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Global models of the Earth’s gravitational field, built from data collected by space geodetic

missions, play a very important role in studying global processes across Earth’s various geospheres.

The paper is devoted to the development of a program for the recovery of the Earth’s gravity field

parameters. This program will enable in the future to process the results of measurements from the

Russian satellite constellation and to build gravity field models of different spatial and temporal

resolution. The recovery of the gravity field from satellite measurements is a rather resource-

consuming computational process, and parallel computations are crucial for its optimization. This

paper describes the mathematical model, the algorithm and the results of parallelization, as well

as presents the results of the gravity field recovery using parallel computations working with real

measurement data. The static model of the Earth’s gravitational field MSU2024-1 was built using

the GRACE-FO mission data for the whole year 2021. The model is decomposed to degrees and

orders of n = m = 120 and presented in terms of geoid heights. We also compared the EGF

recovery on a monthly interval using the GRACE-FO data obtained in this work with the CSR,

GFZ, and JPL temporal models built at other world centers.
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Introduction

Depending on the granularity of the representation and measurement methods of the Earth’s

gravity field (EGF), three components of the gravity field can be distinguished: local, regional

and global. The local level of the EGF is provided by land and sea gravimetric surveys, as

well as by airborne gravimetry. The regional component is represented by satellite altimetry of

the Earth’s surface and satellite laser ranging. The global gravity field is measured by satellite

gravimetry. Of course, such division of the gravity field into three components is not strictly

defined.

Satellite gravimetry began to develop since the beginning of this century and is represented

by such missions as CHAMP (orbited during 2000–2010) [18], GRACE (2002–2017) [20], GOCE

(2009–2013) [2] and GRACE Follow On (2018 to present time) [9, 11].

While the CHAMP and GOCE missions were single spacecraft, the GRACE and GRACE

Follow On missions consist of a pair of identical spacecraft in the same near-polar Earth orbit,

following each other at a distance of about 200 km. The main measured quantity in such satellite

configuration is the inter-satellite range, which varies depending on the gravitational field of the

terrain (oceans, mountains, etc.) over which the satellites of the constellation are currently

flying. The measurements of the inter-satellite range provide the necessary information for the

solution of the inverse problem of recovering the Earth gravity field. The main instrument that

measures the inter-satellite range in the GRACE and GRACE-FO missions is a high-precision

microwave interferometric system, which operates at a micrometer accuracy level [21, 22]. In

parallel with the microwave system, the GRACE-FO mission satellites are equipped with a laser

interferometric system, which allows to raise the measurement accuracy to a nanometer level [1].
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Twin satellite configurations have proven to be highly effective in providing high-resolution

global EGF models, so there is a high probability of launching new missions of that type in

the future. In particular, as a part of the Chinese TianQin space gravitational wave detector

project [12], there are plans to launch the TianQin 2 constellation, similar to GRACE-FO, at

the end of 2025 [25].

With the beginning of data collecting from near-Earth gravity missions, static global models

of the EGF began to be developed. In addition, data from the GRACE and GRACE-FO mis-

sions allowed the production of monthly models, i.e., with a temporal resolution of one month.

A complete and regularly updated list of such models is published on the website of the Inter-

national Center for Global Earth Models (ICGEM) [8]. EGF models are represented as a series

expansion of spherical harmonics, whose degrees and orders characterize the spatial resolution

of the model, or, in other words, the detalization of the EGF representation. The first static

EGF model produced using the CHAMP mission data, the EIGEN-1 model, was published in

2002 [19]. EGF models can be based either on data from a single mission or on a combination of

data from different missions. As an example, one of the most recent (2023) EGF models is the

WHU-SWPU-GOGR2022S model built from GOCE and GRACE data; this model is complete

to degrees and orders of 300 [24].

There are static models of the EGF built from data from the GRACE missions only. The first

such models are the ITG-Grace03 [14] and ITG-Grace2010s [15]. Both models are represented as

a decomposition up to 180 spherical harmonics. The most recent model, which uses all GRACE

observations since April 2002, is the ITSG-Grace2018s model [10, 16].

