-3-540-68564-7 9.

21. Anirban Mandal, Rob Fowler, and Allan Porterfield. Modeling memory concurrency for

multi-socket multi-core systems. In 2010 IEEE International Symposium on Performance

Analysis of Systems and Software (ISPASS2010), pages 56–75, White Plains, NY, March

2010. IEEE. DOI: 10.1109/ispass.2010.5452064.

22. Anirban Mandal, Rob Fowler, and Allan Porterfield. System-wide introspection for accu-

rate attribution of performance bottlenecks. In Second International Workshop on High-

perfromance Infrastruture for Scalable Tools, 2012.

23. Steven J. Martin and Matthew Kappel. Cray XC30 Power Monitoring and Management.

In Cray User Group Conference Proceedings, 2014.

24. Renato Miceli, Gilles Civario, Anna Sikora, Eduardo César, Michael Gerndt, Houssam

Haitof, Carmen Navarrete, Siegfried Benkner, Martin Sandrieser, Laurent Morin, and

François Bodin. AutoTune: A plugin-driven approach to the automatic tuning of paral-

lel applications. In Applied Parallel and Scientific Computing, number 7782 in Lecture

Notes in Computer Science, pages 328–342. Springer Berlin Heidelberg. DOI: 10.1007/978-

3-642-36803-5 24.

25. Yury Oleynik, Robert Mijaković, IsáıasA. Comprés Ureña, Michael Firbach, and Michael

Gerndt. Recent advances in periscope for performance analysis and tuning. In Tools for

An Autonomic Performance Environment for Exascale

64 Supercomputing Frontiers and Innovations

High Performance Computing 2013, pages 39–51. Springer International Publishing, 2014.

DOI: 10.1007/978-3-319-08144-1 4.

26. Stephen L. Olivier, Allan K. Porterfield, Kyle B. Wheeler, and Jan F. Prins. Scheduling

task parallelism on multi-socket multicore systems. In International Workshop on Runtime

and Operating Systems for Supercomputers, ROSS ’11, pages 49–56, New York, NY, USA,

2011. ACM.

27. Vincent Pillet, Jesús Labarta, Toni Cortes, and Sergi Girona. Paraver: A tool to visualize

and analyze parallel code. In Proceedings of WoTUG-18: Transputer and occam Develop-

ments, volume 44, pages 17–31. mar, 1995.

28. J. Planas, R.M. Badia, E. Ayguade, and J. Labarta. Self-adaptive OmpSs tasks in het-

erogeneous environments. In Parallel Distributed Processing (IPDPS), 2013 IEEE 27th

International Symposium on, pages 138–149, May 2013. DOI: 10.1109/IPDPS.2013.53.

29. Barry Rountree, Dong H Ahn, Bronis R de Supinski, David K Lowenthal, and Martin

Schulz. Beyond DVFS: A first look at performance under a hardware-enforced power bound.

In Parallel and Distributed Processing Symposium Workshops & PhD Forum (IPDPSW),

pages 947–953. IEEE, 2012. DOI: 10.1109/ipdpsw.2012.116.

30. Barry Rountree, David K. Lownenthal, Bronis R. de Supinski, Martin Schulz, Vincent W.

Freeh, and Tyler Bletsch. Adagio: Making dvs practical for complex hpc applications. In

23rd International Conference on Supercomputing, ICS ’09, pages 460–469, New York, NY,

USA, 2009. ACM. DOI: 10.1145/1542275.1542340.

31. Sandia National Laboratories. The Kitten Lightweight Kernel. https://software.sandia.

gov/trac/kitten.

32. S. Shende and A. D. Malony. The TAU Parallel Performance System. International Jour-

nal of High Performance Computing Applications, 20(2):287–331, Summer 2006. DOI:

10.1177/1094342006064482.

33. Thomas Sterling, Daniel Kogler, Matthew Anderson, and Maciej Brodowicz. Slower: A per-

formance model for exascale computing. Supercomputing frontiers and innovations, 1(2):42–

57, 2014. DOI: 10.14529/jsfi140203.

34. Yanhua Sun, Jonathan Lifflander, and Laxmikant V. Kalé. PICS: A performance-analysis-

based introspective control system to steer parallel applications. In International Workshop

on Runtime and Operating Systems for Supercomputers, ROSS ’14, pages 5:1–5:8, New York,

NY, USA, 2014. ACM. DOI: 10.1145/2612262.2612266.

35. Alexandre Tabbal, Matthew Anderson, Maciej Brodowicz, Hartmut Kaiser, and Thomas

Sterling. Preliminary design examination of the ParalleX system from a software and hard-

ware perspective. SIGMETRICS Performance Evaluation Review, 38:4, Mar 2011.

36. The National Energy Research Scientific Computing Center (NERSC). Edison. https:

//www.nersc.gov/users/computational-systems/edison/, April 2015.

37. Thomas Williams and Colin Kelley. Gnuplot homepage. http://www.gnuplot.info, April

2015.

38. Felix Wolf, Brian J. N. Wylie, Erika Abraham, Daniel Becker, Wolfgang Frings, Karl

Furlinger, Markus Geimer, Marc-Andre Hermanns, Bernd Mohr, Shirley Moore, Matthias

K.A. Huck, A. Porterfield, N. Chaimov, H. Kaiser, A.D. Malony, T. Sterling, R. Fowler

2015, Vol. 2, No. 3 65

Pfeifer, and Zoltan Szebenyi. Usage of the scalasca toolset for scalable performance anal-

ysis of large-scale parallel applications. In Tools for High Performance Computing, pages

157–167. Springer Berlin Heidelberg, 2008.

39. Gengbin Zheng, E. Meneses, A. Bhatele, and L.V. Kale. Hierarchical load balancing

for charm++ applications on large supercomputers. In Parallel Processing Workshops

(ICPPW), 2010 39th International Conference on, pages 436–444, Sept 2010. DOI:

10.1109/ICPPW.2010.65.

Received June 7, 2015.

An Autonomic Performance Environment for Exascale

66 Supercomputing Frontiers and Innovations

