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The main factors hindering the development of supercomputer programs for molecular simu-

lation by the Monte Carlo method within the framework of classical physics are considered, and

possible ways to eliminate the problems that arise in this case are discussed. Thus, the use of

molecular models with moderate stiffness of covalent bonds between fragments makes it possible

not only to increase the efficiency of scanning the configuration space of the model, but also to

abandon the complex apparatus of kinematics with rigid links, which significantly limits the pos-

sibilities of domain decomposition. Based on the domain decomposition strategy and a simplified

treatment of the deformation energy of covalent bonds and angles, an original parallel algorithm

for calculating the properties of large all-atomic models of aqueous solutions of biopolymers by the

Monte Carlo method was developed. To speed up computations within the framework of this ap-

proach, each domain is assigned its own group of processors/cores using local data replication and

splitting the loop over the interacting partners. The article discusses the logical scheme of the com-

putational algorithm and the main components of the software package (fortran77, MPI 1.2). Test

calculations performed for water and n-hexane demonstrated the high performance and scalability

of the program in which the proposed algorithm was implemented.
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Introduction

Stochastic Monte Carlo algorithms [19] are successfully used to solve a wide range of prob-

lems in many areas of science and engineering [9, 13, 16]. So, when studying the physicochemical

and structural properties of molecular aggregates containing hundreds or more atoms, calcula-

tions are practiced within the framework of classical physics based on the mathematical appa-

ratus of Markov chains [2, 6, 18, 34]. Due to the statistical nature of this type of computational

experiments, it takes weeks, and sometimes months, to process huge amounts of data in order

to achieve acceptable accuracy of the results. Worse, the size of the modeled object is strictly

limited from above by the amount of RAM in a typical computer. It is clear that the study

of models represented by millions of atoms (for example, biopolymers in an aqueous solution)

should be carried out on a supercomputer using a program code that implements distributed

computing by hundreds of processor cores.

At first glance, it may seem that, unlike the molecular dynamics method [2], algorithms that

generate a Markov chain in the configuration space of the model under study (the Metropolis

et al. procedure [2, 18]) have an extremely low potential for parallelization. Indeed, in the first

case, all particles of the model simultaneously change their position at each iteration, while in the

second, usually only one, and even then with a probability of no more than 50%2. Respectively,

in the first case, parallelization can be organized by splitting the loops both over particles

and over their interaction partners [22], and in the second case, only over interaction partners.

Nevertheless, the success of using the Monte Carlo method in statistical physics [16] and polymer

science [17] gives a serious stimulus to find solutions to this problem.

1Institute of Mathematical Problems of Biology of RAS - the Branch of Keldysh Institute of Applied Mathematics

of RAS, Pushchino, Russian Federation
2Cluster and rejection free algorithms do not greatly improve the situation.
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A necessary condition for the parallelizability of an algorithm is the presence of data-

independent operations in it. It turned out that there is a very important class of models for

which the steps of the procedure of Metropolis et al. [2, 18] will have this property if a restric-

tion is introduced on the radius of interaction of their components. In this case, very often the

connection of the previous and subsequent states of the generated Markov chain will have a

formal character, since the values of the parameters characterizing one of these states do not

affect the probability of transition to the second and vice versa. Using information about the

interactions in the model, one can significantly reduce the time of calculations by organizing the

simultaneous execution of calculations for independent groups of components. For example, in

the 2D Ising model, the spins do not interact along the diagonals of the lattice. Consequently,

the entire system of spins can be divided into two subgroups like a chessboard [21] and the states

of all spins can be updated either in one or the other group in turn. Such a scheme is highly

scalable and allows efficient use of computing resources [23].

The transition to continual (off-lattice) models of condensed phases requires the use of more

complex grouping methods. Thus, in [10], a scheme was proposed according to which the space

of the system being modeled (a rectangular cell with periodic boundary conditions) is divided

into cubic domains, and each domain into eight more subdomains (cube octants). The length of

the subdomain edge must be greater than the radius of the sphere that limits the interactions

of particles in the model. This scheme ensures the independence of the movement of particles

in similarly oriented domain octants. In the simplest case, the number of processors3 used for

calculations is equal to the number of domains, so that the processors perform the procedure of

Metropolis et al. [2, 18] with particles of their domains selected from ‘active’ octants, looping

through in the same sequence for all domains. Note that each processor ‘sees’ only particles in

its own domain and in the boundary regions of 26 neighbors.