Monthly models of the EGF built from GRACE and GRACE-FO data are created in

three international centers: Center for Space Research at University of Texas, Austin (CSR),

Helmholtz Centre Potsdam German Research Centre for Geosciences (GFZ), and Jet Propul-

sion Laboratory (JPL). The solutions obtained in these centers are also available on the ICGEM

website.

Designing a similar Russian space mission to measure the Earth’s gravitational field is also

being considered. Some research on this subject is being carried out in a number of scientific and

industrial organizations of the country, not only on the development of measurement systems and

scientific background, but also on the modeling of the EGF recovery from satellite measurements.

The latter is a rather resource-consuming computational process. The number of unknown values

in the recovery of the EGF parameters depends quadratically on the degree of decomposition.

Therefore, when recovering the EGF up to degree Nmax = 200, it will be necessary to operate

with matrices of 40000 × 40000 and more. This requires hundreds of gigabytes of RAM to

store such amount of data if double precision numbers are being used. In this regard, parallel

computation in the EGF recovery problem plays a crucial role in optimizing the computational

process. This paper presents the results of such modeling using parallel computing based on real

data from the GRACE Follow On mission.

The paper is organized as follows. Section 1 presents the mathematical model of the gravity

field recovery from satellite measurements. Section 2 describes the parallelization algorithm of

the computational process. The results of the parallelization are given in Section 3. Section 4

contains the results of the EGF recovery. The conclusion summarizes the study.
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1. Mathematical Model

The GRACE and GRACE-FO missions have provided the scientific community with a sig-

nificant amount of inter-satellite measurements. In order to use this data to recover the EGF,

it is crucial to have prior knowledge of the exact positions of the spacecraft in orbit, as well as

their relative locations. The main objective is to assess the impact of all potential effects, includ-

ing both gravitational and non-gravitational forces, on the motion of the spacecraft. Therefore

a mathematical model of spacecraft motion has been developed to numerically integrate the

equations of their orbital motion.

The main forces considered in modeling such motion include the non-sphericity of the geopo-

tential, the attraction of the Moon, Sun and planets, solid tides in the Earth’s body, ocean tides,

resistance of the atmosphere, and solar radiation pressure. Each of these forces can cause on a

GRACE-type spacecraft an acceleration greater than 10−9 m/s2. Accelerations below this value

will be compensated for by a non-gravitational acceleration compensation system and can be dis-

regarded. It is worth noting that, when forming a complete mathematical model of inter-satellite

measurements, it is necessary to take into account the relativistic effects of signal passage from

one spacecraft to another.

As mentioned in the introduction, recovering the EGF is a resource-consuming procedure.

Therefore, the idea of using parallel computations in structures that can be parallelized arises

naturally. Examples of such structures include the non-sphericity of the EGF and ocean tides.

The nonsphericity of the Earth’s gravitational potential is the main factor to be considered

when modeling spacecraft motion with high precision in low-Earth orbit. Mathematically the

non-sphericity of the EGF is determined by the Stokes coefficients. These coefficients form

the base of its decomposition by Legendre polynomials. In this work, we utilize the Belikov

and Taibatorov algorithm for decomposing the EGF [5]. The main advantage of the algorithm

is its novel normalization of Legendre polynomials, which eliminates the need to recalculate

coefficients during the recurrent procedure.

The expansion of the EGF in this algorithm is achieved using the following expressions:

U =
GM

r
+
GM

r

[
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m=0
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where U is the Earths gravitational potential; GM is the Earths gravitational parameter; R is

the mean equatorial radius of the Earth; r is the geocentric distance to a given point; θ is the

polar angle (0 ≤ θ ≤ π); λ is the longitude (0 ≤ λ < 2π); n and m are degree and order of the

EGF expansion; Cnm and Snm are dimensionless harmonic coefficients (the Stokes coefficients);

Nmax is the maximal degree of the expansion.

