
Functional Programming Libraries for Graphics Accelerators

Mikhail M. Krasnov1 , Olga B. Feodoritova1

c© The Authors 2022. This paper is published with open access at SuperFri.org

Modern graphics accelerators (GPUs) can significantly speed up the execution of numerical

tasks. However, porting programs to graphics accelerators is not an easy task, sometimes requiring

their almost complete rewriting. CUDA graphics accelerators, thanks to the technology developed

by NVIDIA, allow you to have a single source code for both conventional processors (CPUs) and

graphics accelerators (CUDA). However, parallelization on shared memory is done differently and

still must be specified explicitly. The use of the functional programming library developed by the

authors makes it possible to hide the use of one or another parallelization mechanism on shared

memory inside the library and make the user source code independent of the computing device

used (CPU or CUDA). Functional programming is based on the modern mathematical theory,

namely the Category Theory, in which the notions of Functors and Monads are widely used.

Our work intensively utilizes these notions and extends them to grid expressions used in solving

numerical problems.

Keywords: C++, functional programming library, CUDA, OpenMP, OpenCL, OpenACC.

Introduction

In recent years, graphics accelerators (GPUs) have become increasingly popular as com-

puting devices for numerical calculations. Such accelerators are installed on many computing

clusters. In the TOP500 list of the most productive supercomputers of November 2022 [1], graph-

ics accelerators from NVIDIA [2] and AMD [3] occupy leading places, including the first place,

which has overcome the long-desired exascale performance. NVIDIA, which for many years was

among the first, has lost the palm to AMD with its AMD InstinctTM MI250X Accelerator. As

for the most high-performance supercomputers in Russia, as of March 2022 [4], almost all of

them are equipped with accelerators from NVIDIA. The speed of numerical calculations on such

accelerators can be many times higher than on the CPU (according to the experience of the

authors, the acceleration can reach 10–20 times), so the transfer of programs that implement

numerical methods to graphics accelerators is an extremely urgent task.

However, porting an existing program to a GPU is not an easy task. Of course, the ideal

option is to immediately write a program so that it can work on any computer. In any case,

the main question arises – what technology to use for the GPU? Currently, there are three

main technologies – OpenCL (an open standard for heterogeneous systems) [5], OpenACC [6]

and CUDA, developed by NVIDIA for its graphics accelerators [7]. Each of these technologies

has its own advantages and disadvantages. The main advantage of OpenCL is that it is an

open standard. A program that uses OpenCL will run on any computing device that supports

this standard, including NVIDIA and AMD GPUs, Intel Xeon Phi processors with Intel MIC

technology, and even conventional CPUs. The main disadvantage of this technology is that the

source code of the program often appears in two copies: for the CPU, which is compiled by a

conventional compiler and is part of the main program, and the text for OpenCL in separate files.

With changes in the algorithms, changes will need to be made in both places. The advantages and

disadvantages of the CUDA technology are a mirror image of the advantages and disadvantages

of OpenCL. CUDA works only on NVIDIA GPUs. On the other hand, in CUDA we have a single

source code that is precompiled and is part of the main program (including the code that will be

1Keldysh Institute of Applied Mathematics, Moscow, Russian Federation

DOI: 10.14529/jsfi220403

28 Supercomputing Frontiers and Innovations

https://orcid.org/0000-0001-7988-6323
https://orcid.org/0000-0002-2792-9376

executed on the GPU). Unfortunately the OpenACC technology is not accessible to us, as the

compiler that supports this technology is not installed on our clusters with graphics accelerators.

Nowadays, many calculations are carried out on heterogeneous systems using graphics accel-

erators. Examples include recent publications [9, 12, 13]. Some of works use OpenCL technology

and as a result have two versions of source code, others use NVIDIA CUDA and have common

code for CPU and GPU, but they cannot run on e.g. AMD GPUs. We choose CUDA technol-

ogy. Our main argument is that in (our) real life we only deal with devices from NVIDIA. AMD

GPUs and Intel Xeon Phi processors are still quite exotic for us. Therefore, the disadvantage of

CUDA is not a disadvantage for us, but its advantage remains.

The next problem is that shared memory parallelization is done quite differently on the

CPU and on the GPU. If we want to get a single text that should be compiled for both the CPU

and CUDA, then in those places where there should be parallelization, we will have to write

different code (for example, using the #ifdef construct), which is inconvenient. We emphasize

once again that we are talking about the parallelization of the loops on shared memory. Although

it is possible to write a single source code for the CPU and GPU for the loop body, the loop

organization itself is written differently.

