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A novel hybrid dynamic mesh redistribution – immersed boundary method for simulation

of turbulent flows around rotating obstacles of complex geometry and analysis of tonal acoustics

is proposed. The feasibility of the approach is demonstrated by considering a drone propeller

problem. The results of three-dimensional Reynolds-averaged Navier–Stokes simulations using the

proposed approach are compared to the results of body-fitted unstructured simulations in non-

inertial reference frame. The dynamic mesh redistribution method allows the reposition of mesh

points taking into account the shape of the moving body while retaining the mesh topology. The

cell size and quality of the dynamically redistributed mesh strongly depend on the curvature of the

body surface. The position and shape of the moving obstacle is prescribed by a distance function

defined on an adaptive octree. The results of simulations using the proposed method are in good

agreement with both the results of body-fitted simulations and the experimental data.

Keywords: moving adaptive mesh, immersed boundary method, drone rotor, rotor acoustics,

unstructured mesh, turbulent flow.

Introduction

The problem of flow simulation around moving obstacles or body parts is of high importance

in computational aerodynamics and aeroacoustics. There is a number of different modeling tech-

niques and mesh changing methods that are currently being developed to approach the above-

described problem. Most popular approaches preserve the classical body-fitted (BF) meshes,

requiring boundary nodes to coincide with the obstacle surface. For instance, mesh deformation

method, based on quasi one-dimensional elastic media [6], is the least computationally expensive

body-fitted approach, which allows efficient deformation of the computational mesh governed

by the body motion. The main disadvantage of the mesh deformation method is its inabil-

ity to handle large obstacle displacements leading to mesh deterioration and/or entanglement.

An alternative approaches based on mesh recomputation [7] or adaptive mesh refinement [8],

regardless of their computational efficiency, introduce interpolation errors and significantly com-

plicate the process of parallelization, since the topology and mesh size can change over time.

The Chimera methods [9] utilizing two or more superimposed computational meshes also require

interpolation and data exchange between the meshes.

This paper describes a novel hybrid dynamic mesh redistribution – immersed boundary

method (DMR-IBM), capable of simulating compressible flows around arbitrary number of ob-

stacles, either moving according to their own laws or displaced under the action of aerodynamic

forces. The feasibility of combining the immersed boundary method with the dynamic mesh

redistribution is evaluated for the acoustic simulations of a compressible flow around an iso-

lated drone rotor. The immersed boundary approach is based on the Brinkman penalization

method [1–5], where the obstacle is modeled by introducing additional source terms into the
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governing equations describing the evolution of compressible viscous flow. These sources define

the body as a continuous porous medium with low permeability. The source terms are non-zero

inside the moving obstacle and zero – outside. Thus, the use of the immersed boundary method

makes it possible to define the external flow problem in a simply connected domain, which opens

up the possibility of using the dynamic mesh redistribution method to position mesh points in

the vicinity of the surface of the moving obstacle, while maintaining the mesh topology. In this

paper, we consider the problem of aeroacoustics simulation of a drone propeller taken as an

example of a rotating body of a very complex geometry. The hybrid DMR-IBM was previously

formulated for two-dimensional flows and tested for the rotating projection of the propeller [5].

In this paper, the DMR-IBM is generalized to three dimensions and is verified for the problem

of tonal acoustics of a propeller by comparing the results of the simulations against the data

obtained using the classical body-fitted approach in non-inertial frame of reference. The DMR-

IBM implemented for a propeller located inside of a puck-shaped domain with the mesh points

dynamically redistributed to follow the motion of the propeller and to resolve the boundary

layer around it. Such an approach would allow, in future, to use DMR-IBM for simulation of

flows around multiple rotating objects located within its own puck-shaped subdomian belong-

ing to a larger computational domain, while approximating fuselage using a body-fitted mesh

approach. An example of such a problem would be a flow around vehicle with several rotors,

e.g., a quad-copter.

A complex geometry of the propeller is characterized by sharp corners, very thin parts

of blades, and high curvature regions. To provide a sufficiently high resolution mesh near the

rotating propeller surface by means of dynamic mesh redistribution method is quite challenging

problem. To overcome this challenge, a number of novel methods has been developed. To start,

the initial mesh with high node density in the region of the propeller rotation is constructed.