The coordinate derivatives of the gravitational potential give the acceleration of the satellite

along the corresponding axes as functions of the new variables Tmn :

{
∂U

∂x
,
∂U

∂y
,
∂U

∂z

}
= F

(
Tmn ,

∂Tmn
∂θ

...

)
, (2)
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which simplifies the calculation of the accelerations.

The following are the expressions for the derivatives of geopotential with respect to spherical

coordinates:

∂U

∂r
= −GM

r2

Nmax∑

n=2

n∑

m=0

(n+ 1) Tmn (Cnm cosmλ+ Snm sinmλ) ,

∂U
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=
GM

r
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n∑
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∂Tmn
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(Cnm cosmλ+ Snm sinmλ) , (3)

∂U
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=
GM

r

Nmax∑

n=2
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m Tmn (Cnm cosmλ− Snm sinmλ) .

The Cartesian derivatives of the EGF, which are used in the numerical integration of the

satellites equations of motion, are obtained from (3) by the following relations:

∂U

∂x
= sin θ cosλ

∂U

∂r
+

cos θ cosλ

r
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− sinλ

r sin θ

∂U
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∂U

∂r
+

cos θ sinλ

r

∂U
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+

cosλ

r sin θ

∂U

∂λ
, (4)

∂U

∂z
= cos θ

∂U

∂r
− sin θ

r

∂U

∂θ
.

It is also worth noting that the Belikov and Taibatorov algorithm is a recurrent “column”

type algorithm. This means that the right-hand side contains functions with the same index

n− 1, as opposed to a “row” type algorithm. This property makes the algorithm fast and stable

even for calculations with large values of n and allows it to be efficiently parallelized, since the

summation limit Nmax can reach the values Nmax = 200.

The expression used to calculate the impact of ocean tides also employs double summation.

The corrections to the Stokes coefficients take into account the effect of ocean tides in the same

way as for solid tides. The formula for calculating these corrections is as follows:

[
∆C̄nm − i∆S̄nm

]
(t) =

∑

f

−∑

+

(
C±
f,nm ∓ iS±

f,nm

)
e±iθf (t), (5)

where C±
f,nm and S±

f,nm are the harmonic amplitudes of the geopotential for the tidal component

at frequency f [17]. These amplitudes are model-dependent. We used the FES2014 ocean tide

model [4, 6, 13], which considers degrees and orders up to 100 for all tidal waves, except for

long-period tidal waves, which are calculated up to and including the 50th degree.

Finally, the third part, which can be significantly optimized by introducing parallel compu-

tations, is directly related to the procedure of the EGF recovery performed with the least-squares

method. During the recovery process, all observations made on the spacecraft are divided into

small 30-minute intervals (arcs), and the same observation accuracy is assumed for each arc.

Thus, the following normal equations can be formed for each arc:

Ni∆x = bi, (6)
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with

Ni =




l11 l12 . . . l1n

l21 l22 . . . l2n

. . . . . .
. . . . . .

ln1 ln2 . . . lnn



i

(7)

and

bi = (b1, b2 . . . bn)T , (8)

where the components are given by

lkj =

m∑

i=1

ωia
(i)
k a

(i)
j (k, j = 1, 2, . . . , n),

bk =

m∑

i=1

ωia
(i)
k ∆ξi (k = 1, 2, . . . , n), (9)

a
(i)
k =

∂r̈ci
∂xk

=
(r1 − r2)

D

∂(r̈1 − r̈2)

∂xk

for xk = Cnm and Snm. Here r1,2 = {X1,2, Y1,2, Z1,2} is the radius-vector of each satellite in

the GCRS inertial frame; r̈1,2 = {ax1,2, ay1,2, az1,2} is the acceleration vector of each spacecraft;

D =
√

(X1 −X2)2 + (Y1 − Y2)2 + (Z1 − Z2)2 is the distance between spacecrafts; ωi is the ob-

servation weights, such that
√
ωi = 1/σi, where σi is the standard deviation of the observations

for the i-th arc; ∆ξi = r̈Oi − r̈Ci is the difference between the observed and modeled inter-satellite

accelerations.

