
The Semantic Model Features of the Statically Typed Language

of Functional-dataflow Parallel Programming∗

Alexander I. Legalov1 , Nickolay K. Chuykin1

c© The Authors 2023. This paper is published with open access at SuperFri.org

The features of a statically typed functional-dataflow model of parallel computation and its

mapping to the statically typed language of functional-dataflow parallel programming Smile are

considered. To provide support for architecture-independent parallel programming, we used: a

functional style, an implicit managing of calculations on data readiness, structured data objects

that provide representation of various types of parallelism. A distinctive feature of the approach is

the inclusion in the model of special asynchronous data objects that can generate events on partial

filling. These data objects are stream and swarm. Each of these data objects has its own specifics

to control by parallel calculations. A stream is used to process data of the same type that arrives

sequentially and asynchronously at random intervals. A swarm is used to describe independent data

of the same type or different types, on which it is possible to perform massive parallel operations.

The use of streams and swarms in various situations as well as their mapping into each other

and other program objects are shown. An analysis is made of the possibilities of transforming

the formed language constructs into programming languages used in writing programs for modern

parallel architectures.

Keywords: parallelism, parallel computation model, architecture-independent parallel program-

ming, functional-dataflow parallel programming, transformation of parallel programs.

Introduction

The modern development of parallel programs is focused on the use of methods that take

into account the specific architectures of target computing systems. This is due to the desire to

improve the performance of parallel computing. Research in the field of architecture-independent

parallel programming has not yet formed to the final practical solutions and is carried in the

following areas:

• automatic or semi-automatic parallelization of sequential programs with their subsequent

transformation to the target architecture [1];

• development of programs or algorithms that has unlimited parallelism, determined by the

problem being solved, with the subsequent “compression” of this parallelism in accordance

with the restrictions determined by the target architecture [2].

There is a semantic gap between the written program and the real parallel computing system

(PCS) with using any of these approaches. There is a loss of efficiency and balance, when program

is transformed into machine code, since the characteristics of the “architecture-independent”

serial or parallel algorithm conflict with the organization of calculations in specific PVS. That is

why unlimited parallelism is often manually “compressed” when fine-tuning the program to suit

the features of the computer, that defines an approach opposite to parallelization of sequential

programs. Manual transformation leads to a loss of efficiency in the process of developing parallel

software and do not allow to write a program once and for different architectures. In this regard,

the problem is actual of searching for models of parallel computing and building on their basis

programming languages and tools that provide effective transformation of the parallelism of a

once written program for various computing resources.

∗The paper is recommended for publication by the Program Committee of the International Scientific Conference

“Parallel computational technologies (PCT) 2023”.
1Higher School of Economics, National Research University, Moscow, Russian Federation

DOI: 10.14529/jsfi230203

32 Supercomputing Frontiers and Innovations

https://orcid.org/0000-0002-5487-0699
https://orcid.org/0000-0001-9645-5525


One of the ways that determines a more efficient transformation of architecture-independent

programs to programs for real architectures is the use of static data typing, which provides

efficient compilation into a typeless representation at the level of the command system archi-

tecture [3]. This approach is widely used in both sequential and parallel programming. However

for writing architecture-independent parallel programs only static typing is not enough. It is

also necessary to take into account the features of the constructions that describe parallelism,

because their dynamic characteristics can make it difficult to transform into machine code for

existing parallel computers.

The article is organized as follows. Section 1 is devoted to the analysis of the factors that

determine the architectural independence of parallel programs. Section 2 discusses the features

of a statically typed functional-dataflow parallel computing model. In Section 3 we present the

semantics of interpretation statements for various relationships between data and functions. The

conclusion summarizes the results of the study and indicates directions for further work.

1. Determining Factors of the Architectural Independence

of Parallel Programs

Support for architectural independence from real computing resources in the description of

parallel processes is generally provided both by the peculiarities of the representation of data

storage methods and by the use of appropriate strategies for controlling of calculations [4].