Then the control mesh adaptation metric is developed. This metric depends on the distance

function and its gradient as well as on parameters of the immersed body (i.e. propeller) and its

surface, such as curvature and distances to the internal and external medial axes.

The article is organized as follows. Section 1 gives the information on the problem for-

mulation. In Section 2 we discuss the choice of the mathematical model for two approaches.

Section 3 contains information about the computational set-up, including details of the numeri-

cal method, computational meshes, mesh adaptation algorithm and its parallel implementation

in corresponding subsections. Section 4 is devoted to the numerical results of aerodynamics and

acoustics. Conclusion summarizes the study and points directions for further work.

1. Problem Formulation

The problem considered in this paper is similar to the APC Slow Flyer 10x4.7 problem,

namely, the small-scaled UAV rotor problem studied in [10]. Similar to Ref. [11], the drone

problem with the rotor and hub radii of R = 0.127 m and r = 0.0127 m, respectively, is studied.

The blade of the rotor is based on the Eppler E63 airfoil (blade inner part) and Clark-Y airfoil

(near blade tip) with non-linear twist and chord spanwise distribution (Fig. 1). The propeller

is designed for 2 000–20 000 rotations per minute (RPM), while the regime under consideration

is 4 000 RPM, which corresponds to the tip velocity Vtip = 53.2 m/s. In the computational

setup, the size of the propeller is normalized by the maximum length of the chord of the blade

b = 0.0287m. The Reynolds number, defined using the blade tip velocity and the blade maximum

chord, is Re = ρ0Vtipb/µ0 ≈ 105, where ρ0 = 1.204 kg/m3 and µ0 = 1.815 × 10−5 Pa · s
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corresponding to the parameters of the air at temperature of T0 = 293.15K. The tip Mach

number is M = Vtip/
√

γRT0

M = 0.156, where γ is the adiabatic index, R is the gas constant and

M is the molar mass of the gas.

Figure 1. The rotor geometry

2. Mathematical Model

Large Reynolds number, high velocity flows are typical for aviation applications. Direct

Numerical Simulation (DNS) of such flows requires high resolution computations both in space

and time that are beyond the current realm despite the continuing growth of the performance of

supercomputers. There is a number of approaches which can be applied to model turbulent flow

near propeller, including RANS, LES and hybrid RANS-LES approaches. It should be mentioned

that there is no full understanding yet that correct modeling of aerodynamics using presented

technique is feasible. We are aiming to simulate rotor acoustics. So, differences that [12] presents

by comparing RANS and RANS-LES for simulation of flow around rotating propeller do not

make big differences in terms of our aims. For that reason, the turbulent flow simulation uses

compressible Reynolds-averaged Navier–Stokes (RANS) equations with the Spalart–Allmaras

turbulence model [13]. The system of RANS equations is written in the form of conservation

laws for the vector Q of conserved variables

Q = (ρ, ρu, E, ρν̃)T ,

where u = (u1, u2, u3) is the velocity vector, ρ is the density, E = ρu2/2 +ρε is the total energy,

ε is the specific internal energy, p is the pressure defined by ideal gas equation p = ρε(γ − 1),

γ = 1.4 is the adiabatic exponent, ν̃ is the evolutionary variable which is used to determine the

turbulent viscosity µT according to the Spalart–Allmaras model:

µT = ρν̃
χ3

χ3 + 357.911
, χ =

ρν̃

µ
,

where µ is the coefficient of dynamic molecular viscosity.

The system of Reynolds-averaged Navier–Stokes equations can be written in the following

vector form:
∂Q

∂t
+∇ · (FC(Q)−FD(Q,∇Q)) = S(Q,∇Q). (1)

System (1) includes composite vectors FC and FD, each component of which FCi and FDi
in coordinate direction xi (i = 1, 2, 3) represents the convective transport and diffusion flux

vectors, respectively. Operator (∇·) is the divergence operator.
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The convective transport flux vector is given as a function of the physical variables ρ, u, p

FCi (Q) = (ρui, ρuiu + pI, (E + p)ui, ρν̃ui)
T , (2)

where I is the identity matrix. The diffusion flux vector is defined as a function of physical

variables and their gradients as

FDi (Q,∇Q) =

(
0, τi1, τi2, τi3, τijuj + qi,

3

2
(µ+ ρν̃)

∂ν̃

∂xi

)T
, (3)

where the components of the viscous tensor of viscous stresses and the heat flux vector can be

written as follows:

τij = (µ+ µT )

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3
δij
∂ui
∂xi

)
, qi =

(
µ

Pr
+

µT
PrT

)
∂ε

∂x
, (4)

where δij is the Kronecker symbol, µ is the molecular viscosity coefficient, Pr = 0.72 and PrT = 1

are the molecular and turbulent Prandtl numbers, respectively.

