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This paper considers simulation of the seismic wave propagation in geological media with

different rheological properties. The present work aims to construct a numerical scheme to model

porous fluid-saturated medium, for the description of which the Dorovsky model was selected. We

employed the grid-characteristic method, which includes choosing the appropriate operator split-

ting method for a 3D problem, deriving the transformation to the Riemann invariants analytically,

and explicitly setting boundary and contact conditions. We simulated two scenarios. Firstly, we

compared the wavefields generated by a point-source in the acoustic, linear elastic, and porous

fluid-saturated approximations, noting the similarities in the longitudinal wave and differences in

other wave types. Secondly, we simulated a part of the marine seismic survey process, including

a source in the water layer, governed by the acoustic equations, a water-saturated layer described

by the Dorovsky equations, and an explicit contact between these layers. To utilize the modern

HPC multi-core and multi-processor systems, the hybrid MPI-OpenMP parallel algorithms were

used.
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Introduction

The task of an accurate modelling of wave processes in deformable media is important in

multiple different applications, such as non-destructive testing of composite materials, medical

ultrasound imaging, seismic survey process, earthquake simulation, etc. If simple models prove

to be insufficient, more complex and accurate ones are employed. It should be noted, that

since analytical solutions are not available for most valuable mechanical problems, computer

simulations are required.

Let us concentrate on the seismic wave propagation problem. The simplest model is the linear

acoustic model [1, 10]. Despite its derivation for fluids, it has gained significant popularity, being

a reasonably good choice for simulating only longitudinal waves in geological media. However,

other types of waves (transverse waves, complex surface waves) often have to be taken into

account, thus requiring more sophisticated models like the isotropic linear elastic model [1].

In other cases, more sophisticated properties need to be considered, for example, anisotropy.

Another example of a medium with a complex internal structure is a porous fluid-saturated

medium. One of its distinctive physical properties is the existence of the second longitudinal

wave with a smaller velocity. Several mathematical models are used to describe it, the most

popular one being the Biot model [3]. However, other models like the Dorovsky model [4, 11]

are available as well. In our work we choose the Dorovsky model because it is governed by a

hyperbolic system of PDEs and it only has three elastic parameters that uniquely define (or are

defined by) the three velocities of wave propagation.

Since solving larger equations requires more computational resources, researchers attempt

to use simpler models of the medium whenever possible. One option to do that is to combine

several models in one simulation, which allows us to conduct highly accurate modelling and save
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significant resources at the same time. Usually, each model is set on a separate grid; therefore,

special contact conditions between those grids are required. These conditions have to be both

physically and mathematically correct to ensure convergence towards the correct solution. Gen-

erally, such conditions do not depend upon the chosen numerical method; some examples can

be found in the papers [6–8, 10].

Different numerical methods can be used to solve the governing equations. Most popular ones

are the finite-difference and finite-element methods, but others can be used, too. In this work

we use the grid-characteristic method, which is described in more details in the papers [5, 6, 8].

This paper has the following structure. Firstly, we describe the physical and mathematical

models used in this study. Then we present the developed numerical method, including handling

internal and boundary points and implementation of contact conditions. Finally, we show the

results of several computer simulations.

1. Mathematical Models

Different models can be used for describing the process of seismic wave propagation in

geological media. Here we only consider those which can take into account the wave fronts; they

are usually represented in the form of systems of partial differential equations with necessary

initial and boundary conditions.

1.1. Acoustic Equations

One of the basic models is the linear acoustic model. The equations are as follows [1, 10]:




ρ~vt = −∇p+ ~F ,

pt = −c2ρ ∇ · ~v.
(1)

Here, p = p(x, y, z, t) is the acoustic pressure, ~v = ~v(x, y, z, t) is the particle velocity (the

derivative of the local displacement vector with respect to time). Force vector ~F (x, y, z, t) denotes

the right-hand side, the applied external volumetric force. The known parameters (generally,

space-dependent) are density ρ [kg/m3] and wave speed c [m/s] (c =
√
K/ρ, where K is the

bulk modulus).

