
A Numerical Code for a Wide Range of Compressible Flows

on Hybrid Computational Architectures

Anton A. Shershnev1, Alexey N. Kudryavtsev1, Alexander V. Kashkovsky1,

Georgy V. Shoev1, Semyon P. Borisov1, Timofey Yu. Shkredov1,

Danila P. Polevshchikov1, Alexey A. Korolev1, Dmitry V. Khotyanovsky1,

Yulia V. Kratova1

c© The Authors 2022. This paper is published with open access at SuperFri.org

The major points in the development of the parallel multiplatform multipurpose numeri-

cal code solving the full unsteady Navier–Stokes equations are presented. The developed code

is primarily designed for running on multi-GPU computational devices but can also be used on

traditional multicore CPUs and even on manycore processors such as Intel Xeon Phi. Physical

models include calorically perfect inert gas, single- and multi-temperature approaches for chem-

ically reactive flows and an Euler–Euler model for gas-particle suspensions. Main details of the

implementation are described. Shock capturing TVD and WENO schemes in general curvilinear

coordinates are used for spatial approximation. Explicit, semi-implicit and fully implicit schemes

are employed for advancing solution in time. The code is written in C++ with CUDA API and

opensource libraries, such as MPI, zlib and VTK. A few examples of numerical simulations are

briefly described to provide general idea of the numerical code capabilities. They include a super-

sonic flow past a wedge, a jet exhausting from a square nozzle, a heavy gas bubble descending in

a lighter medium and a heterogeneous detonation in gas-particle suspension.

Keywords: Navier–Stokes equations, numerical simulation, compressible flows, DNS, thermo-

chemical non-equilibrium, GPGPU, CUDA.

Introduction

Currently numerical simulation has become one of the main tools for conducting scientific

research. Fluid dynamics of compressible flows is one of the areas where numerical tools are

particularly ubiquitous. However, the compressibility of the flow is associated with the presence

of shock waves and other hydrodynamic discontinuities and, therefore, requires rather sophisti-

cated and computationally expensive shock-capturing numerical schemes. Additionally, modern

fundamental problems of interest are associated with a wide range of considered scales, includ-

ing transitional to turbulent and fully turbulent flows, chemically reactive flows, and multiphase

flows. And despite the fact of extensive use of parallel computations, such simulations can take

hundreds of hours of computational time even on high-performance clusters.

There is a large number of high-performance codes developed for numerical simulations

of compressible flows. In particular, in Russia well-known research codes are NERAT [1],

Noisette [2], EWT-TsAGI [3], NTS [4], Flowmodellium [5], VP2/3 [6], Jet3D [7], SINF [8]

as well as more industry-oriented codes LOGOS [9] and FlowVision [10].

These and many other codes implement different physical models for laminar, turbulent,

inert and chemically reactive flows, use different computational meshes and numerical schemes

and parallelization techniques. The latter include traditional MPI-based approach, more recent

OpenMP application programming interface and even rather exotic OpenCL framework. For any

of the numerical tools mentioned above, physical models, numerical techniques, parallelization
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methods and programming solutions used in a code reflect the research fields of interest, personal

experience and specific needs of its developers and users.

One of the reasonable ways to increase efficiency and significantly reduce computational

wall-clock time is to employ modern general-purpose graphics processing units (GPGPU) with

high computational efficiency and data throughput (see, e.g., [11–13]). The present paper sum-

marizes the main details of the HyCFS-R numerical code [14–17] developed at the Laboratory of

Computational Aerodynamics of Khristianovich Institute of Theoretical and Applied Mechanics

and designed to run on hybrid CPU/GPU computational systems. The code solves the full un-

steady Navier–Stokes equations using modern shock capturing high-order schemes. In this paper

we describe governing equations and discuss some details of the implementation including the

problems specific for hybrid and heterogeneous computations.

The rest of the paper is organized as follows: Section 1 describes governing equations and

numerical techniques of their solution, in Section 2 the details of the program implementation

are given, including general architecture, data structures etc., and in the last section examples

of performed numerical simulations are presented.

1. Governing Equations

The code solves the full 3D unsteady Navier–Stokes equations for inert and chemically

reactive multispecies mixtures on a structured mesh in general curvilinear coordinates:
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where Q is the pseudo-vector of conservative variables, F, G, H are convective fluxes, Fv, Gv,

Hv are viscous fluxes, and S denotes source terms.