And then the idea arose to use the funcprog functional programming library for the C++

language [14], previously written by one of the authors of the article. An appropriate modification

of this library will allow all the specifics of a computing device (CPU or CUDA) to be placed

inside the library, and the user source code will turn out to be completely platform independent.

The article is organized as follows. Section 1 is devoted to a brief introduction to functional

programming (to the extent necessary to understand the rest of the text). In Section 2 a brief

description of the funcprog2 functional programming library is given and Section 3 contains

examples of using this library to solve numerical problems. Conclusion summarizes the study

and points directions for further work.

1. Functional Programming Library

1.1. Scope of the Funcprog2 Library

Let us describe a family of algorithms for which the developed funcprog2 library is applicable.

Technologically, any task of numerical simulation begins with the construction of a grid in

the calculation area. Moreover, in areas of complex shape, this grid is, as a rule, non-structural.

The grid functions of interest to the researcher can be specified both at the nodes of the cells

and at their centers.

At this stage of the study, we consider only non-stationary problems and believe that various

explicit schemes are used for time integration, for example, in the software package that we used

to transfer to the GPU, this is an explicit classical Runge–Kutta scheme of the fourth order.

Implicit schemes involving the solution of linear systems of equations have not been considered

at the moment. Using the described approach to solve settling problems using implicit schemes

requires additional developments that expand the capabilities of the presented library.

If the method is explicit, then the values of the grid functions at different points of the grid

can be calculated independently of each other, and, therefore, these calculations can be carried

out in parallel. Thus, each explicit step (loop over the grid function index) can be parallelized on

shared memory. Note that MPI parallelization is also possible, but has not yet been considered.

M.M. Krasnov, O.B. Feodoritova

2022, Vol. 9, No. 4 29

The developed functional programming library funcprog2 allows an applied mathematician

to implement the described numerical algorithms without delving into the details and features

of parallelization.

1.2. General Description of the Funcprog2 Library

When implementing the functional programming library funcprog2 for the C++ language,

the task was to write a library with which one could write in the C++ language in a style

close to the style of the Haskell language [8]. We cite the Haskell language as a role model,

as it seems to be one of the most advanced modern functional programming languages based

on modern mathematical theory (category theory), widely used and actively supported by the

world scientific community. Details about category theory can be found, for example, in the

books [15, 16].

An important question is what is a function from the point of view of this library? In the

original version of the library, a function meant an object of the std :: function class. This option

does not suit us now, since we want the function to be executed on the graphics accelerator,

and the std :: function class object can only be executed on the CPU (mainly because its imple-

mentation uses virtual functions that are not portable on the GPU). It cannot be an ordinary

function either, since it cannot be passed as a parameter from the CPU to CUDA, because an

ordinary function can only be passed by address, and addresses cannot be passed from the CPU

to CUDA. It was decided to create a function2 class within the funcprog2 library and consider

any object of this class to be a function. Any function object (having a functional operator ())

can be converted into an object of the function2 class, in particular, it can be a lambda expres-

sion. Recall that in modern C++ (since C++11), a lambda expression begins with a pair of

square brackets, inside of which variables accessible from the lambda expression can be placed.

In order for an object to be passed to CUDA, the functional operator must be marked with the

device keyword. To make user source code platform-independent, the funcprog2 library has

a DEVICE macro, which expands to the device keyword when compiled for CUDA, and to

an empty string when compiled for CPU. Thus, a functional operator must be marked with the

word DEVICE. To convert a functional object into an object of the function2 class, the library

has a special function (underscore). Here is an example of working with the funcprog2 library:

double d=(([] (double x) { return x ∗ x ; }) &

([] (double x) { return x + 1 ; })) (5) ; //36

In this example, we created two functions, composed them (using the & operator), and

invoked the resulting compound function with a parameter of 5. The result is 36.

1.3. Implementation of Functors, Applicatives and Monads

The funcprog2 library essentially relies on the concepts of functor, applicative, and monad.

The implementation of functors, applicatives, and monads in the library is similar to the im-

plementation of these concepts in Haskell language. Any class can declare itself a functor, an

applicative, or a monad. To do this, it is enough to implement a specialization of the Functor,

Applicative and Monad classes, respectively, for this class. You don’t need to make any changes

to the class itself.