Zero initial conditions are used, since unknowns p and ~v are relative to the steady state.

One boundary condition is required; for instance, given pressure P (x, y, z, t)
∣∣
x,y,z∈∂E . Here the

computational domain is denoted as E and its boundary – as ∂E. Boundary condition P ≡ 0

sets the free surface, which is commonly used on top boundary.

Acoustic equations (1) accurately describe low-amplitude pressure waves (propagating with

the speed c) in fluids.

1.2. Equations of Linear Elasticity

The system of PDEs for the linear elastic model is presented below [1, 5]:




ρ~vt = (∇ ·T)ᵀ + ~F ,

Tt = λ(∇ · ~v)I + µ(∇⊗ ~v + (∇⊗ ~v)ᵀ).
(2)

V.I. Golubev, A.V. Shevchenko

2024, Vol. 11, No. 4 5



Here the unknowns are: the particle velocity ~v = ~v(x, y, z, t) (the derivative of the local displace-

ment vector with respect to time) and the symmetric stress tensor T , which has 6 independent

components Txx, Tyy, Tzz, Txz, Tyz, Txz. Force ~F = ~F (x, y, z, t) denotes the right-hand side.

Density ρ [kg/m3] and two Lame parameters λ, µ [Pa] are the known possibly space-dependent

medium parameters. In the equation (2) ⊗ stands for ~a⊗~b = Aij , Aij = ai · bj and ∇·~v = div~v.

Here we also use zero initial conditions. The following boundary condition is typically im-

posed: T · ~n = ~f(x, y, z, t), where ~n is a unit vector normal to the boundary ∂E.

Elastic equations (2) accurately describe body waves: longitudinal wave propagating with

the speed cp =
√

λ+2µ
ρ and shear wave propagating with the speed cs =

√
µ
ρ , surface waves:

Rayleigh wave, Love wave.

1.3. Dorovsky Model Equations

The following system of PDEs governs wave propagation in the Dorovsky model [4, 8, 11]:





~ut + 1
ρs

(∇ · h)ᵀ + 1
ρ0
∇p = ~F ,

~vt + 1
ρ0
∇p = ~F ,

ht + µ (∇⊗ ~u+ (∇⊗ ~u)ᵀ) +
[(
λ− ρs

ρ0
K
)

(∇ · ~u)− ρf
ρ0
K(∇ · ~v)

]
I = 0,

pt − (K − αρ0ρs)(∇ · ~u) + αρ0ρf (∇ · ~v) = 0.

(3)

In each infinitesimal medium volume there is a rigid skeleton and interconnected pores saturated

with a fluid (typically water or oil for geophysical applications). The unknown functions in this

system are: skeleton velocity (derivative of displacement with respect to time) ~u = ~u(x, y, z, t),

fluid velocity (derivative of displacement with respect to time) ~v = ~v(x, y, z, t), minus stress

tensor of the rigid skeleton h = h(x, y, z, t), pore fluid pressure p = p(x, y, z, t). Force ~F denotes

the right-hand side.

The medium is described by the following parameters: ρs = (1 − β)ρs0, ρf = βρf0,

ρ0 = ρs + ρf , where ρs0, ρf0 are real physical densities of the rigid skeleton and the saturating

fluid, respectively; β is the volumetric porosity of the medium defined by β = Vpores

Vtotal
.

