
Resilience within Ultrascale Computing System: Challenges and
Opportunities from Nesus Project

Pascal Bouvry1, Rudolf Mayer2, Jakub Muszyński1, Dana Petcu3, Andreas
Rauber4, Gianluca Tempesti5, Tuan Trinh6, Sébastien Varrette1

c© The Authors 2017. This paper is published with open access at SuperFri.org

Although resilience is already an established field in system science and many methodologies
and approaches are available to deal with it, the unprecedented scales of computing, of the massive
data to be managed, new network technologies, and drastically new forms of massive scale appli-
cations bring new challenges that need to be addressed. This paper reviews the challenges and
approaches of resilience in ultrascale computing systems from multiple perspectives involving and
addressing the resilience aspects of hardware-software co-design for ultrascale systems, resilience
against (security) attacks, new approaches and methodologies to resilience in ultrascale systems,
applications and case studies.

Keywords: high performance computing, fault tolerance, algorithm-based fault tolerance, ex-
treme data, evolutionary algorithm, ultrascale computing system.

Introduction

Ultrascale computing is a new computing paradigm that comes naturally from the necessity
of computing systems that should be able to handle massive data in possibly very large scale
distributed systems, enabling new forms of applications that can serve a very large amount of
users and in a timely manner that we have never experienced before.

Ultrascale Computing Systems (UCSs) are envisioned as large-scale complex systems joining
parallel and distributed computing systems that will be two to three orders of magnitude larger
than today’s systems (considering the number of Central Processing Unit (CPU) cores). It is very
challenging to find sustainable solutions for UCSs due to their scale and a wide range of possible
applications and involved technologies. For example, we need to deal with cross fertilization
among HPC, large-scale distributed systems, and big data management. One of the challenges
regarding sustainable UCSs is resilience. Traditionally, it has been an important aspect in the area
of critical infrastructure protection (e.g. traditional electrical grid and smart grids). Furthermore,
it has also become popular in the area of information and communication technology (ICT),
ICT systems, computing and large-scale distributed systems. In essence, resilience is an ability
of a system to efficiently deliver and maintain (in a timely manner) a correct service despite
failures and changes. It is important to emphasize this term in comparison with a closely related
"fault tolerance". The latter indicates only a well-defined behaviour of a system once an error
occurs. For example, a system is resilient to an effect on an error (in one of its components) if it
continues correct operation and service delivery (possibly degraded in some way). Whereas, it is
fault tolerant to the error when it is able to detect and notify about the existence of the problem
with possible recovery to the correct state.

1 University of Luxembourg, Esch-sur-Alzette, Luxembourg
2 Secure Business Austria, Vienna, Austria
3 West University of Timişoara, Timişoara, Romania
4 Vienna University of Technology, Vienna, Austria
5 University of York, York, UK
6 Budapest University of Technology and Economics, Budapest, Hungary

DOI: 10.14529/jsfi150203

46 Supercomputing Frontiers and Innovations



The existing practices of dependable design deal reasonably well with achieving and pre-
dicting dependability in systems that are relatively closed and unchanging. Yet, the tendency
to make all kinds of large-scale systems more interconnected, open, and able to change without
new intervention by designers, makes existing techniques inadequate to deliver the same levels
of dependability. For instance, evolution of the system itself and its uses impairs dependabil-
ity: new components "create" system design faults or vulnerabilities by feature interaction or
by triggering pre-existing bugs in existing components; likewise, new patterns of use arise, new
interconnections open the system to attack by new potential adversaries, and so on.

Many new services and applications will be able to get advantage of ultrascale platforms
such as big data analytics, life science genomics and HPC sequencing, high energy physics (such
as QCD), scalable robust multiscale and multi-physics methods and diverse applications for
analysing large and heterogeneous data sets related to social, financial, and industrial contexts.
These applications have a need for Ultrascale Computing Systems (UCSs) due to scientific goals
to simulate larger problems within a reasonable time period. However, it is generally agreed that
applications will require substantial rewriting in order to scale and benefit from UCSs.

In this paper, we aim at providing an overview of Ultrascale Computing Systems (UCSs)
and highlighting open problems. This includes:
• Exploring and reviewing the state-of-the-art approaches of continuous execution in the

presence of failures in UCSs.
• Techniques to deal with hardware and system software failures or intentional changes within

the complex system environment.
• Resilient, reactive schedulers that can survive errors at the node and/or the cluster-level,

cluster-level monitoring and assessment of failures with pro-active actions to remedy failures
before they actually occur (like migrating processes [13, 58], virtual machines [49], etc.),
and malleable applications that can adapt their resource usage at run-time.

In particular, we approach the problem from different angles including fundamental issues such
as reproducibility, repeatability and resiliency against security attacks; application-specific chal-
lenges such as hardware and software issues with big data, cloud-based cyber physical sys-
tems.The paper then also discusses new opportunities in providing and supporting resilience in
ultrascale systems.

This paper is organized as follows: the section 1 reviews the basic notions of faults, Fault
Tolerance and robustness. Then, several key issues need to be tackled to ensure a robust execution
on top of an UCS system. The section 2 focuses on recent trends as regards the resilience of large
scale computing systems, focusing on hardware failures (see §2.1) and on Algorithm-Based Fault
Tolerance (ABFT) techniques where the fault tolerance scheme is tailored to the algorithm
i.e. the application run. We will see that at this level, Evolutionary Algorithms (EAs) present
all the characteristics to handle natively faulty executions, even at the scale foreseen in UCSs
systems. Then, the section 3 will review the challenges linked to the notion of repeatibility
and reproducibility in UCSs. The final section concludes the paper and provides some future
directions and perspectives opened by this study.

1. Faults, Fault Tolerance and Robustness

Due to their inherent scale, UCSs are naturally prone to errors and failures which are no
longer rare events [11, 12, 50, 52]. There are many sources of faults in distributed computing
and they are inevitable due to the defects introduced into the system at the stages of its design,

P. Bouvry, R. Mayer, J. Muszyński, D. Petcu, A. Rauber, G. Tempesti, T. Trinh...

2015, Vol. 2, No. 2 47



construction or through its exploitation (e.g. software bugs, hardware faults, problems with data
transfer) [4, 11, 12, 52]. A fault may occur by a deviation of a system from the required operation
leading to an error (for instance a software bug becomes apparent after a subroutine call). This
transition is called a fault activation, i.e. a dormant fault (not producing any errors) becomes
active. An error is detected if its presence is indicated by a message or a signal, whereas not
detected, present errors are called latent. Errors in the system may cause a (service) failure and
depending on its type, successive faults and errors may be introduced (error/failure propaga-
tion). The distinction between faults, errors and failures is important because these terms create
boundaries allowing analysis and coping with different threats. In essence, faults are the cause
of errors (reflected in the state) which without proper handling may lead to failures (wrong and
unexpected outcome). Following these definitions, fault tolerance is an ability of a system to
behave in a well-defined manner once an error occurs.