The independence of data storage from memory is supported by a functional paradigm fo-

cused on representing programs as interacting functions. In contrast to the imperative approach,

the data memory is presented in an implicit form. Using recursions instead of iterations allows

you to get rid of the reuse of variables at the level of describing algorithms. These solutions

largely ensure the architectural independence of programs and are implemented in various func-

tional programming languages (FPL) [5]. However, most of these languages have limitations

for the implicit representation of parallelism. That is due to the peculiarities of data structure

organization as lists with sequential access to their elements. The presence in the list of access

only to the head and tail does not allow to organize parallel computing directly in many modern

functional programming languges. Therefore, to present concurrency in programming languages,

explicit control of computations is usually used, on the basis of which threads or processes are

created [6]. This leads to directive impact on concurrency of the programmer and is a factor

that makes it difficult to port programs to other parallel architectures.

Dataflow control strategies allow to describe parallelism implicitly. One of the first such

computational models is the Dennis model [7]. It formed the basis of a number of specialized data

flow processors with different architectures. There are languages that use dataflow control and

are released for various architectures. For example: Sisal [8], Colamo [9], LuNA [10]. A number

of these programming systems combine data flow management with a functional style. However,

for many computational models it is problematic to talk about architectural independence,

which is often associated with the orientation of programming languages and methods for their

transformation to certain architectural solutions. Most of them have not fully developed the

concept of unlimited parallelism. Also, dataflow control is often combined with the use of explicit

management or with the need to manage limited resources.

Along with the functional approach and dataflow control, some problems linked with an

architecture-independent representation of parallelism can be solved using special data struc-

A.I. Legalov, N.K. Chuykin

2023, Vol. 10, No. 2 33



tures that not only contain data, but also support their various parallel behavior. The differences

in the behavior of these data structures determine the approaches to the different organization

of parallelism. Encapsulation of the behavior of these data structures inside of specialized dy-

namically generated and synchronized objects allows you to remove from programs the explicit

control of calculations, which is usually used in imperative programming languages, replacing

it by interaction with functions and other data structures with dataflow control. The use of

parallel recursion allows us to consider the program as a description of activities performed in

unlimited computing resources, formed implicitly as needed. Such an approach at the program-

ming language level allows using it as an architecture-independent language. At the same time,

this imposes special requirements on the transformation of programs from such languages into

architecture-dependent programs.

The use of special data structures was implemented in the Pifagor functional-dataflow par-

allel programming language, which is based on the functional-dataflow parallel computing model

(FDPCM) [11, 12]. These structures are represented as data lists, parallel lists, delayed lists,

asynchronous lists. Each type of list defines its own methods for grouping data and dataflow

control. The disadvantages of the proposed constructions and the language, include the dynamic

typing of atomic types, as well as the dynamic formation of lists in the calculations process. It

does not allow an effective output representation to be formed during program compilation.

The need to use static typing was confirmed during the implementation of a number of

projects on the transformation of functional-dataflow parallel programs into real architectures:

• when converting to FPGA topology [13];

• when transforming into a statically typed imperative programming language [14].

To obtain the required solutions, it was necessary to use additional descriptions into the in-

termediate representation generated by the Pifagor compiler that define the types of processed

data, and to limit the semantics of lists representing parallel structures.

Thus, to solve the problem of efficient transformation of an architecture-independent parallel

program into a program for a real target architecture, it is necessary to jointly use approaches

that do not solve the problem separately:

1. dataflow control;

2. functional programming paradigm;

3. special data structures designed to represent different types of parallelism;

4. static data typing.

Their joint application will be reflected both in the parallel computing model and in the tools

created on its basis. Orientation towards architectural independence leads to the formation

of a domain-specific parallel computing model and a domain-specific architecture-independent

parallel programming language with a specific set of data structures and their semantics.

2. Statically Typed Functionally-dataflow Parallel Computing

Model

The application of the considered approaches makes it possible to form a statically typed

functionally-dataflow parallel computing model (STFDPCM). Borrowing many of the ideas from

the previously proposed FDPCM [11, 12], the STFDPCM is oriented towards the use of a static

type system and fixed dimensions of data objects. This, in turn, leads to a change in the semantics

of program-forming operators. The axioms of the model and its transformation algebra are also

The Semantic Model Features of the Statically Typed Language of Functional-dataflow...