The domain decomposition strategy allows for a variety of practical implementations. In [10],

the authors focused on optimizing the use of memory by proposing an algorithm with a very

complex protocol of interprocessor communication, which adversely affected the speed of calcula-

tions. After Y2K, the problem of lack of memory lost its acuteness, which gave us the opportunity

to develop a more advanced algorithm, significantly reducing the intensity of interprocessor data

exchanges [14, 25].

Theoretically, spatial (domain) decomposition is capable of providing high scalability of

computational algorithms by dividing a ‘big problem’ into several simultaneously soluble small

subtasks. However, within the framework of this method, it is possible to reduce the size of

domains only to a certain value (the cutoff radius of particle interactions). On the contrary,

splitting the loop over particles interaction partners is very useful when studying objects of

small and medium size, but it does not scale well and quickly exhausts the resources of the

computer’s RAM as the model size grows. The combination of these approaches makes it pos-

sible to ‘neutralize’ their limitations and develop efficient supercomputer programs capable of

outperforming popular packages using the molecular dynamics method when studying models

consisting of hundreds of millions of atoms. As a result of further modifications, we developed

a new algorithm for calculating the properties of simulated systems in an isobaric-isothermal

(NpT ) ensemble [2], in which each domain is serviced by its own group of processors [26]. The

program built on the basis of this algorithm was successfully used in the study of the structural

and thermodynamic characteristics of water in a wide range of pressure [29, 30].

3Hereinafter, the word ‘processor’ will mean a separate processor core.
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Another obstacle that generates skepticism about the Monte Carlo method and limits its

application in the applied fields of materials science and biomedicine is the problem of taking

into account intramolecular degrees of freedom. As it was shown in 1980 [20], the procedure of

Metropolis et al. [2, 18], applied to individual atoms of a peptide molecule, gives 11 times less

diffusion of atoms than the molecular dynamics method for the same amount of computer time.

The reason for this inefficiency is that random monatomic displacements in a covalently bound

system lead to large changes in the strain energy of bonds and angles, which significantly exceed

the contributions of van der Waals and electrostatic interactions.

The standard way out of this situation is based on the idea of excluding from consideration

the stiff degrees of freedom of molecules [8] by ‘freezing’ covalent bonds and the angles between

them (partially or completely), as well as through the use of united atoms [12] and coarse-grained

models of polymers. [24]. Unfortunately, the kinematics of displacements of atoms (groups of

atoms) in such models is implemented through laborious procedures that use difficult mathemat-

ical calculations, sometimes requiring the solution of systems of nonlinear algebraic equations.

Worse, some transformations [33] cannot be performed in parallel computations if the moved

atoms are in different domains.

To increase the effectiveness of Monte Carlo trial moves, we [27] proposed to completely

eliminate the contribution of the strain potentials of covalent bonds and angles to the energy

increment, which is taken into account in the procedure of Metropolis et al. [2, 18]. Within this

approach, a molecule must be considered either as one or several rigid fragments (compact, as a

rule, π-conjugated groups of atoms) connected by single covalent bonds with zero stiffness and

finite extensibility. Hydrogen and halogen atoms should be included in the fragment to which

they are bonded. Some fragments may consist of a single atom, such as an ether oxygen atom

or a quaternary carbon atom. From a mechanical point of view, fragments are solid bodies that

perform rotational and translational motions as a whole, which position in space is determined

by the Cartesian coordinates of their center and three Euler angles. The integrity of the chemi-

cal structure of the molecule is maintained by simply checking the bond lengths and angles for

compliance with the standard ranges of values [1] for specific types of neighboring atoms. In

the course of subsequent computational experiments, it turned out that such drastic measures

with respect to strain potentials are not necessary at all [31]. In fact, the moderate stiffness of

interfragment single bonds and angles not only improves the shape of the distribution of bond

lengths and angles, but also makes it possible to increase the maximum amplitude of trial dis-

placement and fragment rotation. It should be noted that this approach showed very good results

in calculating the structural and thermodynamic characteristics of liquid hydrocarbons [31, 32].

The purpose of this work is to study the performance and scalability of the program we

developed (fortran77, MPI 1.2), which uses domain decomposition together with the splitting

of loop over fragments interaction partners for calculations based on a model with a simplified

treatment of the strain energy of covalent bonds and angles [27, 31, 32], mentioned in the previous

paragraph.