1.1. Fault models for distributed computing

There are five specific fault models relevant in distributed computing: omission, duplication,
timing, crash, and byzantine failures [53].

Omission and duplication failures are linked with problems in communication. Send-omission
corresponds to a situation, when a message is not sent; receive-omission — when a message is
not received. Duplication failures occur in the opposite situation — a message is sent or received
more than once.

Timing failures occur when time constraints concerning the service execution or data delivery
are not met. This type is not limited to delays only, since too early delivery of a service may also
be undesirable.

The crash failure occurs in four variants, each additionally associated with its persistence.
Transient crash failures correspond to the service restart: amnesia-crash (the system is restored
to a predefined initial state, independent on the previous inputs), partial-amnesia-crash (a part
of the system stays in the state before the crash, where the rest is reset to the initial conditions),
and pause-crash (the system is restored to the state it had before the crash). Halt-crash is a
permanent failure encountered when the system or the service is not restarted and remains
unresponsive.

The last model — byzantine failure (also called arbitrary) — covers any (very often un-
expected and inconsistent) responses of a service or a system at arbitrary times. In this case,
failures may emerge periodically with varying results, scope, effects, etc. This is the most general
and serious type of failure [53].

1.2. Dependable computing

Faults, errors and failures are threats to system’s dependability. A system is described as
dependable, when it is able to fulfil a contract for the delivery of its services avoiding frequent
downtimes caused by failures.

Identification of threats does not automatically guarantee dependable computing. For this
purpose, four main groups of appropriate methods have been defined [4]: fault prevention, fault
tolerance, fault removal, and fault forecasting. As visible in fig. 1, all of them can be analysed
from two points of view — either as means of avoidance/acceptance of faults or as approaches to
support/assess dependability. Fault tolerance techniques aim to reduce (or even eliminate) the

Resilience within Ultrascale Computing System: Challenges and Opportunities...

48 Supercomputing Frontiers and Innovations



Dependable

computing

Fault

acceptance

Fault

avoidance

Provision

Assessment
Fault

forecasting

Fault

tolerance

Fault

removal

Fault

prevention

Figure 1. Means for dependable computing

amount of service failures in the presence of faults. The main goal of fault prevention methods
is to minimize the number of faults occurred or introduced through usage and enforcement of
various policies (concerning usage, access, development etc.) The next group — fault removal
techniques — is concentrated around testing and verification (including formal methods). Finally,
fault forecasting consists of means to estimate occurrences and consequences of faults (at a given
time and later).

1.3. Fault tolerance

Fault tolerance techniques may be divided into two main, complementary categories [4]:
error detection, and recovery. Error detection may be performed during normal service operation
or while it is suspended. The first approach in this category — concurrent detection — is based
on various tests carried out by components (software and/or hardware) involved in the particular
activity or by elements specially designated for this function. For example, a component may
calculate and verify checksums for the data which is processed by it. On the other hand, a firewall
is a good illustration of a designated piece of hardware (or software) oriented on detection of
intrusions and other malicious activities. Preemptive detection is associated with the maintenance
and diagnostics of a system or a service. The focus in this approach is laid on identification of
latent faults and dormant errors. It may be carried out at a system startup, at a service bootstrap,
or during special maintenance sessions.

After an error of a fault is detected, recovery methods are applied. Depending on the problem
type, error or fault handling techniques are used. The first group is focused on elimination of
errors from the system state, while the second are designed to prevent activation of faults. In [4],
the specific methods are separated from each other, where in practice this boundary is fuzzy and
depends on the specific service and system types.

Generally, error handling is solved through:
1. Rollback [22] — the system is restored to the last known, error-free state. The approach

here depends on a method used to track the changes of the state. A well known technique is
checkpointing — the state of a system is saved periodically (e.g. the snapshot of a process is
stored on a disk) as a potential recovery point in the future. Obviously, this solution is not
straightforward in the case of distributed systems and there are many factors to consider. In
such environment, checkpointing can be coordinated or not — with differences in reliability
and the cost of synchronisation of the distributed components (for details see: [18, 31, 53]).

P. Bouvry, R. Mayer, J. Muszyński, D. Petcu, A. Rauber, G. Tempesti, T. Trinh...

2015, Vol. 2, No. 2 49



Rollback can be also implemented through the message logging. In this case, the communi-
cation between the components is tracked rather than their state. In case of an error, the
system is restored by replaying the historical messages, allowing it to reach global consis-
tency [53]. Sometimes both techniques are treated as one, as usually they complement each
other.

2. Rollforward — the current, erroneous system state is discarded and replaced with a one
newly created and initialised.

3. Compensation — solutions based on components’ redundancy and replication, sometimes
referred to as fault masking. In the first case, additional components (usually hardware) are
kept in reserve [31]. If failures or errors occur, they are used to compensate the losses. For
example, a connection to the Internet of a cloud platform should be based on solutions from
at least two different Internet Service Providers (ISPs).
Replication is based on the dispersion of multiple copies of the service components. A schema
with replicas used only for the purpose of fault tolerance is called a passive (primary-backup)
replication [31]. On the other hand, an active replication is when the replicas participate
in providing the service, leading to increased performance and applicability of load bal-
ancing techniques [31]. Coherence is the major challenge here, and various approaches are
used to support it. For instance, read-write protocols are crucial in active replication, as all
replicas have to have the same state. Another worth to note example is clearly visible in
volunteer-based platforms. An appropriate selection policy of the correct service response is
needed when replicas return different answers, i.e. a method to reach quorum consensus is
required [31].
These techniques are not exclusive and can be used together. If the system can not be

restored to a correct state thanks to the compensation, rollback may be attempted. If this fails,
then rollforward may be used.

The above mentioned methods may be referred to as general-purpose techniques. These solu-
tions are relatively generic, which aid their implementation for almost any distributed computa-
tion. It is also possible to delegate responsibility for fault tolerance to the service (or application)
itself, allowing tailoring the solution for specific needs — therefore forming an application-specific
approach. A perfect example in this context is ABFT, originally applied to distributed matrix
operations [14], where original matrices are extended with checksums before being scattered
among the processing resources. This allows detection, location and correction of certain mis-
calculations, creating a disk-less checkpointing method. Similarly, in certain cases it is possible
to continue the computation or the service operation despite the occurring errors. For instance,
unavailable resource resulting from a crash-stop failure can be excluded from further use. In this
work, the idea will be further analysed and extended to the context of byzantine errors and the
nature-inspired distributed algorithms.

Fault handling techniques are applied after the system is restored to an error-free state (us-
ing the methods described above). As the aim now is to prevent future activation of detected
faults, four subgroups according to the intention of the operation may be created. These are [4]:
diagnosis (the error(s) are identified and their source(s) are located), isolation (faulty compo-
nents are logically or physically separated and excluded from the service), reconfiguration (the
service/platform is reconfigured to substitute or bypass the faulty elements), and reinitialization
(the configuration of the system is adapted to the new conditions).

Resilience within Ultrascale Computing System: Challenges and Opportunities...