34 Supercomputing Frontiers and Innovations



changed. They get oriented to a more efficient transformation at compile time. At the same

time, the main characteristics of the model that determine the specifics of functional-dataflow

parallel programming remain unchanged:

• calculations take place inside unlimited resources, which allows you to implicitly describe

parallelism without resource conflicts;

• calculations are managed using dataflow control;

• the choice of operations and axioms that define the basic set of functions is focused on a

visual textual representation of the information graph of the program during its subsequent

description using a programming language;

• the computational model defines the general structure of a functional-dataflow parallel

program without reference to operational semantics, which can be additionally defined,

thereby defining the specifics of a particular language of functional-dataflow parallel pro-

gramming.

The model is given by the triple:

M = (G,P,S0),

where G is an acyclic oriented graph that defines the information structure of the program (its

informational graph), P is a set of rules that determine the dynamics of the model’s operation

(the mechanism for generating markup), S0 – initial labeling of informational graph arcs, on

which data has already been generated that determines the execution dynamics.

Informational graph of the program:

G = (V,A),

where V is a set of vertices that define operators, and A is a set of arcs that define ways of

information transfer from data source operators to receiver operators. Each source operator

can be associated with one or more receiver operators. The receiver operator can have multiple

inputs, each of which can be associated with the output of only one arc. The information

transmitted along the arcs can be of any acceptable type, determined by the characteristics of

the data objects used in the STFDPCM.

The vertices of the graph corresponding to the operators provide information transforma-

tions of data and their structuring in various ways. There are the following types of vertices:

• interpretation operators (interpreters);

• copy operators (denotations);

• operators for grouping to data structures (data objects);

• delaying computations operator (delay).

The use in model of static typing instead of dynamic typing imposes its own limitations, but,

on the other hand, it provides additional opportunities for transforming functionally streaming

parallel programs into programs for real architectures.

2.1. Interpreters

Interpreters are designed to perform functional transformations. Each such operator has

two inputs, one of which receives a value perceived as a function of F (functional input), and the

other (data input) receives a value that is an argument of X. The focus of model on compile-time

analysis has led to two varieties of interpreters: single-argument operator and group-argument

operator.

A.I. Legalov, N.K. Chuykin

2023, Vol. 10, No. 2 35



A single-argument interpretation operator, denoted in textual representation, as in FD-

PCM [11], by “:” (postfix form) or “^” (prefix form), is designed to define ordinary functions

that take an argument as a whole. The group-argument interpretation operator is used to set cal-

culations on each element of a group data object, generating at the output a similar data object

with elements whose type corresponds to the type of the result of the function being executed.

Denoted by the double character “::” for postfix or “^^” for prefix forms, respectively.

Using different interpreters allows to unambiguously apply a function with the same name

depending on the context. For example, the subtraction function “-” on the argument (10,-3),

perceived it as a vector consisting of two integers, generates the following results:

• (10,−3) : − ⇒ 13 – subtraction function of second number from first number;

• (10,−3) :: − ⇒ (−10,3) – sign change group function.

The division of the interpretation operator into single-argument and group-argument al-

lows you to introduce a flexible set of additional functions for lists of various structures, while

providing more diverse processing of asynchronously incoming data.

2.2. Copy Operator

Each vertex of the graph G admits the presence of several output arcs, along which the

same value is transmitted to other vertices. This set of arcs can also be thought of as a single

copy operator that transfers data from its single input to multiple outputs. In general, a copy

operator can be combined with the preceding operator from which its output arc emerges. A

chain of copy statements is also possible, which can be thought of as a single statement. In

textual form, it is determined by naming the value that determines the output of the vertex,

and further using the introduced designation at the required points of the informational graph.

Both postfix naming of the propagated object in the form: “value >> name” and its prefix

equivalent, which looks like: “name << value” are used. For example:

y << F^x;

(x,y):+ >> c;

The type of the denotation is the same as the type of the result of the preceding computations

and is determined at compile time.