The normal equations for each arc (with a total duration of about 30 days for a monthly

model) can be combined into a general system:

N∆x = b, (10)

where

N =

I∑

i=1

1

σ2i
Ni, (11)

b =

I∑

i=1

1

σ2i
bi,

and I is the total number of arcs. This combination is done under the assumption that the

covariance matrices of each group of observations are independent. The value σk is the measure-

ment error of the observation group k. The solution of the system can be easily found in the

form

∆x = N−1b. (12)

Therefore, the calculation and summation can be performed in parallel for individual arcs.

2. Parallelization Algorithm

The mathematical model of the EGF recovery, as described above, includes models for

calculating geopotential non-sphericity and ocean tides. Measurements of the execution times
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of the program modules corresponding to these models have shown that these two algo-

rithms are the most time-consuming. Since the EGF recovery algorithm is programmed in

Fortran language, it was possible to use OpenMP parallelization tools [7] with the help of

the PARALLEL DO/END PARALLEL DO construct, which was utilized to compute the ocean tide

corrections (Fig. 1).

Figure 1. Parallelization of the part of the code responsible for calculating ocean tides

A more complex approach was used in the subroutine responsible for calculating the geopo-

tential. In addition to the PARALLEL DO construct, there is a part of the code that adds up

the values obtained in different execution threads, and this fragment is executed sequentially

by the CRITICAL/END CRITICAL construct. The calculation of each type of derivative (dV_dr,

dV_dteta, dV_dlyam) is done in its own execution thread (Fig. 2).

The partial sums dV_dr, dV_dteta, dV_dlyam are obtained separately in each thread

(CRITICAL section) and recorded in the variables dV_dr2, dV_dteta2, dV_dlyam2.

The parallelization of the EGF recovery process is performed as follows: matrices with the

calculated coefficients can be written to disk for each arc, or they can be summed up during

the calculation and written to disk once at the end of the process. From a runtime point of

view, it is better to sum the matrices at the end of the calculation, but this requires more

memory. The program allows efficient parallelization, since the calculations for each arc are done

independently. The program divides the whole range of arcs into N parts and starts N processes

simultaneously for each part. After all the parts of the time interval have been processed and
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Figure 2. Parallelization of the part of the code responsible for the geopotential calculation

the coefficient files have been written (this is the 1st processing stage), the procedure for reading

the files with the partial coefficient matrices and their summation in RAM is started (the 2nd

processing stage).

Previously calculated files are used to recover the EGF coefficients. This is done by the

least-squares method (LSM) using the routines of the LAPACK library [3]. After each run of

the LSM, a new file containing the EGF coefficients is written. The coefficients are written up

to the degree Nmax specified in the initialization file.

The parallelization of the EGF recovery process, implemented in the Fortran programming

language, is universal for the following three cases:

• computing cluster;

• multi-core computer running Linux OS;

• multi-core computer running Windows OS.

The differences between the systems are localized in a single procedure that starts a child

process by calling “system()”. Different values of environment variables are used for the “com-

puting cluster” and the Windows OS environments, in other cases it is assumed that the program

is started under the Linux OS.

Synchronization of parallel computations is performed by creating/deleting flag files (the

process of the next computation stage waits for the end of the previous stage). The desired

number of parallel processes is always selected at startup using command line arguments. The

number of parallel processes depends on the available RAM, because each process running at
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the 1st stage needs a certain amount of RAM to work, and all these processes are running

simultaneously. For example, if the recovery is performed up to Nmax = 300, then each process

of the 1st stage would require 120 GB of RAM. If the computer only has 512 GB of RAM, then

the stage can only be divided into 4 parallel processes.

3. Results of Parallelization

The performance of parallelization on computing nodes was tested by measuring the time

T (1) required to compute on one node and the time T (N) required to compute on N nodes:

SPD =
T (1)

T (N)
, (13)

Eff =
SPD

N
× 100%.

Here, the SPD parameter indicates how much faster the parallelized computation is compared

to the single node variant. The Eff parameter is a measure of the parallelization efficiency and

shows the impact of the overhead on the program execution time. The tests were performed

on nodes each having an Intel Xeon E5-2680 v4 2.40GHz/3.3GHz processor with 28 cores and

128GB RAM.