50 Supercomputing Frontiers and Innovations



1.4. Robustness

When a given system is resilient to a given type of fault, one generally claims that this system
is robust. Yet defining rigorously robustness is not an easy task and many contributions come
with their own interpretation of what robustness is. Actually, there exists a systematic framework
that permits to define a robust system unambiguously. In fact, this should be probably applied
to any system or approach claiming to propose a fault-tolerance mechanism. This framework,
formalized in [57], answers the following three questions:
1. What behavior of the system makes it robust?
2. What uncertainties is the system robust against?
3. Quantitatively, exactly how robust is the system?

The first question is generally linked to the technique or the algorithm applied. The second
— explicitly lists the type of faults or disturbing elements targeted by the system. Answering it
is critical to delimit the application range of the designed system and avoid counter examples
selected in a context not addressed by the robust mechanism. The third question is probably
the most difficult to answer, and at the same time the most vital to characterize the limits of
the system. Indeed, there is nearly always a threshold on the error/fault rate above which the
proposed infrastructure fails to remain robust and breaks (in some sense).

2. Resiliency within UCSs: From Hardware to ABFT Trends

2.1. Lessons Learned from Big Data Hardware

One of the direct consequences of the treatment of big data is, clearly, the requirement for
extremely high processing power. And whereas research in the big data domain does not tra-
ditionally include research in processor and computer architecture, there is a clear correlation
between the advances in the two domains. While it is obviously difficult to predict future de-
velopments in processing architectures with high accuracy, we have identified two major trends
that are likely to affect big data processing: the development of many-core devices and hard-
ware/software codesign.

The many-core approach represents a step-change in the number of processing units available
either in single devices or in tightly-coupled arrays. Exploiting techniques and solutions derived
from the Network-on-Chip (NoC) [32] and Graphical Processing Units (GPU) areas, many-core
systems are likely to have a considerable impact on application development, pushing towards
distributed memory and data-flow computational models. At the same time, the standard as-
sumption of "more tasks than processors" will be loosened (or indeed inverted), reducing to some
extent the complexity of processes such as task mapping and load balancing.

Hardware/software co-design implies that applications will move towards a co-synthesis of
hardware and software: the compilation process will change to generate at the same time the
code to be executed by a processor and one or more hardware co-processing units to accelerate
computation. Intel and ARM have already announced alliances with Altera and Xilinx7, respec-
tively, to offer tight coupling between their processors and reconfigurable logic, while Microsoft
recently introduced the reconfigurable Catapult system to accelerate its Bing servers [47].

These trends, coupled with the evolution of VLSI fabrication processes (the sensitivity of a
device to faults increases as feature size decreases), introduce new challenges to the application

7http://www.eejournal.com/archives/articles/20140624-intel.

P. Bouvry, R. Mayer, J. Muszyński, D. Petcu, A. Rauber, G. Tempesti, T. Trinh...

2015, Vol. 2, No. 2 51



of fault tolerance in the hardware domain. In addition to increasing the probability of fabrication
defects (not directly relevant to this article), the heterogeneous nature of these systems and their
extreme density represent major challenges to reliability. Indeed, the notion of hardware fault
itself is being affected and extended to include a wider variety of effects, such as variability and
power/heat dissipation.

This section does not in any way claim to represent an exhaustive survey of this very complex
area, nor even a thorough discussion of the topic, but rather wants to provide a brief "snapshot"
of a few interesting approaches to achieve fault tolerance in hardware, starting with a brief outline
of some key concepts and fundamental techniques.

2.2. Fault tolerance in digital hardware

One of the traditional classification methods subdivides online faults in hardware systems
(i.e. faults that occur during the lifetime of a circuit, rather than at fabrication) into two cat-
egories: permanent and transient (a third category, intermittent faults, is outside the scope of
this discussion).

Permanent faults are normally introduced by irreversible physical damage to a circuit (for
example, short circuits). Rather common in fabrication, they are rare in the lifetime of a circuit,
but become increasingly less so as circuits age. Once a permanent fault appears, it will continue
to affect the operation of the circuit forever.

Transient faults have limited duration and will disappear with time. By far the most common
example of transient faults is Single-Event Upsets (SEU), where radiation causes a change of state
within a memory element in a circuit.

This distinction is highly relevant in the context of fault tolerance, defined as the ability of
a system to operate correctly in the presence of faults. Generally, the design of a fault tolerant
hardware system involves four successive steps [1]:

1. Fault detection: can the system detect the presence of a fault?
2. Fault diagnosis or localization: can the system identify (as precisely as needed) the exact

nature and location of a fault?
3. Fault limitation or containment : can the impact of the fault on the operation of the system

be circumscribed so that no irreversible damage (to the circuit or to the data) results?
4. Fault repair : can the functionality of the system be recovered?

While there is usually no significant difference between transient and permanent faults in
the first three steps, the same does not apply to the last step: transient faults can allow the
full recovery of the circuit functionality, whereas graceful degradation (e.g., [15]) is normally the
objective in the case of permanent faults in the system.

2.3. Fundamental techniques

Any implementation of fault tolerance (or indeed of fault detection) in hardware implies,
directly or indirectly, the use of redundancy. Specific applications of redundancy, however, vary
significantly depending on the features of the hardware system. In general, three "families" of
redundant techniques can be identified. Once again, the examples presented in this section are
not meant to be exhaustive, but simply to illustrate the different ways in which redundancy can
be applied in the context of fault tolerance in hardware systems.

Resilience within Ultrascale Computing System: Challenges and Opportunities...

52 Supercomputing Frontiers and Innovations



2.3.1. Data or information redundancy

This type of techniques relies on the use of non-minimal coding to represent the data in a
system. By far the most common implementation of data redundancy implies the use of error
detecting codes (EDC), when the objective is fault detection, and of error correcting codes (ECC),
when the objective is fault tolerance [1].

It is worth highlighting that, even though these techniques rely on information redundancy,
they also imply considerable hardware overhead, not only due to the requirement for additional
storage (due to the non-minimal encoding), but also because the computation of the additional
redundant bits implies the presence of (sometimes significant) additional logic.

2.3.2. Hardware redundancy

Hardware redundancy techniques exploit additional resources more directly to achieve fault
detection or tolerance. In the general case, the best-known hardware redundancy approaches
exploit duplication (Double Modular Redundancy, or DMR) for fault detection or triplication
(Triple Modular Redundancy, or TMR) for fault tolerance.

TMR in particular is a widely used technique for safety critical systems: three identical
systems operate on identical data, and a 2-out-of-3 voter is used to detect faults in one system
and recover the correct result from the others. In its most common implementations (for example,
in space missions), TMR is usually applied to complete systems, but the technique can operate
at all levels of granularity (for example, it would be possible, if terribly inefficient, to design
TMR systems for single logic gates).