2.3. Data Objects

Data objects are designed to represent various options for grouping data into structures

that have certain properties and behavior. It is them that define various options for representing

parallelism and ways to determine the dataflow control during calculations. Data objects include:

• a constant operator (constant) that ensures the use of immutable values;

• synchronous grouping operator or join operator, designed to collect all incoming data

together before their subsequent issuance as a result;

• operator of asynchronous grouping or swarm, performing ordering by input number, but

not synchronizing data coming to different inputs;

• an asynchronous sequence operator or stream, that arranges data according to the time

it arrived and produces as result the first arrived value.

Each kind of objects has its own behavior in the course of the formation of incoming data,

exposing the result obtained to its output, transmitted along the arcs to the vertexes that

receive information.

The Semantic Model Features of the Statically Typed Language of Functional-dataflow...

36 Supercomputing Frontiers and Innovations



2.3.1. Constant

Constant operator or constant defines a node that stores a constant value and is always

ready to execute. This operator has no input. The output is initially set to markup that defines

the prescribed value. The set of constant operators of the informational graph form the internal

initial markup of the computation model. In textual representation, a constant operator is given

by a value of the corresponding type. The type of the constant is assumed to be known at

compile time. Constants include data of various basic types, for example: integers, booleans,

signals, atomic functions, as well as functions that are formed when writing a program. Functions

are referred to as constants because their descriptions are fixed and are constructions that are

immediately ready for execution. Constant examples:

• 10 – integer constant;

• true – boolean constant;

• ! – signal constant (denoted by symbol “!”);

• + – atomic function plus;

• min – the function name which developed for finding the minimum of two elements.

2.3.2. Join

Join has multiple inputs and one output. It provides structuring, ordering and synchroniza-

tion of data coming from various sources along input arcs. The types of incoming elements must

be known at compile time. The order of elements is determined by the numbers of inputs, each

of which corresponds to a natural number in the range from 0 to N− 1, where N is the length

of the generated data set. A connector signals ready when it receives all input. In text form, the

operator is specified by delimiting the list elements with parentheses “(” and “)”. For example:

(x0, x1, x2, x3)

The numbering of elements starts from zero and is set implicitly in accordance with their order

from left to right. The element type of the join must be known at compile time and determines

one of the possible interpretations: a vector or a tuple.

A join as vector is intended for grouping elements of the same type. This allows you to

access its elements by index, as well as perform bulk operations on all elements.

The join as tuple also has multiple inputs and one output. It provides structuring, ordering

and synchronization of heterogeneous data coming along arcs from various sources. The types of

incoming data must be known at compile time. Elements are accessed by an index specified by

a constant, which allows the type of the output value to be determined at compile time. In text

form, similarly to a vector, it is specified by limiting the elements of the list with parentheses

“(” and “)”. Tuples can be used as arguments to functions, each of which, in its description,

uniquely maps the element type to its location in the tuple.

2.3.3. Stream

The concept of stream extends the idea of the previously proposed asynchronous list [12].

The basic idea associated with asynchronous data arrival is preserved. However, all elements are

assumed to be of the same type, which in turn cannot be a stream or a swarm. This is quite

consistent with the concepts of universal statically typed languages. A stream can be considered

as an object (Fig. 1), the main characteristics of which are:

A.I. Legalov, N.K. Chuykin

2023, Vol. 10, No. 2 37



Figure 1. General scheme of a stream

• when at least one ready data element appears in the stream, it generates a signal informing

about its readiness;

• the ready element can be read from the stream for processing;

• if, during processing of an element selected from the stream, new data items enter it, they

can also be asynchronously selected from the stream in order of arrival and processed in

parallel;

• parallel processed elements of the stream may arrive after processing in another stream,

the type of which is determined by the type of the result of the function (in this case, the

order of their arrival may differ from the initial one, depending on the processing time);

• we can check the stream for end of data in it and terminate the work if it is true.

In text form, grouping into a stream is specified by delimiting its elements with the symbols

“<[” on the left and the closing square bracket “]” on the right. For example:

<[x0, x1, x2, x3]

The same type of stream elements is explained by the fact that if they appear randomly in time,

it is impossible to determine the type of the current value at compile time.