Inside the specialization of the Functor class, you need to define a static function fmap. The

specializations of the Applicative and Monad classes are defined similarly. For an applicative,

Functional Programming Libraries for Graphics Accelerators

30 Supercomputing Frontiers and Innovations

the methods are called pure and apply, and for a monad, mreturn and bind. When implementing

the static methods of these classes, one should not forget about the implementation of functor,

applicative and monadic laws. Note also that in the funcprog2 library, the division operator is

used as a functor operator, and multiplication is used as an applicative operator.

1.4. Grid Expressions and Grid Functions

The notion of a grid expression plays a significant role in the funcprog2 library. This is

an object defined for all grid indices, that is, for any object that is a grid expression, you can

find out what its value is for a given index. The simplest special case of a grid expression is

a grid function, which simply stores its values in memory and returns them, if necessary. For

grid expressions, a grid expression class template is defined, from which all classes of objects

that are grid expressions must inherit (in particular, the grid function class is also inherited

from the grid expression class). Thus, the phrase “an object is a grid expression” means that the

class of this object is inherited from the grid expression class. This inheritance uses expression

templates [18] and the CRTP (Curiously Recurring Template Pattern) [10] design pattern, in

which the final class is passed to the base class as a template parameter.

Any grid expression can be assigned to a grid function. This assignment operator iterates

over all indices of the grid function to which the grid expression is assigned, for each index

queries the grid expression for its value, and assigns that value to the grid function at the given

index. The assignment operator implies that values for different indices can be calculated inde-

pendently of each other, and therefore they can be calculated in parallel. It is in the assignment

operator that the inner loop over the elements of the grid function is performed. The method of

parallelization of this loop is chosen by the assignment operator, depending on which compiler

the program is compiled with. If this is a compiler for CUDA (the CUDACC preprocessor vari-

able is defined), then parallelization is performed using CUDA, otherwise, using OpenMP. Thus,

the parallelization method is hidden from the application programmer within this assignment

statement.

Speaking about grid functions, one more aspect should be mentioned. The GPU can only

work with its own memory, which means that when working on the GPU, the grid function must

request memory for its data in CUDA memory. There are no problems with this either. Grid

functions are arranged in such a way that when compiled on CUDA they request memory from

CUDA, otherwise they request memory from the CPU.

1.5. Grid Expressions as Functors, Applicatives and Monads

Grid expressions can be thought of as containers (this is especially true for grid functions).

In the funcprog2 library, containers (such as lists) are functors, applicatives, and monads. This

makes it possible to apply ordinary functions to the values stored in them (a property of func-

tors). Let’s make the grid expression also a functor, an applicative, and a monad so that functions

can be applied to grid expressions as well. To understand how this can be done, consider a typical

loop that calculates the new value of the grid function from the old one:

for (s i z e t i = 0 ; i < N; ++i)

f new [i] = c a l c u l a t e (f o l d [i]) ;

M.M. Krasnov, O.B. Feodoritova

2022, Vol. 9, No. 4 31

Here calculate is a function that calculates the new value in the cell according to the old

one. It is passed the old value in the cell as a parameter. In the new approach, we want to be

able to write something like this in this case:

f new = (c a l c u l a t e) / f o l d ;

If the calculations require several more grid functions (let’s call them f2 and f3), then instead

of

for (s i z e t i = 0 ; i < N; ++i)

f new [i] = c a l c u l a t e (f o l d [i] , f 2 [i] , f 3 [i]) ;

we could write:

f new = (c a l c u l a t e) / f o l d ∗ f 2 ∗ f 3 ;

that is, for the first grid function, we applied the functor property, and for the subsequent ones,

we applied the applicative. If we want to pass some additional constant value to the function

(independent of the cycle index), then instead of

for (s i z e t i = 0 ; i < N; ++i)

f new [i] = c a l c u l a t e (f o l d [i] , some value) ;

we could write

f new = (c a l c u l a t e) / f o l d ∗ pure (some value) ;

Thus, the result of applying a function to a grid expression (or to several grid expressions in

the case of an applicative) must also be a grid expression, that is, it can be asked for a value by

index (the [] operator must be implemented). Grid expressions, in addition to grid functions, are

also the results of applying functions to grid expressions as functors and monads. In addition,

the sum and difference of two grid expressions, as well as the product and quotient of a grid

expression and a number, are also grid expressions.

Let’s show how functors, applicatives and monads for grid expressions are implemented.