2.3.3. Time redundancy

This type of approaches relies, generally speaking, on the repetition of computation and the
comparison of the results between the different runs. In the simplest case, the same computation
is repeated twice to generate identical results, allowing the detection of SEU. More sophisti-
cated (but less generally applicable) approaches introduce differences in two executions (e.g. by
inverting input data or shifting operands) in order to be able to detect permanent faults as well.

It is worth noting that time redundancy techniques are rarely used when fault tolerance is
sought (being essentially limited to detection) but in theory can be extended to allow it in case
of transient faults.

2.4. Fault tolerant design

In the introduction to this section, we highlighted how the heterogeneity and density of a
type of devices that are likely to become relevant in big data treatment complicates considerably
the task of achieving fault tolerant behaviour in hardware.

In particular, the heterogeneity introduced by the presence of programmable logic and the
complexity of many-core devices implies that the notion of a single approach to fault tolerance
applicable to every component of a system will have to be replaced by ad-hoc techniques. What
follows is a short list of the main components of a complete system, followed by a brief analysis
of their fault tolerance requirements and a few examples of approaches developed to achieve this
goal, in order to illustrate some of the issues and difficulties that will have to be met.

P. Bouvry, R. Mayer, J. Muszyński, D. Petcu, A. Rauber, G. Tempesti, T. Trinh...

2015, Vol. 2, No. 2 53



2.4.1. Memories

Memory elements are probably the hardware components that require the highest degree of
fault tolerance: their extremely regular structure implies that transistor density in memories is
substantially greater than in any other device (the largest memory device commercial available
in 2015 reaches a transistor count of almost 140 billion, compared for example to 4.3 billion
of the largest processor). This level of density has resulted in the introduction of fault tolerant
features even in commonly available commercial memories.

Reliability in memories takes essentially two forms: to protect against SEUs, the use or
redundant ECC bits associated with each memory word is common and well-advertised [39], while
marginally less known is the use of spare memory locations to replace permanently damaged ones.
The latter technique, used extensively at fabrication for laser-based permanent reconfiguration,
has also been applied in an on-line self-repair setting [16].

2.4.2. Programmable logic

Programmable logic devices (generally referred to as Field Programmable Gate Arrays) are
regular circuits that can reach extremely high transistor counts. In 2015, the largest commer-
cial FPGA device (the Virtex-Ultrascale XCVU440 by Xilinx) contains more than 20 billion
transistors.

The regularity of FPGAs has sparked a significant amount of research into self-testing and
self-repairing programmable devices since the late 1990s [2, 34, 37], but to the best of our knowl-
edge this research has yet to impact consumer products (even considering potential fabrication-
time improvement measures similar to those described in the previous section for memories),
with the exception of radiation-hardening for space applications.

In reality, the relationship between programmable logic and fault tolerance would merit
a more complete analysis, since the interplay between the fabric of the FPGA itself and the
circuit that is implemented within the fabric can lead to complex interactions. Such an analysis
is however beyond the scope of this article. Interestingly in this context, even though its FPGA
fabric itself does not appear to contain explicit features for fault-tolerance, Xilinx supports a
design tool to allow a degree of fault-tolerance in implemented designs through its Isolation
Design Flow, specifically aimed at fault containment.

2.4.3. Single processing cores

The main driving force in the development of high-performance processors has been, until
recently at least, sheer computational speed. In the last few years, power consumption has
become an additional strong design consideration, particularly since the pace of improvements
in performance has started to slow. Since fault tolerance, with its redundancy requirements, has
negative implications both for performance and for power consumption, relatively little research
into fault tolerant cores has reached the consumer market.

The situation is somewhat different outside of the high-performance end of the spectrum,
where examples of processors specifically designed for fault tolerance exist (for example, the
NGMP processor developed on behalf of the European Space Agency [3] or the Cortex-R series
by ARM), demonstrating at least the feasibility of such implementations.

Resilience within Ultrascale Computing System: Challenges and Opportunities...

54 Supercomputing Frontiers and Innovations



More recently, the RAZOR approach [23] represents a fault tolerance technique aimed specif-
ically at detecting (and possibly correcting) timing errors within processor pipelines using a
particular kind of time redundancy approach that exploits delays in the clock distribution lines.

2.4.4. On-chip networks

Networks are a crucial element of any system where processors have to share information, and
therefore represent a fundamental aspect not only of many-core devices, but also of any multi-
processor system. Often rivalling in size and complexity with the processing units themselves,
networks and their routers have traditionally been a fertile ground for research on fault tolerance.

Indeed, even when limiting the scope of the investigation to on-chip networks, numerous
books and surveys exist that classify, describe, and analyse the most significant approaches to
fault tolerance (for example, [7, 45, 48]). Very broadly, most of the fundamental redundancy tech-
niques have been applied, in one form or another, to the problem of implementing fault-tolerant
on-chip networks, ranging from data redundancy (e.g. parity or ECC encoding of transmitted
packets), through hardware redundancy (e.g. additional routing logic), to time redundancy (e.g.
repeated data transmission).

2.4.5. Many-Core arrays

An accurate analysis of fault tolerance in many-core devices is of course hampered by the lack
of commercially-available devices (the Intel MIC Architecture, based on Xeon Phi co-processors,
is a step in this direction but at the moment is limited to a maximum of 61 cores and relies on
conventional programming models within a coarse-grained architecture). Using transistor density
as a rough indicator of the fault sensitivity of a device (keeping in mind that issue related to heat
dissipation can be included in the definition), it is no surprise that fault tolerance is generally
considered as one of the key enabling technologies for this type of device: once again, the regular
structure of many-core architecture is likely to have a significant impact on transistor count.
Today, for example, transistor count in GPUs (the commercial devices that, arguably, bear the
closest resemblance to many-core systems, both for the number of cores and for the programming
model) is roughly twice that of Intel processors using similar fabrication processes, and even in
the case of Intel this type of density was achieved only in multi-core (and hence regular) devices.

The lack of generally accessible many-core platforms implies that most of the existing ap-
proaches to fault-tolerance in this kind of systems remain at a somewhat higher abstraction layer
and typically rely on mechanisms of task remapping through OS routines or dedicated middle-
ware [9, 10, 33, 59]. Specific hardware-level approaches, on the other hand, have been applied to
GPUs (e.g., [55]) and could have an impact on many-core systems. Indeed, one of the few proto-
type many-core platforms with a degree of accessibility (ClearSpeed’s CSX700 processor) boasts
a number of dedicated hardware error-correction mechanisms, hinting at least to the importance
of fault tolerance in this type of devices, whereas no information is available on fault-tolerance
mechanisms in the Intel MIC architecture.

2.5. Toward Inherent Software Resilience: ABFT nature of EAs

Evolutionary Algorithms (EAs) are a class of solving techniques based on the Darwinian
theory of evolution [19] which involves the search of a population of solutions.

P. Bouvry, R. Mayer, J. Muszyński, D. Petcu, A. Rauber, G. Tempesti, T. Trinh...

2015, Vol. 2, No. 2 55



A set of recent studies [20, 26, 30, 35, 42, 43] illustrate what seems to be a natural resilience of
EAs against a model of destructive failures (crash failures). With a properly designed execution,
the system experiences a graceful degradation [35]. This means, that up to some threshold and
despite the failures, the results are still delivered. However, it either requires more time for the
execution or the returned values are further from the optimum being searched.