The remaining medium parameters K, µ, α are the elastic parameters of the saturated

medium which are defined based on cp1, cp2, cs (explained below) and already given ρ0, ρs, ρf
by the following relations:

µ = ρsc
2
s, (4)

K =
ρ0ρs
2ρf

(
c2p1 + c2p2 −

8

3

ρf
ρ0
c2s −

√
(c2p1 − c2p2)2 −

64

9

ρfρs

ρ20
c4s

)
, (5)

α3 =
1

2ρ20

(
c2p1 + c2p2 −

8

3

ρs
ρ0
c2s +

√
(c2p1 − c2p2)2 −

64

9

ρfρs

ρ20
c4s

)
, (6)

α = ρ0α3 +K/ρ30. (7)

Known possibly space-dependent medium parameters cp1, cp2, cs are the wave velocities of

the first (fast) longitudinal wave, second (slow) longitudinal wave and shear wave, respectively.

So, the Dorovsky model describes three kinds of body waves: two longitudinal ones and a shear

wave. It also describes surface waves, like the linear elastic model.
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We use zero initial conditions and the following boundary condition:





p = P (x, y, z, t), x, y, z ∈ ∂E, t > 0,

h · ~n · ~n = H(x, y, z, t), x, y, z ∈ ∂E, t > 0,

h · ~n · ~τ = 0, x, y, z ∈ ∂E, t > 0.

(8)

Here ~n is a unit normal to the boundary, ~τ is a unit vector tangential to the boundary (two

linearly independent vectors in 3D case). Note that setting P ≡ 0, H ≡ 0 results in the free

surface boundary condition in the case of open pores.

2. Numerical Method

Systems of PDEs (1), (2), and (3) are first-order systems that can be easily written in the

matrix form

~qt +Ax~qx +Ay~qy +Az~qz = ~f, (9)

where vector ~q = ~q(x, y, z, t) contains all unknown functions, while known matrices Ax, Ay,

Az are defined by the combination of the appropriate material parameters. Initial conditions

~q (0) = ~0. Boundary conditions can be generally written as a linear relation [6, 8]

B · ~q(x, y, z, t) = ~b(x, y, z, t), x, y, z ∈ ∂E, t > 0, (10)

and will be discussed in more detail in subsection 2.3.

Below we describe construction of the numerical scheme for the above equations using the

grid-characteristic method (GCM).

2.1. Operator Splitting

First of all, we want to simplify this three-dimensional system (x, y, z ∈ R3) by consecutive

solutions of one-dimensional problems. This can be achieved by a coordinate splitting procedure.

For an operator splitting scheme with s stages we need to perform the following procedure (see [9]

for details in the 2D case):

for i in 1,...,s:

perform stepX(αxi · dt)
perform stepY(αyi · dt)
perform stepZ(αzi · dt)

Here, perform stepX means find ~q (n+1) for ~q satisfying the system ~qt + Ax~qx = ~0 and

t(n+1)− t(n) = αxi ·dt. For stepY and stepZ the similar formulae are applied with the appropriate

matrix (Ay or Az) and spatial derivative ( ∂∂y or ∂
∂z ) with the values from the previously done

step as the starting ~q (n).

Thus, an operator splitting scheme is defined by the coefficients αji , 1 ≤ i ≤ s, j ∈ {x, y, z}.
Several examples are given in Tables 1–3. Although the last scheme theoretically demonstrates

the highest approximation order, we chose the first scheme for our simulations in this work

due to its high efficiency (one stage, s = 1) and relatively good performance. Also note that

if a high-order scheme is used, one might need smaller dt since τ = αjidt should satisfy the

stability condition, and some |αji | > 1. For instance, with the Y7-4 scheme one needs to make

13/3 times more one-dimensional steps for each 3D time step, and the dt value must be decreased

approximately maxi,j |αji | ≈ 1.7 times, increasing the total number of time steps accordingly.
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Therefore, a simulation with the high-order Y7-4 scheme takes 7.4 times longer than the one

with the XYZ scheme on the same mesh.

The application of the right-hand side can be viewed as another operator in the splitting

procedure. However, since in the problems considered right-hand side is usually a point source

limited in time, we apply it only once per time step after the homogeneous equations have been

solved by the operator splitting technique with respect to spatial coordinates.