Table 1 shows the speed-up of the program complex as a function of N (the number of

computing nodes used). It should be noted that the results are influenced by the speed of reading

and writing intermediate files, which can vary considerably. The initialization procedures cannot

be parallelized and start to take up a larger and larger part of the total computation time with

increasing N . This explains the decrease in efficiency with increasing number of processes. When

N > 16, the time for reading intermediate files increases drastically. The decrease in efficiency

for large N , which has the same origin, can also be observed in Tab. 2.

Table 1. Computation performance of the EGF recovery on

the interval of 1 month, up to the maximal degree of the

expansion Nmax = 96 (1), time in seconds

N T (N) SPD Eff

1 1080 1 100%

2 555 1.946 97.3%

4 305 3.541 88.5%

8 175 6.171 77.1%

16 116 9.310 58.2%

32 96 11.250 35.1%

64 112 9.642 15.0%

128 143 7.552 5.9%

Table 3 summarizes the computation time of the EGF recovery for a 60-day interval. It

shows that the number of processes executing the 1st stage decreases as Nmax increases, which

is due to the RAM limit. The values are based on a specific computer configuration (Intel Xeon

Gold 6148 x 2, 512GB RAM) and are not universal.
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Table 2. Computation performance of the EGF recovery on

the interval of 1 month, up to the maximal degree of the

expansion Nmax = 180 (1), time in seconds

N T (N) SPD Eff

1 60867 1 100%

2 31023 1.962 98.1%

4 15712 3.874 96.8%

8 8253 7.375 92.2%

16 4549 13.380 83.6%

32 3100 19.634 61.3%

64 2757 22.077 34.5%

128 4006 15.194 11.9%

Table 3. The computation time of the EGF recovery with parallelization for a

60-day interval

Nmax Number of threads 1st stage (hrs) 2nd stage (hrs) Total time (hrs)

200 15 0.42 0.33 0.75

220 12 0.75 0.5 1.25

240 9 1.17 0.83 2

260 6 1.67 1.5 3.17

280 5 2.33 2.17 4.5

300 4 3 3 6

320 3 5 7.5 12.5

340 2 9.83 8.33 18.17

360 2 12.5 13.25 25.75

380 1 31 19.67 50.67

400 1 36 30 66

4. Results of the EGF Recovery

The developed program allows to create models of the EGF with different temporal res-

olutions using real measurements of the inter-satellite range of the GRACE and GRACE-FO

missions. These models can cover long time intervals, such as a year or more (static models), as

well as short time intervals, such as monthly models. The latter can track global processes that

change over time, such as mass movements in the atmosphere and oceans, melting of glaciers,

and more.

Various methods can be used to graphically present the results of the EGF recovery. One

such method is visualizing the distribution of the gravity field over the Earth’s surface. In this

case, the EGF is represented either in acceleration units or in geoid heights. Milligals (mGal)

are typically used as the acceleration units, defined as 1 Gal = 1 cm/c2. The EGF expressed in

geoid heights is the difference between a generalized surface of the Earth defined by the actual

gravitational field and the ellipsoid of rotation defined by the C20 coefficient in the expansion

of the gravitational potential (1). Accordingly, the height of the geoid is determined by the
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expression

H(ϕ, λ) = R

[
Nmax∑

n=2

n∑

m=0

Pnm(sinϕ) (Cnm cos(mλ) + Snm sin(mλ))− P20(sinϕ)C20

]
, (14)

where Pnm(sinϕ) are the associated Legendre polynomials of degree n and order m; ϕ, λ are

the angular spherical coordinates of a given point at the Earths surface; R is the mean radius

of the Earth; Cnm and Snm are the dimensionless Stokes coefficients. Geoid heights are usually

expressed in meters.

The following presents the results of the Earth’s gravity field recovery using real data from

the GRACE-FO mission. These results were obtained using the program described in this paper.