3. Repeatibility and Reproducibility Challenges in UCSs

Repeatibility and reproducibility are important aspects of sound scientific research in all
disciplines – yet more difficult to achieve than might be expected [5, 54]. Repeatability of the
experiments denotes the ability to repeat the same experiment and achieve the same result, by
the original investigator [56]. On the other hand, reproducibility enables the verification of the
validity of the conclusions and claims drawn from scientific experiments by other researchers,
independent from the original investigator.

Repeatibility is essential for all evidence-based sciences, as counterpart to formal proofs used
in theoretical sciences or discourse used widely in e.g. the humanities. It is a key requirement
for all sciences and studies relying on computational processes. The challenge of achieving re-
peatability, however, increases drastically with the complexity of the underlying computational
processes, making the characteristics of the processes less intuitive to grasp and interpret and
verify. It thus becomes an enormous challenge in the area of ultrascale computing given the
enormous complexity of the massive amount of computing steps involved, and the numerous
dependencies of an algorithm performing on a stack of software and hardware of considerable
complexity.

While many disciplines have, over sometimes long-time periods, established a set of good
practices for repeating and verifying their experiments (e.g. by using experiment logbooks in
disciplines such as chemistry or physics, where the researchers record their experiments), compu-
tational science lags behind, and many investigations are hard to repeat or reproduce [17]. This
can be attributed to the lower maturity of computer science methods and practices in general,
the fast-moving pace of changing technology that is utilised to perform the experiments, or the
multitude of different software components needed to interact to perform the experiments. Small
variations in, for example, the version of a specific software can have a great impact on the final
result which might deviate significantly from the expected outcome, as has promoinently been
shown e.g. for the analysis of CT scans in the medical domain [27]. More severely, the source of
such changes might not even be in the software that is specifically used for a certain task, but
somewhere further down the stack of software the application depends on, including for example
the operating system, system libraries or the very specific hardware environment being used.
Recognizing these needs, steps are being taken to assist research in ensuring their results are
more easily reproducible [24, 25]. The significant overhead in providing enough documentation
to allow an exact reproduction of the experiment setup further adds to these difficulties.

Technical solutions to increase reproducibility in eScience research cover several branches.
One type of solutions is aimed at recreating the technical environments where experiments are
executed in. Simple approaches towards this goal include virtualising the complete environment
the experiment is conducted in, e.g. by making a clone which can subsequently be redistributed
and executed in Virtual Machines. Such approaches only partially allow reproducibility, as the
cloned system is potentially containing many more applications than are actually needed, and
no identification of which components are actually required is provided. Thus, a more favourable

Resilience within Ultrascale Computing System: Challenges and Opportunities...

56 Supercomputing Frontiers and Innovations



approach is to recreate only the needed parts of the system. Code, Data, and Environment
(CDE) [28] is such an approach, as it detects the required components during the runtime of a
process. CDE works on Linux operating system environments and requires the user to prepend
his commands to scripts or binaries by the cde command. CDE will then intercept system calls
and gather all the files and binaries that were used in the execution. A packaged created thereof
can then be transferred to a new environment.

CDE has a few shortcomings especially in distributed system set-ups. External systems may
be utilised, e.g. by calling Web Services, taking over part of the computational tasks. CDE does not
aim at detecting these calls. This challenge is exacerbated in more complex distributed set-ups
such as may be encountered in ultra-scale computational environments.

Not only external, but also calls to local service applications are an issue. These are normally
running in the background and started before the program execution, and thus not all the sources
that are necessary to run them are detected. It is more problematic, though, that there is no
explicit detection of such a service being a background or remote service. Thus, the fact that the
capturing of the environment is incomplete remains unnoticed to users who are not familiar with
all the details of the implementation. The Process Migration Framework [8] (PMF) is a solution
similar to CDE, but takes specifically the distributed aspect into account.

Another approach to enable better repeatibility and reproducibility is in using standardised
methods and techniques to author experiments, such as the use of workflows. Workflows allow
a precise definition of the involved steps, the required environment, and the data flow between
components. The modelling of workflows can be seen as an abstraction layer, as they describe
the computational ecosystem of the software used during a process. Additionally, they provide an
execution environment that integrates the required components to perform a process and execute
all defined subtasks. Different scientific workflow management systems exist that allow scientists
to combine services and infrastructure for their research. The most prominent examples of such
systems are Taverna [41] and Kepler [36]. Vistrails [51] also adds versioning and provenance of the
creation of the workflow itself. The Pegasus workflow engine [21] specifically aims at scalability,
and allows executing workflows in cluster, grid and cloud infrastructures.

Building on top of workflows, the concept of workflow-centric Research Objects [6] (ROs)
tries to describe research workflows in the wider eco-system they are embedded in. ROs are a
means to aggregate or bundle resources used in a scientific investigation, such as a workflow,
provenance from results of its execution, and other digital resources such as publications or data-
sets. In addition, annotations are used to describe these objects further. A digital library exists
for Workflows and Research Objects to be shared, such as the platform my experiment.8

Workflows facilitate many aspects of reproducibility. However, unless experiments are de-
signed from the beginning to be implemented as a workflow, there is a significant overhead
to migrate an existing solution to a workflow. Furthermore, workflows are normally limited in
features they support, most prominently in the type of programming languages. Thus, not all
experiments can be easily implemented in such a manner.

A model to describe a scientific process or experiment is presented in [38]. It allows the
researcher to describe their experiments in a manner similar to the approach of Research Objects;
however, this model is independent of a specific workflow engine, and provides a more refined
set of concepts to specifiy the software and hardware setup utilised.

8http://www.myexperiment.org/

P. Bouvry, R. Mayer, J. Muszyński, D. Petcu, A. Rauber, G. Tempesti, T. Trinh...

2015, Vol. 2, No. 2 57



Another important aspect of reproducibility is the verification of the results obtained. The
verification and validation of experiments aims to prove whether the replicated or repeated ex-
periment has the same characteristics and performs in the same way as the original experiment
– even if the original implementation is faulty. Simple approaches just comparing a final exper-
iment outcome, e.g. a performance measure of a machine learning experiment, doesn’t provide
sufficient evidence on this task, especially in settings where probabilisitic learning is utilised, and
also a close approximation of the original result would be accepted. Furthermore, a comparison
on final outcomes provides no means to trace where potential deviations originated in the ex-
periment. It is therefore required to analyze the characteristics of an experimental process wrt.
to its significant properties, its determinism, and levels where significant states of a process can
be compared. On further needs to define a set of measurements to be taken during an experi-
ment, and identify approapriate metrics to compare values obtained from different experiment
executions, beyond simple similarity [44]. A framework to formalise such a verification has been
introduced as the VFramework [40], which is specifically tailored to process verification. It de-
scribes what conditions must be met and what actions need to be taken in order to compare the
executions of two processes.