The article is organized as follows. In Section 1 the data on the molecular models used in

the calculations will be presented. Section 2 is devoted to a description of a new algorithm for

parallel computing by the Monte Carlo method, as well as the main components of a prototype4

software package for studying aqueous solutions of biopolymers. The Section 3 discusses the

4In addition to the program code, it is necessary to prepare a set of force field parameters that is adequate to the

model we use and allows us to accurately reproduce the properties of substances in the condensed phase.
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Figure 1. n-hexane molecule. Hydrogen atoms are light gray; carbon atoms are dark gray. Rigid
fragments of the molecule are outlined by rectangles

results of computational experiments with all-atomic models of liquids of two kinds: n-hexane

and water. Conclusion summarizes the study and points directions for further work.

1. Systems under Consideration

The model of the n-hexane molecule is a system of configurationally rigid fragments (CH3–

(CH2)4–CH3: four CH2 groups and two CH3) connected by single bonds in accordance with

the chemical structure of this molecule (Fig. 1). The CH bond length is 1.085 Å, and the

HCH bond angles are 109.47◦. The potential energy characterizing the conformation of the

n-hexane molecule is acquired due to non-covalent interactions of atoms of its fragments (short-

range approximations of the Lennard-Jones and Coulomb potentials, see below), the deformation

(strain) energy of interfragment covalent bonds and bond angles adjacent to them, as well

as torsion potentials, hindering the rotation of molecular fragments around these bonds. The

parameters of the Lennard-Jones potential functions are the same as in [31], the partial charges

on atoms and the parameters of torsion potentials are taken from [32]. The strain energy is

proportional to the squared deviation of bond lengths and angles from their equilibrium values

with coefficients of 100 kcal/mol/Å2 and 25 kcal/mol/rad2, respectively. For the equilibrium

lengths of C–C chemical bonds, the value of 1.526 Å was taken, and for the angles, 109.47◦. This

choice was largely motivated by the parameters of the force fields presented in articles [5, 11].

Atoms of neighboring fragments, connected by a covalent bond with each other or through a

third atom, do not participate in the interactions described by the Lennard-Jones potential.

After a trial move (displacement and rotation) of the selected fragment, new values of the

lengths of covalent bonds and angles are calculated, in the formation of which this fragment

participates. If any bond or angle is not within the allowed range, the remaining bonds and

angles are not checked, the trial move is rejected, the state before the move is again taken

as the new state of the Markov chain, and the program continues to the next fragment. If all

stereochemical parameters of the proposed configuration remained within the acceptable limits

(±0.12 Å for bond lengths and ±12◦ for angles), the energy change and then the transition

probability are calculated according to the formula of Metropolis et al. [2, 18]. The maximum

displacement and rotation angle (for each coordinate and angle) is determined in a preliminary

computer experiment so that ∼38–43% of the trial configurations are accepted.
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Figure 2. View of the main cell of the simulated system containing 19200 n-hexane molecules
(384000 atoms). Hydrogen atoms not shown

To study water systems, we used the rigid three-center model of the water molecule

SPC/E [4], which is an example of a molecule consisting of a single fragment.

Three simulated systems contained 2400, 19200 and 64800 n-hexane molecules each (48000,

384000 and 1296000 atoms, respectively), and three more – 33666, 269328 and 908982 water

molecules (100998, 807984 and 2726946 atoms, respectively) in the main cubic cell with periodic

boundary conditions (Fig. 2). The energy of intermolecular interactions was calculated using

short-range pairwise additive atom-atom potential functions (Rcutoff = 14 Å, standard correc-

tion for the Lennard-Jones potential [2] and modification PF3 [28] for the Coulomb potential),

which effectively take into account the contributions of all images of the main cell under periodic

boundary conditions.

The initial configuration for each system is prepared using a special program that uses as

many processors as there are domains in the simulated object. This program randomly places

given amount of molecules within the boundaries of the main cell, taking into account periodic

boundary conditions. The trial position and orientation of the molecule inserted is randomly

set by the main processor (if the molecule is very large, the process is performed in batches).

It also determines which domain a particular fragment falls into and sends the coordinates to

the addressee. Upon completion of the distribution of fragments of the molecule intended for

insertion, all processes determine, using a geometric criterion, whether there is an overlap of

atoms with previously received fragments. The results of the check (0 or 1) are collected for all

processes (MPI ALLREDUCE, MPI SUM). If 0 is received the attempt is accepted, otherwise

it is retried. If the number of attempts exceeds the specified number, the program stops. To

prevent this from happening on subsequent launches of the program, it is necessary to increase
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the number of attempts or the volume of the main cell. If the program manages to fit all the

molecules, each process writes all the information about its domain to a separate file on an

external storage.

