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The article discusses a parallel algorithm of solving linear algebraic equations systems for

symmetric sparse matrices, which allows to split a large task into many small subtasks, thereby

both increasing performance and reducing memory consumption. It is based on a method of

simultaneous calculation of intermediate values during matrix factorization with maintaining load

balancing on processors so that when the final result of the left parts of the factorization is

obtained, the right parts of the factorization do not depend on them. This approach allows the

initial stiffness matrix to be represented as a product of a large number of simple matrixes and

solve a system of linear algebraic equations in the form of a sequence of solutions by substitution.

To reduce the filling of sparse factorization matrices, an approximate minimum degree method was

used, which, in addition to being one of the most efficient and fastest ones existing at the moment,

allows the developed algorithm to distribute the load of calculations more evenly. The developed

method is implemented in APM Ltd. software products for systems with shared memory, but it

can also be performed for distributed memory systems.

Keywords: approximate minimum degree, string-wave algorithm, finite element method, sys-

tem of linear equations, matrix factorization.

Introduction

Currently, the finite element method (FEM) is actively used for engineering calculations

in the field of construction and machine-building [1]. The use of FEM involves solving systems

of linear algebraic equations of large dimension. The matrices of such systems, called stiffness

matrixes, have a number of properties that depend on the structure and number of nodes of

the finite element grid, as well as the nature of the problem. These matrices are symmetric and

sparse to a considerable extent.

With the help of the system of linear algebraic equations, such tasks as: static, dynamic

calculation, calculation of natural frequencies, stability, nonlinear calculations, etc. are solved.

In general, system of linear algebraic equations has the following form [2].

Kn,nXn,m = Fn,m, (1)

where K – is the stiffness matrix, X – are displacement vectors, F – are load vectors for a finite

element system, n – is the dimension of the stiffness matrix; m – is the number of loads.

Due to the fact that the stiffness matrix is sparse, it is presented in the CSR (Compressed

Sparse Rows) [3] string sparse form, where the storage structure uses three one-dimensional

arrays: 1) an array of non-zero elements of the stiffness matrix line by line; 2) an array of column

numbers of non-zero elements line by line; 3) an array of the location of the first non-zero element

in each row. This format allows to reduce the amount of source data and decrease the number

of operations performed on them significantly, i.e., when calculating, memory consumption is

reduced and performance increases.

The article is organized as follows. Section 1 is devoted to the problem of factorization of

symmetric sparse matrices and the need to reorder them. In section 2 we describe the main
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methods for reordering sparse matrices and compares the performance of the AMD and Cuthill–

McKee algorithms. Section 3 contains a description of the developed string-wave algorithm for

solving system of linear algebraic equations and computational experiments of its application.

Conclusion summarizes the study and points directions for further work.

1. Matrix Factorization

Today, two different approaches to solving systems of linear algebraic equations are used:

direct solution and iterative methods. Each approach has certain advantages, but direct methods

are of the most common use. The main problem of iterative methods is the frequent poor

conditionality of stiffness matrices of large dimension when its determinant is equal to a small

value or tends to zero. And even the preconditioning process does not absolutely guarantee

the convergence of the solution. In order to simplify the solution of system of linear algebraic

equations with a symmetric stiffness matrix, the following factorization is used [4].

Kn,n = Ln,nDn,nL
T
n,n, (2)

where L – is the lower triangular matrix (stored in sparse format), in which all diagonal elements

are equal to one, D – is the diagonal matrix (stored as a one-dimensional array).

The solution of system of linear algebraic equations LDLTX = F in this case is reduced to

the sequential solution of three simplest issues by the substitution method.





Ln,nYn,m = Fn,m;

Dn,nZn,m = Yn,m;

LT
n,nXn,m = Zn,m.

(3)

The main problem with this factorization is filling a sparse triangular matrix L with a large

number of non-zero elements, which entails significant memory consumption and an increase in

the number of computational operations on the elements of this matrix. Therefore, before the

factorization procedure, the rows and columns of the original stiffness matrix are reordered. To

do this, we find a special permutation matrix P such that

(Pn,nKn,nP
T
n,n)(Pn,nXn,m) = Pn,nFn,m. (4)

2. Permutation of Stiffness Matrix

The permutation matrix P is a matrix in which each row and column contains only one

element equal to one, and the others equal to zero. This matrix is stored as an array of column

numbers with single elements. To find the permutation matrix, the Cuthill–McKee algorithm is

often used due to the simplicity of its implementation, but such an algorithm is not optimal from

the point of reducing the filling of factorization matrices with nonzero elements. Algorithms based

on the application of the minimum degree method are more effective. In practice, this method,

in its original form, is not used due to its considerable complexity. Two of its modifications are

widespread: the Multiple Minimum Degree method (MMD) and the Approximate Minimum

Degree method (AMD) [5]. The latter is used in the software products of the company APM

Ltd. Figure 1 shows the result of calculating the lower triangular matrix L with permutation

using the Cuthill–McKee algorithm and the approximate minimum degree method.
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(a) Cuthill–McKee (b) AMD

(c) Original model

Figure 1. The result of factorization after reordering the matrix

Here the black dots denote the nonzero elements of the resulting factorization matrix L.

Table 1 shows the number of received non-zero elements of this matrix.