Options for physical models in numerical simulation include:

• A mixture of N calorically perfect gases for laminar and turbulent regimes. Specific heats

for each species are constant, i.e., do not depend on the temperature and are calculated

in accordance with the number of the molecular degrees of freedom.

• A thermally perfect gas mixture with the single-temperature model for finite-rate chemical

kinetics. In this case gas mixture thermodynamic properties are calculated using widely

employed approach based on the polynomial approximations with coefficients taken from

one of the available sources: the database by Alexander Burcat [18], the NASA database

[19] or approximations used by Gupta [20].

• A multi-temperature model with equations for the vibrational energies of molecular species

and finite-rate chemical kinetics. In this case, we assume that thermodynamic properties of

the translational-rotational mode of the species are given by the relations for the calorically

perfect gas, so the specific heats are constant and depend only on the number of degrees

of freedom. The rate of translational-vibrational exchange is calculated using either the

classical Landau–Teller equation [21], or new model [22], which was obtained using the

rigorous methods of the kinetic theory of gases.

• An Euler–Euler model for the chemically reactive gas-particle suspension. The model is

based on the concept of interpenetrating continua. The governing equations that describe
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the detonation flow in polydisperse gas suspensions of aluminum particles are based on

the works of Fedorov and Khmel [23–25].

The pressure of the gas mixture in all cases is calculated using Dalton’s law from the partial

pressures of components. The transport coefficients of the gas mixture are calculated from those

of the individual species using the Wilke mixing rule. Dynamic viscosities of individual species

can be calculated using the power law, the Sutherland law or via Ω-integral approximations of the

kinetic theory. The thermal conductivities are given by the Eucken formula with Hirschfelder

correction [26]. Finally, the option of adding an external field of gravitational force is also

available in the code.

2. Numerical Techniques

All spatial approximations in the code are based on the shock capturing TVD (total variation

diminishing) and WENO (weighted essentially non-oscillatory) schemes formulated in general

curvilinear coordinates. The high-order TVD schemes are implemented using MUSCL (Mono-

tonic Upstream-centered Scheme for Conservation Laws) approach initiated in [28, 29]. More

specifically we use the 2nd/3rd order MUSCL formula proposed in [30] along with the min-

mod slope limiter to reconstruct flow variables on cell boundaries from their cell-centered

values. Numerical fluxes are calculated using one of the approximate Riemann solvers im-

plemented in the code. The list of available Riemann solvers include HLLE [31] (Harten–

Lax–van Leer–Einfeldt), HLLC (Harten–Lax–van Leer–Contact) [32] with an estimate for the

contact-wave speed from [33], Roe [34], and a few solvers from the AUSM (Advection Up-

stream Splitting Method) family: AUSM-Van Leer [35, 36], AUSM-up [39], AUSM+(P) [37],

and AUSMPW+ [38]. Alternatively, for the simulation of a calorically perfect gas the WENO

scheme of the 5th order by Jiang and Shu [27] with either local or global Lax–Friedrichs flux

splitting can be used. Convective terms for the disperse phase continuum are calculated using

the MUSCL reconstruction combined with the dusty gas Riemann solver from [40]. Diffusive

terms are calculated using the central differences of the 2nd order.

The solution is advanced in time using explicit, semi-implicit or implicit schemes. Explicit

time integration is based on the so-called Runge–Kutta TVD schemes of the 1st through the 3rd

order [41], or the low-storage Runge–Kutta–Gill scheme of the 4th order [42]. In the additive

semi-implicit Runge–Kutta scheme of the 2nd order (ASIRK2C) [43] stiff chemical source terms

are evaluated implicitly while for the convective terms more efficient and simpler explicit methods

are used. The implicit DPLUR (Data Parallel Lower-Upper Relaxation) scheme [44] available

for non-reacting flows allows one to integrate equations in fully implicit manner in parallel

computations.

2.1. Boundary Conditions

The imposition of boundary conditions in the HyCFS-R code is implemented using the so-

called ghost cells technique. The computational domain is surrounded by three rows of virtual

cells, in which flowfield variables are calculated according to the type of boundary condition.

Generally speaking, the number of the ghost-cell rows depends on the size of the stencil, but

HyCFS-R always uses three layers, corresponding to the 7-point stencil in high-order schemes.