Vector S (Q,∇Q) is a source term describing the influence of the external forces that are

not related to the transfer processes of the target variables Q:

S (Q,∇Q) = (0, 0, 0, Pν (Q,∇Q)− Yν (Q,∇Q) + 0.992∇ν̃ · ∇ν̃)T . (5)

The detailed definition of terms Pν (Q,∇Q) , Yν (Q,∇Q) describing respectively the gen-

eration and dispersion of turbulence is given in paper [13].

Let us formulate the immersed boundary condition for system (1). At the boundary between

a solid ΩB and a medium Ωf there is a no-slip condition:

u|∂ΩB
= V. (6)

Condition (6) is defined by Brinkman penalization method [1]. The Brinkman penalization

modifies the right-hand side of the system (1) by adding the extra source terms so that the new

vector of source term becomes as:

Spenal (Q,∇Q) = S (Q,∇Q) +

(
0,

χ

η
ρ(ui − uBi),

χ

η
ρui(ui − uBi), 0

)
, (7)

where χ defines the body location at every time moment as follows:

χ(t) =

{
1, x ∈ ΩB(t)

0, x ∈ Ωf (t).
(8)

Parameter η determines the rate of the relaxation of the flow velocity to the velocity of the

moving body. In this paper the penalization parameter is equal to 10−4. When we use the

standard body-fitted approach to simulate the flow over the rotating propeller we solve the

RANS equations in non-inertial frame of reference [14]. Let V = (V1, V2, V3)T = (ω × r) be

the peripheral propeller speed determined by angular velocity vector ω and radius vector of the

point in medium. Following this notation, the system of RANS equations (1) can be rewritten

as
∂Q

∂t
+∇ · (FC(Q)−FR(Q)−FD(Q,∇Q)) = S̃(Q,∇Q), (9)
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where FR is the rotation transport flux with the components

FRi (Q) = (ρVi, ρuiV, EVi, ρν̃Vi)
T . (10)

Source term (5) is now dependent on angular velocity:

S̃ (Q,∇Q) = (0, ρω × u, 0, Pν (Q,∇Q)− Yν (Q,∇Q) + 0.992∇ν̃ · ∇ν̃)T . (11)

From the point of view of an observer in the inertial coordinate system, the system of

equations (9)–(11) with flux vectors (2) and (3) describes the change in conservative variables

due to their convective and diffusive transport in a medium rotating at speed V, the influence of

the pressure gradient and the rotation of the velocity vector at the azimuthal angle ψ(t) = − |ω| t.

3. Computational Set-up

3.1. Numerical Method

The system of RANS equations (1) is solved using the fifth order Edge-based Reconstruc-

tion (EBR5) scheme [15–17]. The higher accuracy is achieved through the quasi-one-dimensional

reconstructions of variables on the extended stencils oriented along the mesh edges. The approx-

imation is built in such a way that being applied to translationally invariant meshes (i.e., meshes

that transform into themselves when translated by an edge vector) the EBR5 scheme provides

the fifth order of accuracy.

The EBR scheme for the Euler equations presents a vertex-centered method with physical

and conservative variables defined at the mesh vertices around which the computational cells of

the dual mesh are built. Thus, a finite-volume approximation of convective flows is constructed

for dual mesh cells acting as finite volumes. The viscous terms of the RANS equations are

approximated using the finite-element method with the linear basis functions.

For the time integration, the implicit second-order scheme with Newton iterations is used to

solve the nonlinear system of algebraic equations resulting from the space discretization. At each

Newtonian iteration, the corresponding system of linear equations is solved using the stabilized

biconjugate gradient method.