Table 1. Coefficients of the XYZ splitting scheme: s = 1, 1st order of approximation

i αXi αYi αZi
1 1 1 1

Table 2. Coefficients of the 3D Strang splitting scheme [2]: s = 3, 2nd order of approximation

i αXi αYi αZi
1 0 0 1/2

2 0 1/2 0

3 1 1/2 1/2

Table 3. Coefficients of the Y7-4 splitting scheme [2]: s = 7, 4th order of approximation,

φ1 = 1
2− 3
√
2
, φ2 = − 3

√
2

2− 3
√
2

i αXi αYi αZi
1 0 0 φ1/2

2 0 φ1/2 0

3 φ1 φ1/2 (φ1 + φ2)/2

4 0 φ2/2 0

5 φ2 φ2/2 (φ1 + φ2)/2

6 0 φ1/2 0

7 φ1 φ1/2 φ1/2

2.2. One-Dimensional Case

Consider a one-dimensional system of equations, resulting from the operator splitting pro-

cedure defined above:

~qt +Ax~qx = ~0. (11)

Since original systems of PDEs (1), (2), and (3) are hyperbolic, matrix Ax has a full set of

eigenvectors. It is correct for Ay and Az too. We combine all eigenvectors as columns of a matrix

and denote that matrix as Ω−1 – an inverse to a matrix Ω; we can do that since Ω−1 has full

rank. Then, if we put all eigenvalues corresponding to eigenvectors in Ω−1 into the diagonal of

a diagonal matrix Λ, the following relation will be valid: Ax = Ω−1ΛΩ. Let us multiply (11) by

the matrix Ω on the left:

Ω · ~qt + Ω · Ω−1ΛΩ · ~qx = ~0, (12)

(Ω~q)t + ΛΩ~qx = ~0. (13)
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Assuming matrix Ω to be constant and not depending on x, we obtain

(Ω~q)t + Λ (Ω~q)x = ~0. (14)

Introduce new unknown vector – the so called Riemann invariants ~ω = Ω~q, we obtain a system

of independents transport equations with respect to each component of ~ω:

~ωt + Λ~ωx = ~0. (15)

For each scalar equation wt + awx = 0, where w = ωi, a = λi, the characteristic property is

fulfilled: w(xm, t
(n+1)) = w(xm − aτ, t(n)), where τ = t(n+1) − t(n). Value w∗ = w(xm − aτ, tn)

can be obtained by using some interpolation procedure. Usually, a polynomial interpolation is

used; in this work we used a third-order interpolation polynomial built on a four-point stencil

in the internal points, resulting in a third-order scheme. This scheme closely resembles the

known Rusanov scheme. Note that for positive and for negative λi the stencil points used for

interpolation are different, which is important to preserve the stability properties of the scheme.

Treatment of points near the boundary is discussed in the next subsection.

Finally, when we have computed each ω
(n+1)
i with the appropriate λi, we can return to the

original unknowns using the formula ~q(n+1) = Ω−1~ω(n+1).

The stability condition is the standard Courant condition c · dt/h < 1, where c = maxi |λi|.
For an efficient implementation we have precomputed matrices Ω and Ω−1 analytically. Of

course, they depend upon medium properties – parameters of the corresponding PDE. During the

simulation at each time step matrix-vector multiplication Ω~q and Ω−1~ω is performed quickly and

the sparse nature of Ω and Ω−1 is taken into account. For larger matrices like the ones resulting

from the Dorovsky model (3) utilizing symbolic algebra software like Wolfram Mathematica [12]

or Python’s SymPy library proves to be beneficial.

2.3. Boundary Conditions

The scheme presented above cannot be implemented directly near the boundary because

several points in the stencil required for interpolation are located outside the computational

domain. In the framework of the grid-characteristic method we extend the computational grid

by two ghost points on each side, allowing us to perform the same computations everywhere.