The following boundary types are implemented in HyCFS-R: supersonic inflow and outflow,

pressure-constant inlet and outlet, periodic boundaries, and solid boundaries, such as inviscid,
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no-slip isothermal and no-slip adiabatic walls. Additionally, special boundary conditions for

superposing disturbances onto the flow are implemented: in the form of eigenfunctions of the

linear stability problem, white gaussian noise and periodic thermal fluctuations. The last three

conditions are typically used for flow forcing when simulating transition to turbulence in shear

flows.

It should be mentioned, that the code employs specific scheme of boundary conditions

imposition. In most papers this stage of numerical algorithm is described very briefly and it

is usually implied that values in ghost cells are recalculated at the beginning of the new time

step based on the values in the internal cells. In HyCFS-R boundary conditions for inviscid

and viscous numerical fluxes are imposed separately, to ensure conservation of mass at the solid

boundaries.

3. Details of the Program Implementation

The program is written in C++ and uses only open-source tools, libraries and technologies

and in-house utilities, such as GNU/Linux, GCC, OpenMP, MPI, zlib, VTK, to avoid vendor-

lock situations often encountered when using commercial solutions. The primary computational

platform of the code are hybrid CPU/GPU clusters and all numerical procedures in the code are

implemented with SIMD (single instruction multiple data) execution in mind. It should be noted

that computations of numerical fluxes and source terms in the Navier–Stokes equations mostly

consist of uniform-length loops with fixed-size stencils and small number of conditional operators.

Such computations match the aforementioned SIMD architecture quite well and straightforward

implementation of numerical routines provides sufficient efficiency.

For the maximum flexibility of the code it can be compiled to run on conventional multicore

CPUs using a special compile-time wrapper for the C preprocessor, which converts GPU-specific

entities to OpenMP syntax. In this approach each OpenMP thread is interpreted as a GPU

thread. Just as GPU kernel function is executed by each CUDA thread, the converted CPU

version of the kernel is executed on each OpenMP thread. The only difference is that OpenMP

threads are not forced on a hardware level to be executed synchronously, i.e., in a SIMD manner.

However, it is not important in our computations. This technique allows one to significantly

increase the number of supported computational architectures and also simplifies debugging of

the code when using conventional C++ development tools, such as GDB debugger, Valgrind

framework for code dynamic analysis and so on.

3.1. Input and Output Files

Internal formats are used for all input data: mesh, flowfields, chemical mechanisms descrip-

tion and general configuration options. Mesh and flowfields are stored in simple ASCII or binary

files, compressed with zlib library to reduce storage space. General configuration is processed

using a special configuration reader, also developed at the Laboratory of Computational Aero-

dynamics at ITAM SB RAS. The reader is based on the “key-value” scheme. The parameters

are divided into groups corresponding to its type and/or parent data structure. The reader also

supports #include directives, allowing to directly insert contents of one file into another, like

in a typical C/C++ code, for additional flexibility of the configuration. The reader stores both

the list of all keys supported by the solver and the list of the keys actually read from the input

files and checks if the parameter values fall out of the required range. Preprocessing tools for
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importing files from third-party programs are also included in the code, e.g., tools for reading the

description of chemical reaction mechanisms in CHEMKIN format, for the mesh in FlowLogic

format and some others.

Postprocessing utilities implemented in the code allow one to export flowfields in ASCII and

binary Tecplot format, and legacy ASCII VTK formats, calculate integrated and mean values

of any variable, extract distributions from arbitrary line segment, and calculate integrated and

distributed aerodynamic characteristics on the solid walls.

Most aerodynamic characteristics are based on the following normalized and integrated

quantities at the solid wall surface: the pressure pw, the frictional stress τw = µw(∂us/∂n) and

the heat flux qw = κw(∂T/∂n). Here n and s are the directions normal and tangent to the wall,

respectively. Normal and tangent components of velocity are calculated from Cartesian velocity

components stored in the flowfields. Then derivatives along the normal and tangent directions

are transformed to the derivatives in general curvilinear coordinates. The quantities, such as

velocity u, dynamic viscosity µ, heat conductivity κ and Jacobian of transformation J between

Cartesian and curvilinear coordinates are extrapolated to the wall with the 1st or 2nd order of

accuracy. After calculation of the distributed characteristics the integrated characteristics are

obtained by summation of local values multiplied by the surface element areas.