2.3.4. Swarm

Swarm, unlike join, groups independent data. The arrival of each element in the swarm is

accompanied by the issuance of a ready signal, informing the nodes of the informational graph

about this event, receiving information from it. This allows you to quickly and asynchronously

respond to changes in the state of the swarm.

In text form, grouping into a swarm is specified by limiting its elements with square brackets

“[” and “]”. For example:

[x0, x1, x2, x3]

Each element of the swarm is formed independently and is ready for execution when it appears.

Like the connector, swarm elements can be of the same type, forming a vector, or of different

types, forming a tuple.

A swarm, like a stream, allows you to process incoming data one element at a time (Fig. 2).

This is possible due to the fact that the arrival of elements in the swarm can occur non-

The Semantic Model Features of the Statically Typed Language of Functional-dataflow...

38 Supercomputing Frontiers and Innovations



Figure 2. General scheme of a swarm and its reference

simultaneously and asynchronously. Therefore, the indexes of the elements can line up in the

internal stream in the order in which they were received. Sequential selection of indices from

this stream allows accessing swarm elements at the moment they arrive.

2.4. Delay

Delay operator or delay is specified by a vertex containing a valid informational subgraph

that includes several input arcs and one output arc. The input arcs determine the arrival of

arguments, and the output specifies the result issued from the subgraph. A specific feature of this

grouping is that vertices bound by the delay operator cannot be executed, even if all arguments

are present at their inputs. Their activation is possible only when the delay is removed (opening

the contour), when the limited subgraph becomes part of the entire computed graph.

Initially, the delayed subgraph creates on its only output a constant markup, which is the

image (“icon”) of this subgraph. This markup propagates along the arcs of the graph from one

operator to another, multiplying, entering various data objects and getting out of them until it

arrives at one of the inputs of the interpretation operator. As soon as the delay operator becomes

one of the arguments of the interpretation operator, instead of the “icon” the delayed subgraph

is substituted with the input connections preserved. The contour of the delay operator encircling

the subgraph is “removed” in this case, and the activated operators are executed. As a result,

the resulting labeling is again formed on the output arc of the expanded subgraph, which is

one of the arguments of the interpretation operator that expanded the delayed subgraph. This

procedure is called delayed subgraph expansion.

In text form, the delay operator is specified by enclosing other operators with curly braces

“{” and “}”. For example:

A.I. Legalov, N.K. Chuykin

2023, Vol. 10, No. 2 39



{(a,b):+}

If it is necessary to form several independent arguments within the delay, then they are grouped

into a swarm, which is initiated upon revelation:

{[x0, x1, x2, x3]}

The presence of a delay allows you to postpone the start of some calculations or not start them

at all. It is necessary when organizing selective data processing. In addition, this operator, if

necessary, can be used as brackets that change the priority of operator execution. To do this, it

can be directly provided as one of the arguments to the interpretation operator.

3. Relationship between Grouping and Interpretation

Operators

Calculations are formed when data arrives at interpretation operators. In this case, a cal-

culation result is formed, the type of which depends both on the types of the argument and

function, and on the type of the interpretation operation. Various combinations of these three

components form the operational semantics of the computational model, and also determine

options for equivalent transformations in accordance with the algebra of the model.

3.1. Using a Single-argument Interpretation Operator

A single-argument interpretation operator in most cases defines the traditional functional

transformations of its arguments into a result. The following combinations of relationships be-

tween arguments are allowed:

• scalar – scalar;

• join – scalar;

• swarm – scalar;

• stream – scalar;

• scalar – join;

• join – join;

• swarm – join;

• stream – join;

• scalar – swarm;

• join – swarm;

• swarm – swarm;

• stream – swarm.

In these relations the first argument acts as the data to be processed, and the second defines

the function that processes this data. Note that stream cannot act as a function. An argument

is a scalar if it has a predefined base (atomic) type or is a constant of one of the base types.

3.1.1. Relation “scalar – scalar”

This relation is perceived by a single-argument interpretation operator as a traditional

function of one argument. That is, the data being processed are constants or computed values of

the underlying type. The generated result is determined by the semantics of the data interpreted

The Semantic Model Features of the Statically Typed Language of Functional-dataflow...