Functor. The fmap function takes a function with one parameter and a functor (a grid

expression in our case) and returns the same functor (a new grid expression). This new grid

expression stores the parameters of the fmap function in its class member variables (let’s call

them f and gexp) and implements the [] operator as follows (in pseudo-Haskell):

(fmap f gexp) [i] = f gexp [i]

Applicative. The pure function takes some value and “introduces” it into the applicative.

In our case, it makes a grid expression out of it. Let’s define its operator [] so that it returns

the same value val for any index:

(pure va l) [i] = va l

The apply function (an analogue of the (<∗>) operator in Haskell) in our case takes two grid

expressions: the first (let’s call it gexp f) returns functions, and the second (let’s call it gexp)

returns some values (the parameters of these functions). Let’s define the grid expression of the

apply function as follows:

(apply gexp f gexp) [i] = gexp f [i] gexp [i]

Functional Programming Libraries for Graphics Accelerators

32 Supercomputing Frontiers and Innovations

Monad. The return monad function is defined in the same way as the pure applicative

function:

return = pure

The bind monad operation (in the Haskell language and in the funcprog2 library, the (>>=)

operator) takes a monad (in our case, a grid expression, let’s denote it by the variable gexp) and

a function that takes a regular (non-monadic) value and returns a monad (in our case, a grid

expression). Let’s define the bind operation as follows:

(bind gexp f) [i] = (f gexp [i]) [i]

We have proved three theorems that these definitions of the functor, applicative, and monad

for grid expressions are correct, that is, they satisfy the functor, applicative, and monad laws,

respectively. This article does not present this evidence.

So grid expressions are functors, applicatives, and monads. This means that any ordinary

unary function can be “applied” to a grid expression (using the fmap function). This application

will return a new grid expression. Any binary function can be “applied” to two grid expressions

(using the apply function), and any function with n arguments can be “applied” to n grid

expressions. This can be done in one line. For example, suppose there are two grid functions f

and g. Then you can write like this:

g = ([] (double x) { return s i n (x) ; }) / f ;

Since grid expressions are monads, it is possible to build chains of monad calculations of

the form from them:

g = f >>= f1 >>= f2 >>= f3 ;

Here f1, f2, f3 are some functions that take ordinary (non-monadic) values and return grid

expressions.

2. Examples

2.1. The Simplest Example

Consider the axpy function from the BLAS library. This function takes a constant a and

two vectors (x and y) and modifies the vector y as y[i] += a ∗ x[i]. Its implementation for a

conventional processor can be written as follows:

template<typename T>

void axpy (T a , vector<T> const& x , vec to r &y) {
#pragma omp p a r a l l e l for

for (int i = 0 ; i < y . s i z e () ; ++i)

y [i] += a∗x [i] ;

}

This function is perfectly parallelized, but the method of parallelization in this implemen-

tation is specified explicitly and is not suitable for graphics accelerators. Using functional pro-

gramming, this function could be rewritten as follows:

M.M. Krasnov, O.B. Feodoritova

2022, Vol. 9, No. 4 33

template<typename T>

void axpy (T a , g r i d f u n c t i o n<T> const& x , g r i d f u n c t i o n<T> &y) {
y = ([] (T a , T xi , T &yi , s i z e t /∗ i ∗/) {

y i += a ∗ x i ;

}) / pure (a) ∗ x ;

}

The lambda expression in the body of this function takes as parameters our constant a,

the i-th element of the grid function x, by reference the i-th element of the grid function y,

and the current loop index i (which we ignore). Each input parameter (and we have two of

them) corresponds to one parameter of the lambda expression, and the grid function, to which

the expression is assigned, corresponds to the output parameter (passed by reference) and the

loop index. The first parameter (in our case it is pure(a)) is passed as for the functor (via the /

operator), and the next as for the applicative (via the * operator). Here is an example of calling

the axpy function:

int main () {
s i z e t const N = 10 ;

math vector<double> x (N, 2) , y (N, 3) ;

axpy (5 . , x , y) ;

s td : : cout << y [0] << std : : endl ; // 13

}

2.2. More Complex Example

Now we will calculate an expression like z[i]=a∗x[i]+b∗y[ind[i]] (let’s call the function axpby).