3.2. Data Structures

3.2.1. cContainer class

Because the HyCFS-R code contains various physical models with different number of equa-

tions, which can be switched at runtime, the data structures used for flowfields storage should

also have an adjustable list of variables and means to access these variables in a convenient

way. Conventional containers from C++ STL (Standard Template Library) cannot be used on

GPU devices, so one has to implement custom container for the flowfields. The HyCFS-R uses

a class cContainer with a simple array of floating point values at its core, extended with a few

extra features, such as a “CPU/GPU” flag (indicating in which memory the data is allocated),

a list of variables names, functions for accessing values by the number of cell and the name

or the number variable, possibility to store in a cell not only a list, but also a full matrix of

parameters. The latter is useful when dealing with various Jacobians and other matrices used

in implicit methods.

3.2.2. Mem class

When developing large complex codes for the numerical simulation, the programmers have

to change the list of parameters of various functions on a regular basis. Additional parameters are

introduced when programming new numerical methods, physical models or new implementations

of existing functions. Naturally, any change in the list will require revisions in every occurrence

of the function call. To avoid or at least reduce the amount of this tedious work, in the HyCFS-R

we store all variables and pointers to arrays in a single structure Mem, instances of which are

stored in both the CPU and GPU memories. We avoid the word ‘copies’, because for each Mem

class member we specify explicitly in which memory (CPU or GPU) it will be allocated. It allows

us to minimize the array duplication.

A pointer to Mem structure passed to the functions as an argument provides the access

to all data available in a computation. One of the advantages of this approach is that most of
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the memory allocation routines are limited to methods of a single class, allowing to simplify the

control of memory consumption and prevention of memory leaks and corruption.

When using domain decomposition, each partition has its own dedicated pair of CPU and

GPU instance of Mem class.

3.2.3. BSegment and condition classes

When imposing boundary conditions, the boundary of the domain is divided into partitions

we call segments. They are rectangular in the {ξ, η, ζ}-space and, generally speaking, can overlap.

Geometrical parameters of each segment and the type of boundary conditions assigned to this

segment are stored as object of the dedicated class BSegment. Physical parameters of boundary

conditions are stored as separate Condition objects, referenced by one of the segments. The

conditions contain wall temperature, free-stream flow parameters and so on. This mechanism

of splitting of geometrical and physical parameters of a boundary condition allows one to re-

use the segments for organization of inter-block exchange in a multiblock structured mesh. For

this case the segments also store a multiblock interface identificator and exchange buffers of

an appropriate size. Figure 1 shows a schematical example of domain boundary divided into

segments, including a multiblock partition.

Figure 1. Schematic of boundary segments

3.2.4. Element and reaction classes

The physical and chemical properties of the species and descriptions of chemical reactions

are stored in the dedicated structures. And since CUDA platform puts certain limitations on

C++ features, inheritance is used mostly to separate subsets of parameters describing gas and

condensed phases. So, the hierarchy of the classes is as follows: the classes Gas and Con-

densed are both inherited from the basic class BaseElement and the classes GasReaction

and HeterogenousReaction are both inherited from the class BaseReaction.
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3.3. Parallelization

In the most general case the HyCFS-R uses a multi-level parallelization based on the CUDA

API, OpenMP threads and the MPI protocol. There are 2 variations of the numerical algorithm:

one is used for domains with simple geometries and regular meshes and the other is used for

complex domains with structured multiblock meshes. In both cases the whole computational

domain is divided into a number of partitions, corresponding to the number of used GPUs.

Each GPU performs computations in cells of its sub-domain and after each step exchanges data

with neighboring sub-domains. GPUs on one computational node are controlled using OpenMP

threads and exchanges are made via the CPU memory. Inter-nodal exchanges are performed

using the MPI protocol.

The difference is that in the simple variant the domain is partitioned along the k-index

(ζ-axis) as shown in Fig. 2. As a result, neighboring previous and subsequent partitions are

unambiguously defined from the current partition index. Another benefit of this scheme is that

cells with the same index on the ζ-axis are in a continuous memory segment and do not require

extra buffers for exchange.

As for the multiblock exchange, it requires not only the description of every block-block

connection via the segment mechanism, but also a special configuration file assigning each block

to a GPU device and to an MPI node.