In the context of ultrascale computing, the distributed nature of large experiments poses chal-
lenges for repeating the results, as there are many potential sources for errors, and an increased
demand for documentation. Also, approaches such as virtualisation or recreation of computing
environments hit the boundaries of feasibility especially in larger distributed settings based on
grid our cloud infrastructure, where the number of nodes to be stored becomes difficult to man-
age. Another challenge in ultrascale computing is in the nature of computing hardware utilised,
which is often highly specialised towards certain tasks, and much more difficult to be captured
and recreated in other settings.

Last, but not least, ultrascale computing is usually also tightly linked with massive volumes
of data that need to be kept available and identifiable in sometimes highly dynamic environments.
Proper data management and preservation have been prominently called for [29]. A key aspect
in ultra-scale computing in this context are means to persistently identify the precise versions
and subsets of data having been used in an experiment. The Working Group on Dynamic Data
Citation of the Research Data Alliance9 has been developing recommendations how to achieve
such a machine-actionable citation mechanism for dynamic data that is currently being evaluated
in a number of pilots [46].

Conclusion

In this paper, we first proposed an overview of resilient computing in Ultrascale Computing
Systems, i.e., cross-layered techniques dealing with hardware and software failures or attacks,
but also the necessary services including security and repeatability. We also described how new
application needs such as big data and cyber-physical systems challenge existing computing
paradigms and solutions.

New opportunities have been highlighted but they certainly require further investigations and
in particular large-scale experiments and validations. What emerges is the need for the appari-
tion of additional disruptive paradigms and solutions at all levels: from hardware, languages,
compilers, operating systems, middleware, services, and application-level solutions. Offering a

9https://rd-alliance.org/groups/data-citation-wg.html

Resilience within Ultrascale Computing System: Challenges and Opportunities...

58 Supercomputing Frontiers and Innovations



global view on the reliability/resilience issues will allow to define the right level of information
exchange between all layers and components in order to have global (cross-layer/component)
solution. Additional objectives such as performance, energy-efficiency and cost also need to be
taken into account. We intend in the context of the COST NESUS project to have several focus
groups aimed at defining more precisely the problems and approaches for such challenges.

This work is partially supported by EU under the COST Program Action IC1305: Network
for Sustainable Ultrascale Computing (NESUS).

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-
mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work
without further permission provided the original work is properly cited.

References

1. M. Abd-El-Barr. Design and Analysis of Reliable and Fault-tolerant Computer Systems.
Imperial College Press, 2007. DOI: 10.1142/9781860948909.

2. M. Abramovici, C. Strond, C. Hamilton, S. Wijesuriya, and V. Verma. Using roving stars
for on-line testing and diagnosis of fpgas in fault-tolerant applications. In Test Conference,
1999. Proceedings. International, pages 973–982, 1999. DOI: 10.1109/TEST.1999.805830.

3. J. Andersson, J. Gaisler, and R. Weigand. Next Generation MultiPurpose Microprocessor.
In DASIA 2010 Data Systems In Aerospace, volume 682 of ESA Special Publication, page 7,
August 2010.

4. A. Avizienis, J.-C. Laprie, B. Randell, and C.E. Landwehr. Basic Concepts and Taxon-
omy of Dependable and Secure Computing. IEEE Transactions on Dependable and Secure
Computing, 1:11–33, 2004. DOI: 10.1109/tdsc.2004.2.

5. C. Glenn Begley and Lee M. Ellis. Drug development: Raise standards for preclinical cancer
research. Nature, 483(7391):531–533, March 2012. DOI: 10.1038/483531a.

6. Khalid Belhajjame, Oscar Corcho, Daniel Garijo, Jun Zhao, Paolo Missier, David New-
man, RaÃžl Palma, Sean Bechhofer, Esteban GarcÃŋa Cuesta, JosÃľ Manuel GÃşmez-
PÃľrez, Stian Soiland-Reyes, Lourdes Verdes-Montenegro, David De Roure, and Carole
Goble. Workflow-centric research objects: First class citizens in scholarly discourse. In Pro-
ceedings of Workshop on the Semantic Publishing, (SePublica 2012) 9th Extended Semantic
Web Conference, May 28 2012.

7. Luca Benini and Giovanni De Michelli. Networks on chips : technology and tools. The Morgan
Kaufmann series in systems on silicon. Elsevier Morgan Kaufmann Publishers, Amsterdam,
Boston, Paris, 2006.

8. Johannes Binder, Stephan Strodl, and Andreas Rauber. Process migration framework –
virtualising and documenting business processes. In Proceedings of the 18th IEEE Interna-
tional EDOC Conference Workshops and Demonstrations (EDOCW 2014), pages 398–401,
Ulm, Germany, September 2014. DOI: 10.1109/edocw.2014.66.

9. Cristiana Bolchini, Matteo Carminati, and Antonio Miele. Self-adaptive fault tolerance
in multi-/many-core systems. Journal of Electronic Testing, 29(2):159–175, 2013. DOI:
10.1007/s10836-013-5367-y.

P. Bouvry, R. Mayer, J. Muszyński, D. Petcu, A. Rauber, G. Tempesti, T. Trinh...

2015, Vol. 2, No. 2 59



10. C. Braun and H. Wunderlich. Algorithm-based fault tolerance for many-core architectures.
In Test Symposium (ETS), 2010 15th IEEE European, pages 253–253, May 2010. DOI:
10.1109/ETSYM.2010.5512738.

11. Franck Cappello. Fault tolerance in petascale/ exascale systems: Current knowl-
edge, challenges and research opportunities. IJHPCA, 23(3):212–226, 2009. DOI:
10.1177/1094342009106189.

12. Franck Cappello, Al Geist, Bill Gropp, Laxmikant V. Kalé, Bill Kramer, and Marc Snir.
Toward exascale resilience. IJHPCA, 23(4):374–388, 2009. DOI: 10.1177/1094342009347767.

13. Sayantan Chakravorty, Celso L. Mendes, and Laxmikant V. KalÃľ. Proactive Fault Tolerance
in MPI Applications via task Migration. In In International Conference on High Performance
Computing, 2006. DOI: 10.1007/11945918_47.

14. Zizhong Chen, Graham E. Fagg, Edgar Gabriel, Julien Langou, Thara Angskun, George
Bosilca, and Jack Dongarra. Fault tolerant high performance computing by a coding ap-
proach. In Proceedings of the Tenth ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, PPoPP ’05, pages 213–223, New York, NY, USA, 2005. ACM.
DOI: 10.1145/1065944.1065973.

15. V. Cherkassky. A measure of graceful degradation in parallel-computer systems. Reliability,
IEEE Transactions on, 38(1):76–81, Apr 1989. DOI: 10.1109/24.24577.