Its peculiarity is that the index of the grid function y is contained in the additional grid function

ind :

template<typename T>

void axpby (T a , g r i d f u n c t i o n<T> const& x ,

T b , g r i d f u n c t i o n<T> const& y ,

g r i d f u n c t i o n<s i z e t > const& ind , g r i d f u n c t i o n<T> &z)

{
z = ([] (T a , T xi , T b , g r i d func t i on proxy<T> const y p ,

s i z e t ind i , T &zi , s i z e t /∗ i ∗/)

{
z i = a ∗ x i + b ∗ y p [i n d i] ;

}) / pure (a) ∗ x ∗ pure (b) ∗ pr (y) ∗ ind ;

}

What is essentially new compared to the first example is that we can no longer pass the grid

function y through apply. Instead, we need to create a proxy object for it and pass it through

pure. This is exactly what the pr library function does:

template<class F>

auto pr (F const& f) {
return pure (get proxy (f)) ;

}

Functional Programming Libraries for Graphics Accelerators

34 Supercomputing Frontiers and Innovations

A few words about proxy objects. They are needed to transfer entire grid functions to the

GPU. The fact is that in the GPU, parameters can only be passed by value, that is, their copy

will be made. But a copy of the grid functions cannot be made, as this will lead to the creation of

a copy of the data. Instead, a “light” placeholder object is created for the grid function, storing

a pointer to the data and the size of the grid function. It is this object that is passed by value

as a whole (using the pure function).

Let’s also pay attention to the fact that global variables that are stored in CPU memory

are not available from the GPU, so they have to be passed explicitly using the pure function.

If you need a buffer for intermediate calculations, then its size should be equal to the number

of grid nodes, since in the case of CUDA we do not know the absolute number of the execution

thread.

Another important problem that often arises is reduction (for example, finding the maximum

value or the sum of all values). It is also very important to carry out the reduction in parallel.

In the original version of the program, the reduction was performed by means of OpenMP, but

now we cannot use this mechanism. Fortunately, in modern C++ (since the C++17 language

standard), reduction functions (such as std::accumulate and std::reduce) have parallel versions.

When working on CUDA, we use the thrust library, which is part of the CUDA Computing

Toolkit. This library also has parallel reduction functions running on GPU. Thus, when working

on CUDA, we use the parallel reduction functions from the thrust library, when working on the

CPU, if there are parallel versions of the reduction functions (if the compiler supports them),

then they are used, otherwise the reduction is done sequentially.

3. Performance Comparison

To evaluate the effectiveness of the proposed approach, a problem is proposed that simulates

an experiment carried out in the L2K pipe (Germany, [17]). An axisymmetric body consisting of

two conical and cylindrical surfaces is placed in an oncoming air flow with the following charac-

teristics: M∞ = 4.7, p∞ = 272Pa, T∞ = 764K, YO2 = 0.245, YN2 = 0.755. The geometry of the

problem is shown in Fig. 1. The solid body is combined from two parts with different thermo-

dynamic characteristics: the head part is made of UHTC (Ultra High Temperature Material)

and the rear cylindrical part is copper.

The initial temperature of the body is T=300 K. The adjoint problem is solved in a two-

dimensional formulation. Modeling is based on the solution of the Navier–Stokes equations in

a multicomponent gas and the heat equation in a solid using an original technique based on

explicit Chebyshev iterations [11]. The mesh size is 297192 nodes.

We solved this problem using a K60gpu hybrid supercomputer installed at the Keldysh In-

stitute of Applied Mathematics of RAS. One node of this supercomputer has two host processors

Intel Xeon Gold 6142 v4, 16 cores (total 32 threads) and four GPUs nVidia Volta GV100GL.

We used the program complex NOISETTE [12], which originally can work in two modes of

parallelization: on CPU using OpenMP and on using OpenCL (with separate sources for ker-

nels). We have rewritten it using our approach. For testing on CPU mode we used one host

(32 threads) and for OpenCL and CUDA modes – one GPU. The acceleration compared to the

CPU when using OpenCL was about 20 times, and when using our approach – about 12 times.

The acceleration is not as great as when using OpenCL, but given the above advantages (above

all, a single source code), it can be considered acceptable.