40 Supercomputing Frontiers and Innovations



as a function. The function can be either predefined or developed by the programmer. For

example:

x : − ≡ −x

x : sin ≡ sin(x)

3.1.2. Relation “join – scalar”

The relation is almost the same as executing a function from several arguments, the values

of which are defined as elements of the join:

(x,y) : + ≡ +(x,y) ≡ x + y

(x,y) : min ≡min(x,y)

3.1.3. Relation “swarm – scalar”

The relationship allows to form an asynchronous flow of arguments to the function that

displays them. It is assumed that when any element appears in the swarm, the interpretation

operator will launch a function that processes the swarm, which will perform a partial calculation.

That is, in this case, there is no preliminary synchronization of arguments before calling the

function. The situation is similar in many ways to using of the inline-function. It is assumed

that such calculations are possible when input parameter of function is described as a swarm.

Example:

[x,y] : min

3.1.4. Relation “stream – scalar”

The relation determines the transfer to the input of a function the stream, the readiness of

which is determined by the appearance of any first element. The analysis of data readiness for

subsequent elements of the incoming stream is formed within the function that processes this

stream.

It should also be noted that, in the general case, the number of incoming elements is not

defined for streams. Therefore, along with the value generated in the stream, a ready flag is also

generated, which is a boolean value. As a result, a join of the following format is formed at the

output of the stream:

(value,flag)

Therefore, before using the value at the beginning, it is necessary to check the truth of the flag,

indicating that the required values from the stream are still coming. The last value that signals

the end of data is the false flag. However, the data itself is no longer defined.

3.1.5. Relation “data – join”

The data can be: scalar, join, swarm, stream. The join as a functional argument specifies

the simultaneous execution of all the functions over the processed argument. In this case, par-

allelism is implemented with many independent command streams over one data set. For any

input data X and a list of functions F = (F0,F1, ...,Fn−1) during interpretation, an equivalent

transformation into a set of parallel executable statements is performed:

A.I. Legalov, N.K. Chuykin

2023, Vol. 10, No. 2 41



X : (F0,F1, ...,Fn−1) ≡ (X : F0,X : F1, ...,X : Fn−1)

The output join is formed as result. For example, the simultaneous execution of addition, sub-

traction, multiplication, and division operations on a single data argument can be described as

follows:

(x,y):(+, -, *, /) ⇒ ((x,y):+, (x,y):-, (x,y):*, (x,y):/)

3.1.6. Relation “data – swarm”

The options for using a swarm as a set of functions are similar in many ways to using a

join in that role. The difference is that its elements can process the input argument without

common synchronization. Therefore, the appearance of results of the interpretation operator

that implements this relation can be arbitrary with the formation of a new swarm as result.

The input data X and the list of functions F = [F0,F1, ...,Fn−1] are transformed into a set of

parallel operators:

X : [F0,F1, ...,Fn−1] ≡ [X : F0,X : F1, ...,X : Fn−1]

As result a swarm is formed. Performing addition, subtraction, multiplication, and division

above the same data argument at parallel would look like this:

(x,y):[+, -, *, /] ⇒ [(x,y):+, (x,y):-, (x,y):*, (x,y):/]

3.2. Using the Group-argument Interpretation Operator

The group-argument interpretation operator is focused on the processing of group data ob-

jects by one function. Its main task is the simultaneous processing of elements located in data

objects. In this case, the final calculations are formed through single-argument interpretation op-

erators, reduction to which is carried out by applying equivalent transformations. The following

combinations of relations are allowed for the interpretation group operator:

• join – scalar;

• swarm – scalar;

• stream – scalar.

More complex combinations of various data objects lead to the formation of multidimensional

structures and are not yet considered at the level of the computation model.

3.2.1. Relation “join – scalar”

In this relation, the join is considered as a vector of elements of the same type, each of

which is applied to the same function, acting as a scalar. Let X ≡ (x0,x1, ...,xn−1) be a join

data object that defines the vector of processed data, f be a function. Then, taking into account

the subsequent equivalent transformations, the group interpretation operator for this relation

can be represented as follows:

X :: f ≡ (x0,x1, ...,xn−1) :: f ≡ (x0 : f ,x1 : f , ...,xn−1 : f)

3.2.2. Relation “swarm – scalar”

This relationship is largely similar to the previous one. The difference lies in the fact that the

execution of functions on individual elements begins immediately upon receipt of these elements.