16. M. Choi, N.J. Park, K.M. George, B. Jin, N. Park, Y.B. Kim, and F. Lombardi. Fault tolerant
memory design for hw/sw co-reliability in massively parallel computing systems. In Network
Computing and Applications, 2003. NCA 2003. Second IEEE International Symposium on,
pages 341–348, April 2003. DOI: 10.1109/NCA.2003.1201173.

17. Christian Collberg, Todd Proebsting, Gina Moraila, Akash Shankaran, Zuoming Shi, and
Alex M Warren. Measuring reproducibility in computer systems research. Technical report,
University of Arizona, 2014.

18. George Coulouris, Jean Dollimore, Tim Kindberg, and Gordon Blair. Distributed Systems:
Concepts and Design. Addison-Wesley Publishing Company, USA, 5th edition, 2011.

19. C. Darwin. The Origin of Species. John Murray, 1859.

20. Francisco Fernandez De Vega. A Fault Tolerant Optimization Algorithm based on Evo-
lutionary Computation. In Proceedings of the International Conference on Dependability
of Computer Systems (DEPCOS-RELCOMEX’06), pages 335–342, Washington, DC, USA,
2006. IEEE Computer Society. DOI: 10.1109/depcos-relcomex.2006.2.

21. Ewa Deelman, Karan Vahi, Gideon Juve, Mats Rynge, Scott Callaghan, Philip J Maechling,
Rajiv Mayani, Weiwei Chen, Rafael Ferreira da Silva, Miron Livny, et al. Pegasus, a workflow
management system for science automation. Future Generation Computer Systems, 2014.
DOI: 10.1016/j.future.2014.10.008.

22. E. N. (Mootaz) Elnozahy, Lorenzo Alvisi, Yi-Min Wang, and David B. Johnson. A survey of
rollback-recovery protocols in message-passing systems. ACM Comput. Surv., 34(3):375–408,
September 2002. DOI: 10.1145/568522.568525.

23. D. Ernst, S. Das, Seokwoo Lee, D. Blaauw, T. Austin, T. Mudge, Nam Sung Kim, and
K. Flautner. Razor: circuit-level correction of timing errors for low-power operation. Micro,
IEEE, 24(6):10–20, Nov 2004. DOI: 10.1109/MM.2004.85.

Resilience within Ultrascale Computing System: Challenges and Opportunities...

60 Supercomputing Frontiers and Innovations



24. James Taylor eivind Hovig Geir Kjetil Sandve, Anton Nekrutenko. Ten simple rules for
reproducible computational research. PLoS Computational Biology, 9(10), 10 2013. DOI:
doi:10.1371/journal.pcbi.1003285.

25. Ian Gent. The recomputation manifesto, April 12 2013.

26. Daniel Lombrana González, Francisco Fernández de Vega, and Henri Casanova. Character-
izing fault tolerance in genetic programming. In Proc. of the 2009 workshop on Bio-inspired
algorithms for distributed systems (BADS’09), pages 1–10, New York, NY, USA, 2009. ACM.
DOI: 10.1145/1555284.1555286.

27. Ed H. B. M. Gronenschild, Petra Habets, Heidi I. L. Jacobs, Ron Mengelers, Nico Rozen-
daal, Jim van Os, and Machteld Marcelis. The effects of freesurfer version, workstation
type, and macintosh operating system version on anatomical volume and cortical thickness
measurements. PLoS ONE, 7(6), 06 2012. DOI: 10.1371/journal.pone.0038234.

28. Philip J. Guo. CDE: Run any Linux application on-demand without installation. In Pro-
ceedings of the 25th international conference on Large Installation System Administration
(LISA’11), pages 2–2, Berkeley, CA, USA, 2011.

29. Mark Guttenbrunner and Andreas Rauber. A measurement framework for evaluating emu-
lators for digital preservation. ACM Transactions on Information Systems (TOIS), 30(2), 3
2012. DOI: 10.1145/2180868.2180876.

30. J. Ignacio Hidalgo, Juan Lanchares, Francisco Fernández de Vega, and Daniel Lombrana. Is
the island model fault tolerant? In GECCO ’07: Proceedings of the 2007 GECCO confer-
ence companion on Genetic and evolutionary computation, pages 2737–2744, London, United
Kingdom, July 7–11 2007. ACM. DOI: 10.1145/1274000.1274085.

31. Kai Hwang, Jack Dongarra, and Geoffrey C. Fox. Distributed and Cloud Computing: From
Parallel Processing to the Internet of Things. Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA, 1st edition, 2011.

32. A. Ivanov and G. De Micheli. Guest editors’ introduction: The network-on-chip paradigm
in practice and research. Design Test of Computers, IEEE, 22(5):399–403, Sept 2005. DOI:
10.1109/MDT.2005.111.

33. C.M. Jeffery and R.J.O. Figueiredo. Towards byzantine fault tolerance in many-core comput-
ing platforms. In Dependable Computing, 2007. PRDC 2007. 13th Pacific Rim International
Symposium on, pages 256–259, Dec 2007. DOI: 10.1109/PRDC.2007.40.

34. Fernanda Lima Kastensmidt, Luigi Carro, and Ricardo Reis. Fault-Tolerance Techniques
for SRAM-Based FPGAs (Frontiers in Electronic Testing). Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 2006.

35. J.L.J. Laredo, P. Bouvry, D.L. GonzÃąlez, F. FernÃąndez de Vega, M.G. Arenas, J.J. Merelo,
and C.M. Fernandes. Designing robust volunteer-based evolutionary algorithms. Genetic
Programming and Evolvable Machines, 15(3):221–244, 2014. DOI: 10.1007/s10710-014-9213-
5.

36. Bertram Ludäscher, Ilkay Altintas, Chad Berkley, Dan Higgins, Efrat Jaeger, Matthew Jones,
Edward A. Lee, Jing Tao, and Yang Zhao. Scientific Workflow Management and the Kepler
System. Concurrency and Computation: Practice and Experience, 18(10):1039–1065, 2006.
DOI: 10.1002/cpe.994.

P. Bouvry, R. Mayer, J. Muszyński, D. Petcu, A. Rauber, G. Tempesti, T. Trinh...

2015, Vol. 2, No. 2 61



37. D. Mange, M. Sipper, A. Stauffer, and G. Tempesti. Toward robust integrated circuits:
The embryonics approach. Proceedings of the IEEE, 88(4):516–543, April 2000. DOI:
10.1109/5.842998.

38. Rudolf Mayer, Tomasz Miksa, and Andreas Rauber. Ontologies for describing the context
of scientific experiment processes. In Proceedings of the 10th International Conference on
e-Science, Guarujá, SP, Brazil, October 20–24 2014. DOI: 10.1109/eScience.2014.47.

39. P. Mazumder. Design of a fault-tolerant dram with new on-chip ecc. In Israel Koren,
editor, Defect and Fault Tolerance in VLSI Systems, pages 85–92. Springer US, 1989. DOI:
10.1007/978-1-4615-6799-8_8.