M.M. Krasnov, O.B. Feodoritova

2022, Vol. 9, No. 4 35

Figure 1. Geometry of the problem with the shock wave structure

Conclusion

Declarative programming languages, which include functional languages, allow, unlike im-

perative languages, which include most programming languages in which numerical methods are

implemented, to briefly and at the same time quite clearly write down the desired result without

going into implementation details. The specific implementation may be hidden in the language

and depend on the current hardware and software environment. The C++ language proved to be

powerful enough to allow the implementation of a functional programming library on it, which

allows you to write programs in a style close to the style of purely functional languages such

as Haskell. Such concepts from the world of functional programming as functors and monads,

implemented in the functional programming library, turned out to be a very convenient tool for

porting numerical problems to CUDA graphics accelerators. Grid expressions have been defined

as functors, applicatives, and monads, allowing functions to be applied to the values they store.

These functions themselves can be built by combining complex functions from simple ones, which

is also the strength of functional programming.

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-

mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work

without further permission provided the original work is properly cited.

References

1. TOP 500. https://www.top500.org

2. NVIDIA. https://www.nvidia.com

Functional Programming Libraries for Graphics Accelerators

36 Supercomputing Frontiers and Innovations

https://www.top500.org
https://www.nvidia.com

3. AMD. https://www.amd.com

4. TOP 50. http://top50.supercomputers.ru

5. OpenCL. https://www.khronos.org/opencl

6. OpenACC. https://www.openacc.org

7. CUDA Zone. https://developer.nvidia.com/cuda-zone

8. Haskell language. https://www.haskell.org

9. Chaplygin, A., Gusev, A., Diansky, N.: High-performance shallow water model for use on

massively parallel and heterogeneous computing systems. Supercomputing Frontiers and

Innovations 8(4), 74–93 (2021). https://doi.org/10.14529/jsfi210407

10. Coplien, J.O.: Curiously recurring template patterns. C++ Report pp. 24–27 (February

1995)

11. Feodoritova, O., Krasnov, M., Zhukov, V.: A numerical method for conjugate heat transfer

problems in multicomponent flows. J. Phys.: Conf. Ser 2028 012024 (2021). https://doi.

org/10.1088/1742-6596/2028/1/012024

12. Gorobets, A., Bakhvalov, P.: Heterogeneous CPU+GPU parallelization for high-accuracy

scale-resolving simulations of compressible turbulent flows on hybrid supercomputers. Com-

puter Physics Communications 271(108231) (February 2022). https://doi.org/10.1016/

j.cpc.2021.108231

13. Gorobets, A., Duben, A.: Technology for supercomputer simulation of turbulent flowsin the

good new days of exascale computing. Supercomputing Frontiers and Innovations 8(4), 4–10

(2021). https://doi.org/10.14529/jsfi210401

14. Krasnov, M.M.: Functional programming library for C++. Programming and Computer

Software 46, 330–340 (2020). https://doi.org/10.1134/S0361768820050047

15. MacLane, S.: Categories for the Working Matematitian. Springer (1998)

16. Milewski, B.: Category Theory for Programmers (2019), https://github.com/hmemcpy/

milewski-ctfp-pdf/releases/download/v1.3.0/category-theory-for-programmers.

pdf

17. Murty, C., Manna, P., Chakraborty, D.: Conjugate heat transfer analysis in high speed

flows. Proceedings of Institution of Mechanical Engineers, Part G: Journal of Aerospace

Engineering 227(10), 1672–1681 (2013). https://doi.org/10.1177/0954410012464920

18. Veldhuizen, T.: Expression templates. C++ Report 7(5), 26–31 (June 1995)

M.M. Krasnov, O.B. Feodoritova

2022, Vol. 9, No. 4 37

https://www.amd.com
http://top50.supercomputers.ru
https://www.khronos.org/opencl
https://www.openacc.org
https://developer.nvidia.com/cuda-zone
https://www.haskell.org
https://doi.org/10.14529/jsfi210407
https://doi.org/10.1088/1742-6596/2028/1/012024
https://doi.org/10.1088/1742-6596/2028/1/012024
https://doi.org/10.1016/j.cpc.2021.108231
https://doi.org/10.1016/j.cpc.2021.108231
https://doi.org/10.14529/jsfi210401
https://doi.org/10.1134/S0361768820050047
https://github.com/hmemcpy/milewski-ctfp-pdf/releases/download/v1.3.0/category-theory-for-programmers.pdf
https://github.com/hmemcpy/milewski-ctfp-pdf/releases/download/v1.3.0/category-theory-for-programmers.pdf
https://github.com/hmemcpy/milewski-ctfp-pdf/releases/download/v1.3.0/category-theory-for-programmers.pdf
https://doi.org/10.1177/0954410012464920

	M.M. Krasnov, O.B. Feodoritova