3.2. Dynamic Mesh Redistribution Method

To build a dynamic mesh redistribution method, we consider a computational mesh as

an elastic material which is deformed when zones of mesh compression follow the boundaries

of moving obstacles. The time-dependent elastic deformation is defined by a special mapping

x(ξ, t) : Rd × R → Rd. Let C define the Jacobian matrix of mapping x(ξ, .), where cij =
∂xi
∂ξj

.

Let xn(ξ) denote the mapping of the initial mesh onto the mesh at time tn.

We consider the mapping of a regular tetrahedron Ti with the vertices coordinates h0, h1,

h2, h3 in Lagrangian domain Ωξ to a tetrahedron with Eulerian coordinates of the vertices

p0, p1, p2, p3 in domain Ωx. The Eulerian coordinates are the desired coordinates in the

computational domain. For our problem formulation Ωξ is some speculative domain that consists

of regular tetrahedrons and vol(Ωξ) = vol(Ωx). At the time moment t for each vertex of the

tetrahedron Jacobian matrix of this mapping can be written as ∇ξx(ξ, t)H−1, where ∇ξx(ξ, t) =

(p1−p0, p2−p0, p3−p0) and H = (h1−h0, h2−h0, h3−h0). Here ξ are local barycentric

coordinates inside parametric tetrahedron.
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To keep track of moving body we consider metric in Eulerian coordinates which depends

on body geometry and time. Let G(x, t) denote metric tensor and Q = Q(x, t) be an arbitrary

matrix factorization of metric tensor G(x, t), defined by

QTQ = G(x, t), detQ > 0.

To introduce the variational problem for mesh optimization one can assume that xn(ξ) is

a quasi-isometric piecewise affine one-to-one mapping. We find the mapping of the initial mesh

onto the mesh at time t = tn+1 as minimizer of this semi-discrete functional

F (x(ξ, t),xn(ξ)) =
∑

i

∫

Ti

W (Q(xn(ξ), t)∇ξx(ξ, t)H−1) detHdξ, (12)

where C = Q∇ξx(ξ, t)H−1 is the Jacobian matrix of mapping from regular tetrahedron Ti to

i-th tetrahedron in metric space.

In functional (12) function W (C) defines polyconvex elastic potential (internal energy),

which is a weighted sum of the shape distortion measure and the volume distortion measure:

W (C) = (1− θ)
1

d
tr(CTC)

detC2/d
+

1

2
θ

(
1

detC
+ detC

)
. (13)

In most cases we set θ = 4/5. The elastic potential is minimum when the deformation is isometric,

meaning that only rotation and translation are allowed. The details of the current variational

approach are written in [18].

To use the mesh vertices effectively, the adaptation should be anisotropic. At the same time,

it is necessary to qualitatively capture the surface of the body and its features. The correct defi-

nition of the adaptation metric requires normal and tangential directions at each point p which

are defined by the isosurface of signed distance function u(x, t) passing through p and stretch-

ing coefficients σi along these directions. When σi is large, the local cell size in correspondent

direction is small. Function σ1 = σnormal(x, t) = φ(u(x, t)) defines the mesh stretching in the

normal direction to the body and σ2 = σ2,tangential(x, t) and σ3 = σ3,tangential(x, t) define the

spatial distribution of the anisotropy. We require the highest anisotropy in a thin boundary layer

near the body, then the anisotropy is partially reduced to zero away from the body. Here 1D

function φ(·) : R1 → R1 is a hyperbola, which defines the mesh density in normal direction and

guarantees transition from small mesh cells to large mesh cells with the prescribed rate of growth

of mesh cell size. The definitions of σ2 and σ3 require extra information about the body shape

such as principal curvatures, principal normal directions, and distances to the medial axis. All

this volumetric data is gained during the preprocessing stage. Parameters σ2 and σ3 are used for

defining of the control metric, so that mesh cells are close to isotropic near the sharp edges and

anisotropic in the tangential surface near the regions close to a plane. The complete procedure

of geometry preparation and the algorithm for constructing the anisotropic mesh adaptation

metric is described in detail in [19].