Figure 3 shows the static model of the Earth’s gravitational field MSU2024-1 built from

GRACE-FO data for the whole year 2021. The model is decomposed to degrees and orders of

n = m = 120 and presented here in terms of geoid heights.

Figure 3. Results of the EGF recovery up to n = m = 120 using the GRACE-FO data for a

one-year interval (the static model MSU2024-1). Colors correspond to geoid heights in meters

Several measures are used to compare different EGF models, including the degree difference

variance (DDV). This quantity is defined as

∆σ2n = R

n∑

m=0

(
∆C2

nm + ∆S2
nm

)
. (15)

It represents the difference between two EGF models per degree, i.e., for each degree, the orders

are summed. It is given in terms of geoid heights. The quantities ∆Cnm and ∆Snm in (15)

represent the difference between the Stokes coefficients of the reference (REF) and recovered

(REC) models: ∆Cnm = (Cnm)ref − (Cnm)rec and ∆Snm = (Snm)ref − (Snm)rec.

Figure 4 shows a comparison between the EGF obtained from GRACE-FO data in this study

and the reference models of CSR, GFZ, and JPL. As mentioned in the introduction, monthly

temporal models are created in three international centers: the Center for Space Research at the
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University of Texas, Austin (CSR), the Helmholtz Centre Potsdam German Research Centre for

Geosciences (GFZ), and the Jet Propulsion Laboratory (JPL). Figure 4 displays the ‘gravity’

curve for the cumulative gravity signal per degree (in terms of geoid heights) of the reference

EGF, excluding the second zonal harmonic C20.

Figure 4. Comparison between the monthly MSU model and the CSR, GFZ and JPL reference

temporal models expanded to degree n = 96. All four models are built using GRACE-FO data

for January, 2021

The degree difference variance between the recovered and reference models shows a charac-

teristic behavior of the errors of the spherical harmonic coefficients. Specifically, the differences

decrease and reach a minimum value in the low-frequency and early mid-frequency parts of

the spectrum (as seen, for example, in [23]), before increasing again. These differences result in

minimum geoid heights of about 0.1 to 0.2 mm for degrees n = 30 to 50.

Conclusion

Global EGF models, built from data collected by space geodetic missions, play a very im-

portant role in studying global processes across Earth’s various geospheres. This paper presents

the results of the EGF recovery using parallel computing based on real data from the GRACE

Follow On mission. As degree of decomposition Nmax increases, the recovery of EGF parameters

becomes more time consuming and expensive in terms of memory requirements. This is because

the number of parameters increases quadratically with Nmax. For example, recovering the EGF

up to a large degree Nmax ≈ 200 requires hundreds of gigabytes of RAM. Therefore, parallel

computations are crucial for optimizing the computational process for the EGF recovery.

Parallelization is especially effective for code sections that involve summation. In this study,

we utilized OpenMP parallelization tools to compute the geopotential non-sphericity and ocean

tides models. Furthermore, we applied parallelization directly to the EGF recovery procedure,

which can be significantly accelerated by dividing the calculation of the normal equation matrix

into parts and then summing them up.
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Testing showed that parallelizing the program for recovering the EGF over a one-month

interval with Nmax = 96 resulted in an 11-fold reduction in computation time. Similarly, recov-

ering over a one-year interval with Nmax = 180 resulted in a 22-fold improvement. It was found

that the speed of access to the cluster’s common filesystem was critical to recovering the EGF

with large Nmax. The optimal number of nodes for simultaneous processing strongly depends on

the speed of reading files with matrix coefficients. Other factors determining the optimal number

are the maximum degree Nmax and the duration of the time interval to be processed.

With the help of the developed program the static model of the Earth’s gravitational field

MSU2024-1 was built using the GRACE-FO mission data for the whole year 2021. The model is

decomposed to degrees and orders of n = m = 120 and presented in terms of geoid heights. We

also compared the EGF recovery on a monthly interval using the GRACE-FO data obtained in

this work with the CSR, GFZ, and JPL temporal models built at other world centers.

Further research will focus on software modifications to increase the spatial and temporal

resolution of EGF models.
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