A swarm is also asynchronously formed as a result of the execution of functions.

The Semantic Model Features of the Statically Typed Language of Functional-dataflow...

42 Supercomputing Frontiers and Innovations



The swarm is defined as follows: X ≡ [x0,x1, ...,xn−1]. A group operation on a swarm using

the f function is defined by the following equivalent transformation:

X :: f ≡ [x0,x1, ...,xn−1] :: f ≡ [x0 : f ,x1 : f , ...,xn−1 : f ]

3.2.3. Relation “stream – scalar”

Group interpretation of the relationship is carried out by analogy with the previous ones.

That is, the function is executed on each element of the stream as long as the stream receives

elements from various sources. As a result, a new stream is formed at the output. It should be

noted that the order of the results in the new stream may not match the order of the original

data. This is because even when the same function is executed, the calculation time may differ for

various reasons. The specificity of the stream is also that the number of processed elements may

be unknown in advance, and the completion of the arrival of elements is determined automatically

by reading the end-of-stream marker.

X :: f ≡< [x0,x1, ...,xn−1] :: f ≡ < [x0 : f ,x1 : f , ...,xn−1 : f ]

Conclusion

The key idea of the approach is the initial attempt to abandon traditional architectural

solutions and consider parallel computing as an architecture-independent domain specific area.

This idea largely coincides with the views of J. Backus on whether programming can be liberated

from von Neuman style [15]. The main difference from the previously presented works [2, 11–14]

on the functional-dataflow model of parallel computing is the explicit separation of data objects

from its program-forming operators and the adaptation of their semantics to a more complete

analysis at the compilation stage. This should ensure efficient transformation into programs for

various architectures of real parallel computing systems.

The presented base features of the statically typed model of functional-dataflow parallel

computing formed the basis of the developed statically typed language of functionally-dataflow

parallel programming Smile [16]. The proposed constructions make it possible to describe not

only static data structures, but also to form various options for the dynamics of their behavior,

which provides various additional possibilities for representing parallelism in programs. Options

for representing dynamically changing parallelism appear, what depends on the relationship

between the intensity of data arrival and the time of their processing. At the same time, along

with data parallelism, their dynamic pipelining is possible through the use of streams [17].

Accounting for the use of static typing at the level of the computational model makes it possible

to build a more efficient basis for subsequent transformations of architecture-independent parallel

programs.

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-

mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work

without further permission provided the original work is properly cited.

References

1. Steinberg, B.Ya., Steinberg, O.B.: Program transformations as the base for optimizing par-

allelizing compilers. Program Systems: Theory and Applications 12:1(48), 21–113 (2021).

A.I. Legalov, N.K. Chuykin

2023, Vol. 10, No. 2 43



https://doi.org/10.25209/2079-3316-2021-12-1-21-113 (in Russian)

2. Legalov, A.I., Vasilyev, V.S., Matkovskii, I.V., Ushakova, M.S.: A Toolkit for the Develop-

ment of Data-Driven Functional Parallel Programmes. In: Sokolinsky, L., Zymbler, M. (eds)

Parallel Computational Technologies. PCT 2018. Communications in Computer and Infor-

mation Science, vol. 910, pp. 16–30. Springer, Cham (2018). https://doi.org/10.1007/

978-3-319-99673-8_2

3. Pierce, B.C.: Types and Programming Languages. The MIT Press (2002)

4. Legalov, A.I.: On the control of computations in parallel systems and programming languages.

Scientific Bulletin of NSTU 3(18), 63–72 (2004) (in Russian)

5. Okasaki, C.: Purely Functional Data Structures. Cambridge University Press (1998)

6. Charpentier, M.: Functional and Concurrent Programming: Core Concepts and Features.

Addison-Wesley (2022). 528 p.