We solve our adaptation mesh problem in a small cylinder that encompasses propeller geom-

etry. Vertices on the boundary of this small cylinder are fixed. To achieve a good mesh refinement

at all the edges of the propeller geometry and provide continuity of point distribution through

the fixed boundary, the initial mesh is specially deformed. The vertices in the small cylinder are

slightly redistributed to follow up the features of the body shape: an area near the hub and
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the region where the tip of the blade moves have higher mesh density as shown in Fig. 2. To

account for that nonuniformity, the background metric is introduced. The background metric is

a spherical metric where the eigenvalues are defined as cubic root of a ratio of average adjacent

cell volume in parametric space to the correspondent volume in physical space. So now there

are two metrics: background metric and adaptation metric Gx. For the metric interpolation the

log-Euclidian framework [20] is used. The paper [20] proposes introducing the metric logarithm

and the commutative logarithm addition.

Figure 2. The initial mesh in a puck-shaped domain to start the adaptation to the propeller
surface

Metric tensor Gx is evaluated in the mesh vertices which is crucial to the stability of very

thin and highly compressed mesh layers. To solve the optimization problem on the each time step,

we apply the preconditioned gradient descent technique [21] where the minimization direction is

computed via an approximate solution of the linear system with the reduced Hessian matrix of

the functional. The final mesh increment along the minimization direction is computed via the

1D search technique. The full description of the variational approach of the adaptation algorithm

is presented in [18].

3.3. Computational Meshes

3.3.1. Mesh for body-fitted approach

The computational mesh for the body-fitted approach is a cylinder with radius 10R and

height 30R (Fig. 3). R is the propeller radius. Propeller was placed in the center of the compu-

tational domain. The mesh near the rotor surface is filled with prismatic elements to resolve the

boundary layer. A height of the near-surface element is chosen to meet y+ < 1 criteria in the

CFD simulation, meaning the viscous sublayer is resolved. y+ is the dimensionless wall distance

defined as y+ =
yuτ
ν

, where uτ =

√
τω
ρ

is friction velocity, τω is the wall shear stress, y is the

absolute distance and ν is the kinematic viscosity.

The rest space between prismatic mesh on the rotor surface and the outer domain boundaries

is filled with tetrahedrons. As a result, the unstructured mixed-element mesh is build with 2.6

million nodes and 9.9 million elements.

3.3.2. Adaptive mesh for immersed boundary method

To facilitate the mesh adaptation with the metric depending on the distance function the

triangulated surface of the propeller is prepossessed and a k-d tree and an octree are built for
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Figure 3. The mesh for the BF approach

fast calculations of the exact and approximate signed distance values, respectively. When pos-

sible approximate distance is used, which is calculated by interpolating exact values stored in

the octree nodes [22]. In addition to interpolation of the signed distance function the octree is

also used to access some shape parameters of the propeller such as principal curvatures, prin-

cipal normal directions, and distances to internal (Fig. 4 and Fig. 6) and external (Fig. 5 and

Fig. 7) medial axes, which are used to define the adaptation control metric. These parameters

are found at the vertices of the triangulated surface and then they are extrapolated to the nodes

of the interpolation grid (octree) based on the nearest distance. The algorithm for the curva-

ture calculation is described in [23]. The medial axes are approximated using the PowerCrust

algorithm [24].

Figure 4. The approximate internal medial axes

Figure 5. The approximate external medial axes
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Figure 6. The distances from the surface vertices to the internal medial axes

Figure 7. The distances from the surface vertices to the external medial axes

The initial tetrahedral mesh is built in a cylinder-shaped domain with same sizes as in the

BF approach with large number of vertices placed near the propeller surface. The total mesh

size is 4.4 million vertices with the majority of vertices concentrated in a puck-shaped domain

covering the propeller motion region.

The propeller geometry is virtually impossible to reproduce correctly on a simply connected

mesh without grid adaptation, since the resolution of thin blade edges requires a significant

mesh refinement in the vicinity of the propeller surface.

Figure 8. XZ plane section of the DMR-IBM simulation mesh near the propeller (top) and
fragments of the adapted mesh near the hub and near the blade tip (bottom)

The mesh redistribution method is then applied to refine the grid to approximately one

tenth of the initial mesh size. For the resulting mesh y+ ∼ 200, which corresponds to the log-law

region. Figure 8 shows a fragment of the adaptive mesh in XZ section and a more detailed image
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of the mesh near geometry features: the hub and its connection with the blade and the end of

the blade. In the presented figures all the points belonging to the body are circled in red. Mesh

elements sizes depend on the shape of the body: the mesh is more isotropic near corners and in

high curvature regions. Figure 9 presents the body shape in DMR-IBM simulation.