Then, in order for the simulation to be accurate, i.e. for the setting of the appropriate boundary

conditions, we utilize the following scheme:

1. fill ghost points with values from the closest point on the boundary in order to minimize

reflections;

2. perform a special correction to set correct values on the boundary.

The first item approximates zero incoming values from outgoing characteristics – the ones that

are outside the computational domain. The second item performs a correction based on the

formula [5, 6, 8]:

~q (n+1) = ~q in + Ωout(B · Ωout)−1 · (~b−B~q in), (16)

where B and ~b are defined in (10), ~q in is ~q after step 1 (with values updated only from those

characteristics which stay inside the domain), Ωout is a rectangular matrix, columns of which

correspond to the outgoing characteristics. Ωout(B · Ωout)−1 are precomputed analytically.
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2.4. Contact Conditions

In many cases the wave propagates through several media with significantly varying prop-

erties. Using the most general and accurate mathematical model can be prohibitive for large

simulations: for example, for the Dorovsky model (3) we have to store 13 floating-point values

per point, which is 3.25 more than for the acoustic model (1), and there are also more operations

involved. Also, some numerical discretizations of complex PDEs do not allow setting some of the

parameters to zeros to treat special cases. Running one simulation on multiple grids, possibly

with different equations on each one, is a popular approach to deal with such issues. In this

subsection we present the technique to organize explicit contact between two grids.

Consider two grids representing two media, denoted by lower indices a and b (in this sub-

section this does not mean differentiation). We cover the computational domain in such a way

that the points in grid a which are located exactly on the interface coincide with the points

in grid b, which are also located exactly on the interface. Thus, for those physical points we

will have two grid nodes: ~qa in grid a, and ~qb in grid b. Note that ~qa and ~qb can have different

sizes and different components from different governing PDEs. In the general form we write the

contact condition as

C

[
~qa

~qb

]
= ~c, (17)

where C is a rectangular matrix R× (na + nb), n
a – number of components of ~qa, nb – number

of components of ~qb, R – total number of outgoing characteristics for both grids.

The boundary correction (16) can be written in the following form:

~u
(n+1)
i = Φi~u

in
i + ~fi, i ∈ {a, b}. (18)

Matrices Φi are known, vectors ~fi are unknown. Substituting (18) into (17), we obtain a

system of linear algebraic equations with respect to all components of ~fi, i ∈ {a, b}. The system

has a unique solution if the boundary corrector matrices Bi were chosen correctly (for outgoing

characteristics).

Thus, we get the following algorithm [5, 6, 8]:

1. run one step of the simulation on both grids for the internal points (and for boundary points

using ghost cells), obtain ~q ini for i ∈ {a, b};
2. solve the small algebraic system (17) with respect to [~fa ~fb]

ᵀ;

3. perform correction according to formula (16) for both grids, computing ~q
(n+1)
i , i ∈ {a, b}.

For the contact between an acoustic medium governed by equations (1) and a fluid-saturated

medium governed by the Dorovsky equations (3) the following contact conditions should be

implemented [7]:




(−||h|| · ~n, ~n) = −Pa,
(−||h|| · ~n, ~τ) = 0,

(1− β)(~u, ~n) + β(~v, ~n) = (~Va, ~n),
ρf
βρ0
· p = Pa.

(19)

Here Pa and ~Va denote pressure and velocity in the acoustic medium, respectively.
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2.5. Parallel Algorithms

This subsection discusses the implemented parallel algorithms for using modern high-

performance computing systems. For parallelization in a distributed memory system, MPI tech-

nology is used, in a shared memory system – OpenMP technology is used. The utilized grid-

characteristic method on structured grids belongs to the class of explicit numerical methods.

This allows using classical approaches to parallelization – the principle of geometric parallelism.

The computational domain (grid) is divided into parts (blocks) with overlaps, the width of the

overlaps is determined by the spatial scheme stencil. At each time step, data is exchanged in the

border nodes (in overlapping parts). OpenMP technology (pragma omp for) is used to accelerate

the basic scheme node loop. Thus, the computational algorithm successfully works at systems

with distributed memory, with shared memory and in hybrid systems.