7. Dennis, J.B., Fosseen, J.B., Linderman, J.P.: Data flow schemas. In: Ershov, A., Nepom-

niaschy, V. (eds) International Symposium on Theoretical Programming. Lecture Notes in

Computer Science, vol. 5. Springer (1974). https://doi.org/10.1007/3-540-06720-5_15

8. Kasyanov, V.: Sisal 3.2: functional language for scientific parallel programming. Enterp. Inf.

Syst. 7(2), 227–236 (2013). https://doi.org/10.1080/17517575.2012.744854

9. Levin, I., Dordopulo, A., Gudkov, V., et al.: Software Development Tools for FPGA-Based

Reconfigurable Systems Programming. In: Voevodin, Vl., Sobolev, S. (eds) Supercomputing.

RuSCDays 2019. Communications in Computer and Information Science, vol. 1129. Springer,

Cham (2019). https://doi.org/10.1007/978-3-030-36592-9_51

10. Malyshkin, V., Perepelkin, V.: The PIC Implementation in LuNA System of Fragmented

Programming. The Journal of Supercomputing 69(1), 89–97 (2014). https://doi.org/10.

1007/s11227-014-1216-8

11. Legalov, A.I.: Functional language for creating architecturally independent parallel pro-

grams. Vychislit. Tekhnol. 10(1), 71–89 (2005) (in Russian)

12. Legalov, A.I., Redkin, A.V., Matkovsky, I.V.: Functional-dataflow parallel programming

with asynchronously incoming data. In: Parallel computing technologies (PaVT’2009): Pro-

ceedings of the International Scientific Conference, Nizhny Novgorod, March 30 – April 3,

2009, pp. 573–578. Chelyabinsk, Ed. SUSU (2009) (in Russian)

13. Romanova, D.S., Nepomnyashchiy, O.V., Ryzhenko, I.N., et al.: Parallelism reduction

method in the high-level VLSI synthesis implementation. Trudy ISP RAN/Proc. ISP RAS

34(1), 59–72 (2022). https://doi.org/10.15514/ISPRAS-2022-34(1)-5

14. Vasilev, V.S., Legalov, A.I., Zykov, S.V.: Transformation of Functional Dataflow Parallel

Programs into Imperative Programs / Automatic Control and Computer Sciences 56(7), 815–

827 (2021). https://doi.org/10.3103/S0146411622070239

The Semantic Model Features of the Statically Typed Language of Functional-dataflow...

44 Supercomputing Frontiers and Innovations

https://doi.org/10.25209/2079-3316-2021-12-1-21-113
https://doi.org/10.1007/978-3-319-99673-8_2
https://doi.org/10.1007/978-3-319-99673-8_2
https://doi.org/10.1007/3-540-06720-5_15
https://doi.org/10.1080/17517575.2012.744854
https://doi.org/10.1007/978-3-030-36592-9_51
https://doi.org/10.1007/s11227-014-1216-8
https://doi.org/10.1007/s11227-014-1216-8
https://doi.org/10.15514/ISPRAS-2022-34(1)-5
https://doi.org/10.3103/S0146411622070239


15. Backus, J.: Can programming be liberated from von Neuman style? A functional stile and

its algebra of programs. CACM 21(8), 613–641 (1978). https://doi.org/10.1145/359576.

359579

16. Legalov, A.I., Legalov, I.A., Matkovskii, I.V.: Specifics of Semantics of a Statically Typed

Language of Functional and Dataflow Parallel Programming - Scientific Services & Inter-

net 2019. In: CEUR Workshop Proceedings, vol. 2543, pp. 274–284. https://doi.org/10.

20948/abrau-2019-08

17. Legalov, A.I., Matkovskii. I.V., Ushakova, M.S., Romanova, D.S.: Dynamically Changing

Parallelism with Asynchronous Sequential Data Flows. Automatic Control and Computer

Sciences 55(7), 636–646 (2021). https://doi.org/10.3103/S0146411621070105

A.I. Legalov, N.K. Chuykin

2023, Vol. 10, No. 2 45

https://doi.org/10.1145/359576.359579
https://doi.org/10.1145/359576.359579
https://doi.org/10.20948/abrau-2019-08
https://doi.org/10.20948/abrau-2019-08
https://doi.org/10.3103/S0146411621070105

	A.I. Legalov, N.K. Chuykin