Figure 9. The propeller shape in the DMR-IBM simulation (only the cells with all the vertices
inside the body are drawn)

The application of mesh redistribution method is complicated by the presence of thin edges.

The distance between the walls of the blade is extremely small and sharp corners produced by

these walls are not always well refined using the developed mesh adaptation approach. In the

current paper the problem of narrow walls was practically avoided by using a slightly anisotropic

initial mesh inside a small cylinder. However, the mesh adaptation algorithm to very narrow

parts would need to be further investigated.

3.4. Technology of Acoustics Measurements

To measure and compare the propeller acoustics characteristics in the near field, a set of

probes are placed around the rotor. The probes are radially distributed with angular step 10◦ in

plane of rotor rotation (XY ) and in XZ plane (Fig. 10). The Y Z plane is not considered since,

due to the symmetry of the case setup, it is equivalent to the XZ plane.

Figure 10. Acoustic probes location: XY plane (black) and XZ plane (blue)
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Thus, the following four sets of probes are used: two sets at planes XY , XZ at distance

2R from rotor center and two sets at planes XY , XZ at distance 3R from rotor center. The

azimuthal angle in plane XZ is measured from Ox axis: positive azimuthal angle corresponds

to the upper hemisphere and the negative – to the lower (downstream) one.

3.5. Parallel Implementation

All algorithms are implemented in the CFD in-house code NOISEtte. It has MPI+OpenMP

parallelization for supercomputers made of multi- and manycore processors. A detailed de-

scription of the parallel algorithm is given in [25]. The dynamic mesh adaptation also follows

MPI+OpenMP parallelization model. The parallel algorithm uses spacial mesh decomposition.

Since degrees of freedom which define mesh deformation are mesh vertices, we build a consistent

partitioning of mesh cells and vertices: computational domain is split into connected subdo-

mains consisting of full mesh cells. Mesh vertices belonging to boundaries between subdomains

are distributed between subdomains. Parallel BiCGStab-based iterative solver with ILU2 pre-

conditioner is used [21]. Input data for this solver are right hand side partitioned into blocks and

sparse matrix partitioned into block rows. Each block precisely corresponds to the partitioning of

mesh vertices. The implementation of iterative scheme is based on extended subdomains defining

two cell-wide subdomain overlap. We have found that one minimization iteration was enough in

order to make mesh precisely follow domain boundaries with prescribed compression. Moreover,

it was found that mesh generator can predict mesh deformation with time step exceeding that of

RANS solver. In that case on the intermediate time steps mesh is obtained using interpolation

technique without any high-load operations. The interpolation sharply improves computational

efficiency of mesh deformation solver, which is described in [26].

It should be mentioned that the CFD/RANS simulation of the current problem allows for us-

ing the time step exceeding maximal adaptation step. Thus, for the problem under consideration,

the adaptation solver was called at each CFD step, while the size of this CFD step was restucted

to meet the requirements of the adaptation method. This fact coupled with non-optimal paral-

lel implementation of adaptation solver resulted in rather low efficience of DMR-IBM solution.

So far, the current performance of the DMR-IBM method is 8.7 times more expensive than

the BF-approach on identically sized meshes with the same time step. The optimized parallel

implementation is currently ongoing.

4. Numerical Results

4.1. Validation of BF and DMR-IBM Results on Aerodynamic

Characteristics

The flow field in the both DMR-IBM and BF simulations looks similar Fig. 11. There is a

jet-type flow downstream the rotor induced by the rotation with the maximum velocity below

the blade tips. The tip vortices are well resolved up to 1.5 revolutions and, due to the high

mesh resolution in the propeller rotation region in the DMR-IBM case, the tip vortex in the

DMR-IBM simulation is resolved better than in the BF case.