Figure 2. Scheme of multi-level parallelization

The multilevel approach described above allows one a hybrid parallelization when both

GPUs and multicore CPUs are used as computational units. Hybridization is achieved by em-

ploying OpenMP for multicore CPUs in the same way as CUDA threads are used on GPUs. The

source code is the same on all platforms, which, combined with a proper compile-time wrapper,

ensures that all computations are performed in the same way. Execution and data exchange are

done using the MPI library. Figure 3 shows an example of devices configuration in a hybrid com-

putation. In this example the domain is divided into 8 partitions, represented by gold and green

blocks at the bottom of the scheme, where the gold partitions are computed on GPU, and green

are computed on CPU, respectively. The configuration consists of 2 nodes with single 10-core

CPU and 2 GPUs on each node. The MPI processes with ranks 0 and 1 control the GPUs and

the rest of processes control CPU computations with OpenMP threads. This example illustrates
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a typical situation when using hybrid CPU/GPU clusters, where the number of CPU cores is

significantly higher than the number of GPU devices.

In practice such hybrid computations are rarely performed because most of the popular job

schedulers lack features to manage resources for them. And it also should be noted that complex

computations require to balance the load of a computational devices, e.g., by matching the size

of each partition to the performance of the device.

Figure 3. Example of hybrid CPU-GPU parallelization scheme. 6 MPI, 8 domains: 4 GPU +
4×4 OpenMP(CPU)

3.3.1. Service and debugging options

Development of any CFD program is associated with thorough testing for correctness, ac-

curacy and performance of the code. For these purposes, all calls of computational routines are

surrounded by wall-time measuring functions and followed by special inspecting routines, which

allow one to check all affected flowfields for any changes.

The timers are implemented in a simple class based on the standard gettimeofday function

and std::map<string,double> container. They provide simple statistics for the execution time

between two given lines of code and can be switched off at runtime using the configuration file.

This statistics is sufficient for initial assessment of hot spots and bottlenecks in the code. A more

detailed analysis can be done using external tools such as valgrind/kcachegrind, gperftools,

Intel VTune and so on.

As for the inspection, it is enabled at compile time and is only used in the debug-build of the

code. This build uses not only inspection routines but also specific build flags for the detection

of floating point exceptions, enabling faster search for the problematic fragments.

4. Some Examples of Numerical Simulations

This section contains a brief description of a few numerical studies performed using the

developed numerical code, which illustrate some typical problems of the compressible flow gas

dynamics and the capabilities of the code.
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4.1. Supersonic Flow Past a Wedge

A supersonic flow of pure argon past a 46◦ wedge for the conditions of experiment by

Hornung and Smith [47] was simulated numerically and compared with the data from [45]. The

mesh size is identical to that used for Navier–Stokes computations in [45], namely 360×200 cells.

Results are shown in Fig. 4, where the comparison of temperature and density distributions

are depicted. As can be seen, the HyCFS-R solution is in excellent agreement with the data

from [45] in terms of the shock wave stand-off distance. This test verifies spatial approximation

and boundary conditions at the solid walls.

(a) Temperature isolines (b) Temperature and density distributions along

the stagnation line

Figure 4. Supersonic argon flow past a 46 degree wedge

4.2. Jet Exhausting from a Square Nozzle

A 3D numerical simulation of the development of instabilities was carried out for a supersonic

perfectly-expanded jet exhausting from a nozzle of the square cross-section into an ambient

stream. The simulations were performed for the jet Mach number Mj = 2.5 and the co-flow

Mach number Ma = 1.5 at the Reynolds number Re = 5000. The computational domain had

the hexahedral shape. The computational grid was refined around the jet core and its near field.

The computations were carried out on the grid 1152 × 330 × 330 ≈ 125 million cells. The jet

instability was excited by superimposing disturbances in the form of a white Gaussian noise

onto the main flow velocity components.

Figure 5 shows isosurfaces and contours of density in a central cross-section. As can be

clearly seen, at the initial stage, near the inflow boundary, the instability develops in the form

of a typical chain of the Kelvin–Helmholtz vortices. This development of instability is quite

expected for the considered values of the ambient and jet flow Mach numbers. Downstream,

the vortex motion starts to dominate the entire jet core. Overall, the results of these numerical

simulations allowed us to identify specific features of the instability development in a supersonic

rectangular jet with a supersonic co-flow.
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Figure 5. Rectangular jet with Mach number Mj = 2.5 exhausting into ambient coflow with
Mach number Ma = 1.5. Density contours in middle cross-section (a) and density isolines colored
with local Mach number values (b)

4.3. Instability of a Gas Bubble in a Gravitational Field

Numerical simulations of the instability of cylindrical and spherical volumes of argon sur-

rounded by helium in the field of gravity were carried out. The volume diameter was set equal

to 20 m, the initial temperature in all domain T = 300K. The gravitational acceleration was

equal to g = 1000 m/s2. The barotropic distribution of density and pressure was set both inside

the volume and in the surrounding light gas. The pressure at the bottom wall was about 1 Pa.