40. Tomasz Miksa, Stefan Proell, Rudolf Mayer, Stephan Strodl, Ricardo Vieira, José Barateiro,
and Andreas Rauber. Framework for verification of preserved and redeployed processes. In
Proceedings of the 10th International Conference on Preservation of Digital Objects (iPres
2013), Lisbon, Portugal, September 2–6 2013.

41. Paolo Missier, Stian Soiland-Reyes, Stuart Owen, Wei Tan, Aleksandra Nenadic, Ian Dunlop,
Alan Williams, Thomas Oinn, and Carole Goble. Taverna, reloaded. In M. Gertz, T. Hey, and
B. Ludaescher, editors, SSDBM 2010, Heidelberg, Germany, June 2010. DOI: 10.1007/978-
3-642-13818-8_33.

42. Elizabeth Montero and María-Cristina Riff. On-the-fly calibrating strategies for evolutionary
algorithms. Information Sciences, 181(3):552–566, 2011.

43. Alicia Morales-Reyes, Evangelos F. Stefatos, Ahmet T. Erdogan, and Tughrul Arslan. To-
wards Fault-Tolerant Systems based on Adaptive Cellular Genetic Algorithms. In Proceedings
of the 2008 NASA/ESA Conference on Adaptive Hardware and Systems (AHS’08), pages
398–405, Noordwijk, The Netherlands, June 22-25 2008. IEEE Computer Society.

44. Nature. Data’s shameful neglect. Nature, 461(7261), 9 2009. DOI: 10.1038/461145a.

45. Dongkook Park, C. Nicopoulos, Jongman Kim, N. Vijaykrishnan, and C.R. Das. Ex-
ploring fault-tolerant network-on-chip architectures. In Dependable Systems and Net-
works, 2006. DSN 2006. International Conference on, pages 93–104, June 2006. DOI:
10.1109/DSN.2006.35.

46. Stefan Pröll and Andreas Rauber. Scalable Data Citation in Dynamic, Large Databases:
Model and Reference Implementation. In IEEE International Conference on Big Data 2013
(IEEE BigData 2013), Santa Clara, CA, USA, October 2013. IEEE. DOI: 10.1109/big-
data.2013.6691588.

47. A. Putnam, A.M. Caulfield, E.S. Chung, D. Chiou, K. Constantinides, J. Demme, H. Es-
maeilzadeh, J. Fowers, G.P. Gopal, J. Gray, M. Haselman, S. Hauck, S. Heil, A. Hormati,
J.-Y. Kim, S. Lanka, J. Larus, E. Peterson, S. Pope, A. Smith, J. Thong, P.Y. Xiao, and
D. Burger. A reconfigurable fabric for accelerating large-scale datacenter services. In Com-
puter Architecture (ISCA), 2014 ACM/IEEE 41st International Symposium on, pages 13–24,
June 2014. DOI: 10.1109/ISCA.2014.6853195.

48. Martin Radetzki, Chaochao Feng, Xueqian Zhao, and Axel Jantsch. Methods for fault
tolerance in networks-on-chip. ACM Comput. Surv., 46(1):8:1–8:38, July 2013. DOI:
10.1145/2522968.2522976.

Resilience within Ultrascale Computing System: Challenges and Opportunities...

62 Supercomputing Frontiers and Innovations



49. Stephen L. Scott, Christian Engelmann, Geoffroy R. Vallée, Thomas Naughton, Anand
Tikotekar, George Ostrouchov, Chokchai Leangsuksun, Nichamon Naksinehaboon, Raja Nas-
sar, Mihaela Paun, Frank Mueller, Chao Wang, Arun B. Nagarajan, and Jyothish Varma. A
Tunable Holistic Resiliency Approach for High-performance Computing Systems. SIGPLAN
Not., 44(4):305–306, February 2009. DOI: 10.1145/1594835.1504227.

50. Daniel P. Siewiorek and Robert S. Swarz. Reliable Computer Systems (3rd Ed.): Design and
Evaluation. A. K. Peters, Ltd., Natick, MA, USA, 1998.

51. C.T. Silva, J. Freire, and S.P. Callahan. Provenance for visualizations: Reproducibility and
beyond. Computing in Science Engineering, 9(5):82–89, October 2007. DOI: 10.1109/M-
CSE.2007.106.

52. Marc Snir, Robert W. Wisniewski, Jacob A. Abraham, Sarita V. Adve, Saurabh Bagchi,
Pavan Balaji, Jim Belak, Pradip Bose, Franck Cappello, Bill Carlson, Andrew A. Chien,
Paul Coteus, Nathan DeBardeleben, Pedro C. Diniz, Christian Engelmann, Mattan Erez,
Saverio Fazzari, Al Geist, Rinku Gupta, Fred Johnson, Sriram Krishnamoorthy, Sven Leyffer,
Dean Liberty, Subhasish Mitra, Todd Munson, Rob Schreiber, Jon Stearley, and Eric Van
Hensbergen. Addressing failures in exascale computing. IJHPCA, 28(2):129–173, 2014.

53. Andrew S. Tanenbaum and Maarten van Steen. Distributed Systems: Principles and
Paradigms. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 2nd edition, 2006.

54. The Economist. Trouble at the lab, October 19 2013.

55. S. Tselonis, V. Dimitsas, and D. Gizopoulos. The functional and performance tolerance of
gpus to permanent faults in registers. In On-Line Testing Symposium (IOLTS), 2013 IEEE
19th International, pages 236–239, July 2013. DOI: 10.1109/IOLTS.2013.6604089.

56. Jan Vitek and Tomas Kalibera. R3: Repeatability, reproducibility and rigor. SIGPLAN
Not., 47(4a):30–36, March 2012. DOI: 10.1145/2442776.2442781.

57. Aida Vosoughi, Kashif Bilal, Samee Ullah Khan, Nasro Min-Allah, Juan Li, Nasir Ghani,
Pascal Bouvry, and Sajjad Madani. A multidimensional robust greedy algorithm for resource
path finding in large-scale distributed networks. In Proceedings of the 8th International
Conference on Frontiers of Information Technology, FIT ’10, pages 16:1–16:6, New York,
NY, USA, 2010. ACM. DOI: http://doi.acm.org/10.1145/1943628.1943644.

58. Chao Wang, F. Mueller, C. Engelmann, and S.L. Scott. Proactive process-level live mi-
gration in HPC environments. In High Performance Computing, Networking, Storage
and Analysis, 2008. SC 2008. International Conference for, pages 1–12, Nov 2008. DOI:
10.1109/SC.2008.5222634.

59. Keun Soo Yim and R.K. Iyer. A codesigned fault tolerance system for heterogeneous
many-core processors. In Parallel and Distributed Processing Workshops and Phd Forum
(IPDPSW), 2011 IEEE International Symposium on, pages 2053–2056, May 2011. DOI:
10.1109/IPDPS.2011.375.

Received March 8, 2015.

P. Bouvry, R. Mayer, J. Muszyński, D. Petcu, A. Rauber, G. Tempesti, T. Trinh...

2015, Vol. 2, No. 2 63


