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An anthrapyrazole derivative STK663786 has been identified as a selective ligand of the so-

called 430-cavity of influenza virus neuraminidase at virtual screening of a library of low-molecular-

weight compounds. It is able to form favorable contacts with hydrophobic residues as well as cation-

π interaction and hydrogen bonds with the polar Arg371 residue. The experimentally determined

EC50 values have been found to be 19 and 30 µM for viruses H1N1 and H3N2, respectively.

Complementarity of STK663786 to the 430-cavity adjacent to the sialic acid binding subsite in the

active center of neuraminidase makes this compound a valuable structural fragment at construction

of bifunctional inhibitors of the enzyme.
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Introduction

Seasonal flu affects nearly 10% of the worlds population every year, and the pandemic in-

fluenza virus strains pose serious danger worldwide [1–3]. Two glycoproteins on the surface of

the viral envelope, hemagglutinin and neuraminidase, are responsible for infectivity. Hemagglu-

tinin binds to terminal sialic acid residues of epithelial receptors, and then virus enters the cell

by endocytosis. The neuraminidase enzyme, on the contrary, cleaves sialic acid residues, which

promotes the release of newly formed viral particles from the cell surface [4, 5]. The widely

used anti-influenza drugs zanamivir and oseltamivir, being structurally similar to the sialic acid

residue in natural enzyme substrates, competitively inhibit neuraminidase activity [6, 7]. How-

ever, virus strains resistant to these drugs are quickly emerging due to mutations in the sialic

acid binding subsite [8, 9].

Another putative binding site of neuraminidase inhibitors, the so-called 430-cavity, is formed

by a series of hydrophobic residues [10–13]. The interface between the sialic acid binding subsite

and 430-cavity is formed by three arginine residues (Arg118, Arg292, Arg371), with the Arg371

residue making a decisive contribution to the positioning of the carboxyl group of the substrate

or competitive inhibitors due to the formation of two hydrogen bonds [14]. In the present study,

we have performed virtual screening to identify ligands complementary to the 430-cavity, which

can interact with both the hydrophobic residues of the cavity and the guanidine group of Arg371.

1. Results and Discussion

The molecular model of N1 neuraminidase was constructed based on the 3b7e crystal struc-

ture [15] using the Amber 12 package [16]. Hydrogen atoms were added to the protein structure,

and then it was solvated by a layer of TIP3P water. The energy minimization of the obtained

system included 2500 steps of the steepest descent algorithm followed by 2500 steps of conjugate
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gradient algorithm, and the heavy atoms of the protein were being fixed by positional restraints.

The ff99SB force field was applied to describe the protein by molecular mechanics [17]. The

optimized N1 model was used in docking experiments described below.

Virtual screening was carried out using a subset of low-molecular-weight compounds re-

trieved from the Vitas-M commercial library (https://vitasmlab.biz). Molecules containing a

carboxyl group and obeying the rule of three (molecular weight < 300, log P ≤ 3, hydro-

gen bond donors ≤ 3, hydrogen bond acceptors ≤ 3, rotatable bonds ≤ 3) [18] were retrieved

by a substructure search in ACD/ChemFolder (http://www.acdlabs.com): in total, 3734 com-

pounds. 3D structures of the compounds were generated with the CORINA software [19]. Each

compound was docked into the N1 active site using Lead Finder 1.1.15 [20, 21], and then the

modeled positions were subjected to structural filtration [22] to select molecules capable of form-

ing hydrophobic contacts with 430-cavity residues as well as hydrogen bonds with the Arg371

guanidinium group. For this purpose, the vsFilt software [23] integrated into a high-throughput

virtual screening platform of the Lomonosov Moscow State University supercomputer was used.

Visual inspection of the selected molecules allowed us to identify the anthrapyrazole derivative

STK663786 (Fig. 1; ∆Gcalc = –5.9 kcal/mol) as a promising ligand of the 430-cavity.

Figure 1. Chemical structure of anthrapyrazole derivatives

In the obtained model, the anthrapyrazole scaffold of STK663786 forms favorable hydropho-

bic contacts with the Trp403, Ile427, and Pro431 residues (Fig. 2a), while the carboxyl group

is involved in a network of hydrogen bonds with the arginine triad residues Arg118, Arg292,

and Arg371 (Fig. 2b). In addition, effective binding of the STK663786 scaffold is facilitated by

a cation-π interaction with the guanidine group of Arg371. The positioning of the ligand in the

430-cavity makes it possible to elongate its structure towards the adjacent sialic acid binding

subsite. The carboxyl groups of zanamivir and STK663786 occupy nearly the same position

(Fig. 2c), and therefore we believe that prototypes of bifunctional inhibitors can be constructed

by combining two scaffolds, zanamivir (or its structural analogue) and STK663786, into a single

chimeric molecule. An appropriate ester linker or isosteric analogues of the carboxyl linker (sulfo,

phosphono, etc.) capable of interacting with the arginine triad may be of interest.

A preliminary in vitro study of STK663786 has confirmed its inhibitory effect against in-

fluenza viruses. In cytopathic effect (CPE) assay [25], the EC50 values were found to be 19 and

30 µM for viruses H1N1 (8178/09) and H3N2 (HK/68), respectively. We have also tested a methyl

ester of STK663786, compound STK734244 (Fig. 1). It showed an inhibitory effect (EC50 equal

to 53 and 85 µM for viruses H1N1 and H3N2, respectively), though less pronounced compared
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Figure 2. Binding mode of STK663786 to the N1 neuraminidase: (a) Interactions with hydropho-

bic residues of the 430-cavity, for clarity, non-polar hydrogen atoms are omitted; (b) Interactions

with the arginine triad, guanidinium groups of arginine residues are shown; (c) Comparison of

zanamivir and STK663786 positions in the neuraminidase active center: the sialic acid bind-

ing subsite and zanamivir molecule are colored blue, the 430-cavity and STK663786 molecule

are colored magenta. Carboxyl substituents forming hydrogen bonds with Arg371 are shown in

green. The figure was prepared using VMD and PyMOL [24]

to STK663786. Apparently, this is due to the absence of a negative charge on the esterified

carboxyl group and the weakening of the interaction with the positively charged arginine triad.

Thus, virtual screening made it possible to identify the ligand STK663786, complementary to

the 430-cavity, which by itself inhibits neuraminidase, disrupting the interaction between the

substrate and the arginine triad, and can be used as a structural fragment of a chimeric molecule

of bifunctional inhibitors capable of occupying both the cavity-430 and sialic acid binding subsite

in the neuraminidase active center.
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