Three cases were considered and 2D, axisymmetric, and 3D computations were carried out

for the following domain and mesh sizes. The 100×200 m domain with 800×1600 grid was

used for two-dimensional computation, the domain was halved along the axis of symmetry in

axisymmetric computation down to 50×200 m with mesh containing 400×1600 cells. In 3D

simulation 100×100×200 m domain with 280×280×560 ≈ 43.9 million cells was used.

The results of various computations were compared with each other (see Fig. 6). The volume

in all simulations changed shape from round in cross section becoming close to semicircular, and

then transforming into a crescent-like structure, with cusps pointing upwards. These cusps begin

to twist, a secondary instability develops on them. At first the cusps and then entire bubble start

to break down, mixing with the ambient gas. In all geometries the instability emergence and

development as well as the breakdown process have their own characteristics. The fastest mixing

and the breakdown of the heavy gas bubble was observed in the 3D simulation while the mixing

process in the 2D simulation was the slowest, because of its cylindrical shape.

4.4. Heterogeneous Detonation in Al/O2 Gas-particle Suspension

In this test case a detonation wave propagating through a channel filled with oxygen and

10 µm aluminum particles suspension is investigated numerically. Gas phase parameters corre-
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Figure 6. Instability of an argon bubble in helium. Argon molar fraction contours in 2D, ax-
isymmetric and 3D NS computations shown at different time instants

spond to the standard atmospheric conditions with the pressure of 101325 Pa and the density of

1.28 kg/m3. Detonation is initiated by a localized ignition at the left boundary of the computa-

tional domain. The 22.5 m × 1 m × 1 m channel was simulated as 3 separate 7.5 m long sections

each with the spatial resolution of 2400 × 350 × 350 ≈ 300 million of cells. The computations

were carried out using 8 Nvidia Tesla V100 GPUs and took 96 hours of wall-time.

Figure 7b shows the history of maximum pressure in the form of isosurfaces and distributions

on the channel lateral sides, imitating the soot-covered foils from the real experiment. The

latter also illustrate the process of transformation of the initial blast wave into a regular cellular

structure. Additional code features were used to measure the speed of detonation wave front

and also capture its shape.

(a) Isosurface in the flowfield of history of max-

imum pressure

(b) Numerical “soot-foil” records on the channel walls

Figure 7. Heterogeneous detonation in a rectangular channel filled with Al/O2 gas-particle
suspension
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Conclusion

The HyCFS-R numerical code for solving the compressible Navier–Stokes equations on par-

allel hybrid computational systems equipped with multiple GPUs or manycore co-processors

has been developed. The developed code can be used to simulate gaseous flows including flows

of thermally non-equilibrium and chemically reacting gases and gas mixtures as well as multi-

phase gas-particle suspensions. Modern shock-capturing TVD and WENO schemes on structured

muiltiblock meshes are used for spatial approximation, while the time stepping is performed

with explicit RK TVD, semi-implicit ASIRK2c and implicit DPLUR schemes. The descriptions

of flowfields, boundaries and boundary conditions, physical and thermodynamic properties of

the gases, chemical kinetics, are stored as simple C++ classes and structures compatible with

CUDA API. Multilevel parallelization of the HyCFS-R code is achieved via a set of techniques,

namely MPI, OpenMP and CUDA technologies. Third-party software tools such as GNU Data

Debugger, valgrind/kcachegrind, and Intel VTune are used for debugging and code opti-

mization, zlib library is used for flowfields data compression and VTK library is used for data

visualization.

The HyCFS-R code has been employed to simulate a number of subsonic and supersonic

flows: a flow past a wedge, a jet exhausting from a square nozzle, a bubble of heavy gas

descending in a lighter medium, a heterogeneous detonation in a rectangular channel. Numerical

grids containing up to 300 million of cells has been used. The results of numerical simulations

presented in the paper give evidence that the developed code is capable to efficiently simulate a

wide range of compressible flows.
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