Table 1. Results of matrix reordering algorithms

Initial stiffness matrix Cuthill–McKee AMD

279966 4510257 469879

After the permutation procedure, the factorization of the stiffness matrix is performed di-

rectly. In the classical version, LDLT factorization calculated as follows





Dj = Kjj −
∑j−1

k=1 LjkDkL
T
jk;

Lij =
Kij−

∑j−1
k=1 LikDkLT

jk

Dj
;

i = 1, . . . , n; j = 1, . . . , n.

(5)

3. Description of the Algorithm

Expression (5) does not lend itself well to parallelization due to the large number of infor-

mation dependencies. In addition, the calculations are not balanced, which significantly reduces

their efficiency [6]. To eliminate these problems, an algorithm adapted for parallel computing

was developed. The triangular matrix of factorization L can be visually represented as a musical

instrument like a harp (Fig. 2). Each harp string corresponds to a column of the matrix L. The

strings are played alternately. Playing on the j-th string means finding the final values of the

elements of the j-th column L. At the same time, each string propagates an undamped sound

wave towards the strings located to the right of it. That is, each j-th column of the matrix L
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partially changes the values of the elements of all columns with a number higher than j. Thus,

it is possible to calculate the effect of the current column on all columns located to the right in

parallel.

Figure 2. Visual representation of the factorization matrix in the form of a harp

Mathematically, the string-wave direct solver can be described as follows. First, the view

matrices are assigned the corresponding values of the stiffness matrix.





Dii = Kii;

Lij = Kij ;

i = 1, . . . , i− 1; j = 1, . . . , i− 1.

(6)

Further, the elements of these matrices are changed with accordance to the algorithm de-

scribed above. 



Lij = Lij

Djj
;

Lik = Lik − LkjDjjLij ;

Dii = Dii − LijDjjLij ;

j = 1, . . . , n; i = j + 1, . . . , n; k = 2, . . . , i− 1.

(7)

Since the factorization matrix L is sparse, not all right columns are affected by the current

one. In the course of the conducted research, it was revealed that only those columns which

number corresponds to the row numbers of non-zero elements of the current column change.

This circumstance makes it possible to eliminate unnecessary iterations of the parallel algorithm

cycle. When solving system of linear algebraic equations of large dimensions by a direct method,

there is often not enough memory. The string-wave algorithm allows to reduce the size of the

problem, for example, by applying the following factorization.

K = L1BLT
1 , (8)

where L1 are the first columns of the triangular factorization matrix L, B is a submatrix of

smaller dimension obtained by the influence of L1 (Fig. 3). In turn, a similar factorization can

Figure 3. Reducing the dimension of the problem
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be applied to the matrix B. As a result, the string-wave direct solver allows us to obtain the

following expression

K = L1L2 . . . Ln−1LnDLT
nL

T
n−1 . . . L

T
2 L

T
1 . (9)

This factorization of the stiffness matrix allows to split a large problem into many small

subtasks, where the solution of system of linear algebraic equations is also found by substitution





L1Xn = F ;

L2Xn−1 = Xn;

. . . . . .

LnXi−1 = Xi−2;

DXi = Xi−1;

LT
nXi+1 = Xi;

. . . . . .

LT
2 X2 = X3;

LT
1 X1 = X2.

(10)

Speedup and efficiency parameters were used to evaluate the efficiency of parallel comput-

ing [7]. Speedup refers to the execution time ratio of a sequential algorithm to the execution

time of a parallel algorithm on p processors

Sp =
T1

Tp
. (11)

The efficiency of using processors by a parallel algorithm in solving a problem is defined as

the ratio of acceleration to the number of processors

Ep =
Sp

p
. (12)

The results of computational experiments evaluating the effectiveness of the parallel algo-

rithm are presented in Tab. 2. The algorithm is implemented using OpenMP [8]. Calculations

were performed on a six-core Intel Core i7-8700K processor with 32 GB of DDR4 RAM. To con-

duct computational experiments, the APM Structure3D module of APM WinMachine software

was used, in which models of various dimensions were loaded and when measuring the execution

time of the parallel algorithm, the time for the formation of the stiffness matrix was taken into

account.

Table 2. Evaluating the effectiveness of a parallel algorithm

Dimension of the stiffness matrix, n Speedup, Sp Efficiency, Ep

94,692 3.54 0.59

174,267 3.75 0.63

244,620 4.86 0.81

527,919 4.72 0.79

755,181 4.78 0.80

Thereby, the string-wave direct solver effectively works in conjunction with the AMD re-

ordering algorithm, breaking a large task into many small subtasks with the least information

dependencies, which allows its parallel implementation to achieve optimal values of speedup and

efficiency parameters.
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Conclusion

The article presents a new algorithm for solving systems of linear algebraic equations for

symmetric sparse matrices. This algorithm includes the AMD method for reordering sparse

matrices and the string-wave method for solving system of linear algebraic equations of our own

design. It is successfully used in software products of the company APM Ltd. The developed

solver is used in such software modules as static and dynamic calculations, calculation of natural

frequencies and stability when solving a generalized eigenvalue problem, calculation of harmonic

vibrations and many others.

The developed algorithm is parallel and implemented using OpenMP technology. Compu-

tational experiments show that with an increase in the number of processors and the volume of

input data, the speedup increases without a decrease in efficiency. That is the developed parallel

algorithm is scalable.

Further research will focus on improving its performance and implementation using CUDA

technology for NVIDIA graphics accelerators and MPI technology for distributed memory sys-

tems.

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-

mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work

without further permission provided the original work is properly cited.
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