Obviously, the initial density of the simulated object will be much less than the real values

corresponding to the given temperature and pressure. The relaxation of the studied models to

the equilibrium state was carried out using the same program that is intended for calculating the

structural and thermodynamic characteristics. Depending on the type of molecules, this requires

5–20 million trial moves per fragment. The main indicator in this process is the absence of a

systematic trend in the batch-mean values of the density and heat of evaporation of the simulated

liquids. To accelerate relaxation, the initial stages were performed at a pressure increased to

1 kbar.

The results were obtained using the equipment of Shared Resource Center of KIAM RAS

(http://ckp.kiam.ru).

2. Computational Algorithm and Main Components

of the Program

The simulated system occupies the main cell of a cubic shape, on which periodic boundary

conditions are imposed. The volume of the main cell is divided into N=n3 domains (n pieces

along each coordinate axis). The computational task is submitted on M=m.n3 processors (pro-

cessor cores), i.e. each domain is serviced by m processors (hereinafter referred to as the domain

group of processors). Data about the simulated system are read from n3 files on external media

(each domain has its own data file) and written back to them after the completion of the next

portion of the calculation. At startup, the head processor of each domain group reads data from

the corresponding file and sends (MPI BCAST) a copy of it to the rest of the processors in

its group (replication). Processes of the same rank in a domain group are combined into cor-

responding communication groups with a 3D Cartesian topology (MPI CART CREATE). The

algorithm described in [35] was used to generate pseudo-random numbers.

The actual computational procedure (see the logical scheme of the Algorithm 1) consists of

two blocks of program code in the cyclic execution. The first block is responsible for perform-

ing an attempt, standard for the NpT ensemble [2], to randomly change the volume occupied

by the model. To do this, one of the processors (rank 0 in MPI COMM WORLD) generates a

new volume logarithm value and sends it (MPI BCAST) to all processors. Then, domain group

processors calculate trial values of atomic coordinates and exchange data with their topological

neighbors (MPI CART SHIFT, MPI SENDRECV). As a result, each processor receives infor-

mation about the coordinates of atoms in the border zone from the side of the neighbor. Next,

the processors calculate their portions in the change in the total energy of the system, and also,

using simple geometric criteria, identify the partners in non-covalent and covalent interactions.

All processors of each domain group, in parallel, carry out these operations by splitting of the

corresponding loops over atoms. Upon completion of this, the processors of each domain group

exchange data on the found pairs of neighbors (MPI ALLGATHER), and all calculated energy

increments are summed (MPI REDUCE) with the result transferred to one of the processors

(rank 0 in MPI COMM WORLD). It is this processor that decides (Metropolis et al. crite-

rion [2, 18]) whether to accept the new volume value or keep the old one, and then sends the

result to all M processors.
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Initialization, input previously saved data;

while NStep 6= 0 do

//Begin block 1;

Try to accept a new volume value;

Generate random vector to shift domain-splitting grid;

Generate random permutation for 8 subdomains selection order;

//End of block 1;

if Processor rank is 0 then
Accumulate the data required to obtain averaged values of the density and the

enthalpy of the simulated liquid;

end

//Begin block 2;

I ← 2;

while I 6= 0 do

if I = 2 then

Set direct order of 8 subdomains selection;

else

Set the selection in reverse order;

end

Try to change the position of a randomly selected fragments in ’active’

subdomains;

I ← I − 1;

end

//End of block 2;

NStep← NStep− 1;

end

Output data to next run;

Algorithm 1. The logical scheme of the computational algorithm

The second block is responsible for performing an attempt to randomly change the position

(shift and rotation) of a randomly selected rigid fragment. This operation is performed by the

head processors of each domain group in parallel in their domain. To ensure the statistical in-

dependence of n3 simultaneous trial moves, each domain is divided into 8 (2×2×2) subdomains

and moved molecules are taken from the subdomains in the same octant for all domains. This

construction ensures that the selected fragments do not turn out to be partners in interactions,

since all potential functions have a limited range of action, not exceeding half the length of

the edge of the domain cell. Next, each head processor calculates the increment in the strain

energy of the covalent bonds, bond and dihedral angles, and sends trial coordinates to the

domain group. The processors of each domain group calculate the increment in the energy of

non-covalent interactions from their portion of the neighbors of the tested fragment and ‘drop’

the results to the head processor of the group. After that, the head processor, having added the

previously calculated ‘covalent’ contribution, decides (Metropolis et al. criterion [2, 18]) whether

to accept the new position of the fragment or keep the old one, and then sends the result to

all m processors of its group and proceeds to select the next fragment in the same subdomain.