3. Simulation Results

3.1. Homogeneous Space

Our first simulation models wave propagation from a point-source vertical force applied

at the centre of cubic computational domain with time dependence in the form of the Ricker

impulse with the peak frequency of 30 Hz. The model size was 800 m × 800 m × 800 m. It

was covered by a computational grid with step size of 2 m. Time step was 0.8 ms to satisfy

the Courant stability condition, 200 time steps were taken. In one simulation, we use the linear

elastic model with the parameters cp = 2000 m/s, cs = 1300 m/s, ρ = 1450 kg/m3. In the second

case, we used the Dorovsky model with similar parameters: cp1 = 2000 m/s, cp2 = 450 m/s,

cs = 1300 m/s, ρ0 = 1450 kg/m3, ρf = 100 kg/m3, β = 10%. Result of the simulation is

presented in the Fig. 1.

(a) Simulation with the elastic model, absolute

velocity |~v|
(b) Simulation with the porous Dorovsky model,

absolute skeleton velocity |~u|

Figure 1. Slices of the absolute velocity. Pressure wave and shear waves are clearly seen in

both simulations. The second pressure wave propagates with the low speed cp2 < cs only in the

Dorovsky model
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3.2. Bottom Sediments

We simulated wave propagation from a point source in a combination of a water layer,

described by the acoustic equations (1), and a deformable water-saturated layer of bottom sedi-

ments, modelled by the Dorovsky equations (3). The three-dimensional case was considered. We

used well-known water parameters: density ρ = 1000 kg/m3 and wave velocity c = 1500 m/s.

We used the following parameters for the Dorovsky model: porosity β = 10%, physical water

density ρf0 = 1000 kg/m3, physical skeleton density ρs0 = 1500 kg/m3, µ = 2.2815e9 Pa,

K = 2.642306867e9 Pa, α = 2507.905873 m5/(kg · s2), corresponding to wave velocities

cp1 = 2000 m/s, cp2 = 450 m/s, cs = 1300 m/s. The point source was set at the depth of

4 m with the Ricker impulse with the peak frequency of 30 Hz as the time dependence.

The computational domain with the size 700 m × 700 m × 300 m was covered with two

cubic grids with the step of 2 m: one for the water layer (250 m), one for the bottom sediments

(50 m). To satisfy the Courant stability condition the time step was set to 0.9 ms. Totally,

250 time steps were taken.

The simulation was carried out on a PC with an Intel(R) Core(TM) i7-10700 CPU 2.9 GHz

and 15 GiB RAM. For better utilization of multiple cores on a shared memory system, we used

1 MPI process with 8 OpenMP threads. This 3D simulation took approximately 1.5 minutes.

In Fig. 2 one can see the simulated region consisting of two computational grids in contact

with each other. Pressure values are shown in both grids. Longitudinal wave in the water layer

and two longitudinal waves in the sediments are clearly seen. The shear wave in the sediments

is not visible on the displayed image of pore pressure, but it can be seen in the plot of absolute

velocities.

Figure 2. Spatial distribution of the pressure p in the model

Conclusion

The grid-characteristic numerical scheme on rectangular grids for the seismic wave simula-

tion in a porous fluid-saturated medium governed by the Dorovsky model in the 3D case was
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constructed. The analytical derivation of matrices Ω and Ω−1 makes an efficient implementation

possible. The explicit contact conditions between an acoustic medium and a Dorovsky medium

have been derived and implemented. We have simulated a problem in a realistic setting of a

marine seismic survey process. The usage of the modern MPI and OpenMP technologies is the

key for the real-scale computer simulation. Future works involves implementing contact between

elastic and porous media and generalization to curvilinear grids in 3D, similar to the work [8]

in the 2D case.
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