In both BF and DMR-IBM simulation the rotor thrust coefficient ct and power coefficient cp

are compared against the experimental data [11].
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Figure 11. The flow field: velocity magnitude, streamlines in ZX section with Q-criterion
isosurfaces for the BF case (left) and DMR-IBM case (right)

Table 1. Aerodynamic coefficients comparison with the reference data

Reference BF δ, % DRM-IBM δ, %

Thrust coefficient ct 0.1158 0.1178 1.7 0.0947 –18.3

Power coefficient cp 0.0466 0.0465 –0.2 0.0451 –3.2

The result of comparison of aerodynamic coefficients with the experimental data is presented

in the Tab. 1 where the relative difference is calculated as δ =
(
ct|p − creft|p

)
/creft|p ·100%. As seen

from the Tab. 1, the aerodynamics coefficients are noticeably underestimated in the DMR-IBM

simulation. It may be a result of a poor mesh resolution of the boundary layer on the rotor blade

surface. Another possible reason of this shortcoming could come from not taking into account

the Lagrangian convection in the Brinkman penalization term in (7).

4.2. Comparative Analysis of Acoustic Characteristics

As mentioned above, the primary goal of the work is to study the near-field acoustics

generated by the rotating propeller modelled using BF and DMR-IBM approaches. Among

the acoustic characteristics, we consider the spectra of pressure pulsation and the directivity

diagrams of the pressure pulsation obtained using the above-described probes at the blade

passing frequency (BPF). Figure 12 represents the specific spectra of pressure pulsations in two

probes – one in the plane of rotation XY with azimuthal position 0◦ (Fig. 12, left) and the other

in the plane XZ with azimuthal position 40◦. The presented spectra are built with sampling

frequency 6.65 Hz.

As expected, the spectra maxima in both BF and DMR-IBM simulations are reached at the

BPF frequency and its multiples. The difference between the BF and DMR-IBM results at first

BPF amplitude is about 2.1 dB for the first probe and 1dB for the second one. It is noticeable

that the amplitudes of the harmonics that are multiples of the BPF frequencies in the rotation

plane obtained in the DMR-IBM simulation are much closer to the results of the BF simulation

than in the other azimuthal position.
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Figure 12. The spectra of pressure pulsation at the probes XY plane azimuth 0◦(left), XZ
plane azimuth 40◦ (right)
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Figure 13. The directivity diagram of the first BPF pressure pulsation at the probes at distance
2R

In Fig. 13 and Fig. 14 the directivity diagram of the first BPF for the XY and XZ planes

are presented for distances 2R and 3R. It is seen that in the plane of rotation the maximum

difference between BF and DMR-IBM computation is less than 2.9 dB for 2R and 2.2 dB for

3R. On the other hand, in the XZ plane for azimuthal positions −75◦ < ϕ < 75◦ the maximum

difference is less than 2 dB for both distances. It should be noted that the pressure pulsation

measured at the rotation axes should theoretically be zero. In our case, it is not so (it is about

40–60 dB) solely because of the asymmetric setup. This fact is confirmed by our simulation of

a single blade with the periodicity condition in azimuthal direction where it is really zero (see

Ref. [14]). Note also that in the DMR-IBM simulation the asymmetric setup is aggravated by

the slightly dynamically changing geometry of the blade.

Conclusion

The paper discusses a feasibility of simulating turbulent flow around rotating bodies of

complex geometry and the associated acoustics using the developed hybrid dynamic mesh re-
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Figure 14. The directivity diagram of the first BPF pressure pulsation at the probes at distance
3R

distribution – immersed boundary method with mesh metric based on distance function to the

obstacle surface. In this paper, we consider the problem of simulation of aeroacoustics of a drone

propeller taken as an example of a rotating body of complex geometry. In addition to evaluating

the developed method on a representative case, the problem of a single-rotor acoustics has an

obvious extension important for a wide range of applications. The current results can be viewed

as building block for simulation of the acoustics of multi-rotor machines, the use of which in

the daily life is steadily increasing. Although in terms of tonal acoustics the results obtained by

the developed hybrid dynamic mesh redistribution – immersed boundary method look promis-

ing, the quality of aerodynamic results is not satisfactory and calls for further investigation.

One direction that can improve the results of the DMR-IBM simulations to increase the near

wall mesh resolution to better represent the immersed solid. Another area of future research is

to use wall-functions to decrease the near-wall mesh resolution requirements of the DMR-IBM

simulations.
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