In practice, the loop over subdomain fragments should be long enough that on average each
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fragment is selected 25 times. In this case, the radius of the criterion for inclusion in the list

of interaction partners should be increased (Rneib=Rcutoff+Rfr, where Rfr is the radius of the

minimum sphere containing all atoms of the largest fragment) by 1.5–2.5 Å (buffer zone). Before

moving on to the next subdomains, the processors send to the topological neighbors the coor-

dinates of the fragments from the subdomains that have just completed their ‘activity’. After

fragments in all subdomains have been ‘processed’ in this way, the second block is completed,

control is transferred to the beginning of the first block, and so on. To calculate the desired

structural and thermodynamic characteristics, it is convenient to use the instantaneous config-

uration of molecular fragments formed before the start of the first block. Having performed the

procedure described above for a specified number of times (NStep), the head processors write

the information necessary for restart or further analysis to n3 files on an external storage and

the program stops.

An attentive reader may notice that in the above description of the logical scheme of the

computational algorithm, some of the directly or indirectly mentioned episodes were left with-

out discussion. Some of them have been omitted in order to reduce the size of the article. For

example, these are procedures for transferring data between processors in neighboring domains,

which can be implemented in different ways, depending on the preferences of the developer. The

other, on the contrary, require separate consideration due to their importance. These include

the problem of maintaining a detailed balance of transitions in the Markov chain while simulta-

neously performing the Metropolis et al. procedure [2, 18] in each domain. Recommendations on

how to avoid violations of the detailed balance, as well as to improve the ergodicity of scanning

the configuration space of the simulated systems, are given in the articles [3, 33].

Following these recommendations, our algorithm introduces a displacement of the bound-

aries of the system of domains by a random vector (the maximum displacement in each coordi-

nate does not exceed half the length of the subdomain edge), as well as by random shuffling [7]

of the order of selection of eight subdomains in the second block. The coordinates of this vector,

as well as the sequence of subdomain numbers, are generated by the processor of rank 0 (in

MPI COMM WORLD) and distributed (MPI BCAST) along with the trial value of the volume

logarithm to all processors at the very beginning of the first block. The second block is executed

twice: first, in the forward order of the sequence of subdomain numbers, and then in the reverse

order. The loop length over molecular fragments in a subdomain is equal to the number of frag-

ments in it multiplied by 25. This ensures the (asymptotic) equality of the fragment selection

frequencies regardless of local density fluctuations. Some unbalancing of the load of processors

is compensated by a decrease in the number of potential interaction neighbors due to a decrease

in the thickness of the buffer zone (Rneib). It should be noted that the fragments that crossed

the subdomain boundary remain in the lists of the same subdomain in which they were at the

time of the beginning of the second block. This guarantees the reversibility of the Markov chain

transitions and ensures that the detailed balance is fulfilled [3, 33]. The determination of whether

a fragment belongs to a particular subdomain occurs in the first block, after the boundaries of

the entire system of domains have been moved.

Concluding this section, we note two important problems associated with the limited ac-

curacy of the representation of floating point numbers in machine arithmetic. So, as a result

of displacements, the length of the covalent bond between the atoms of neighboring fragments

can be at the boundary established by the geometric criterion. In this case, it may turn out

that the next time the criterion is applied the bond between them will be broken. To avoid this,
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one should somewhat narrow (for example, by 0.0001 Å) the corridor of covalent bond lengths

admissible as a result of trial moves. It is also necessary to reject trial configurations in which

atoms that did not participate in the covalent bond are located at distances near the threshold

of this criterion.

Another dangerous situation arises in parallel computing when it is required to determine

which subdomain a fragment belongs to, i.e. to solve the problem of the position of its geometric

center. In the case when the center is on the border of subdomains, the processors related to this

fragment can find mutually contradictory solutions, which will result in the program crashing.

To avoid this, the calculation algorithm should be organized in such a way that only the head

processors of domain groups are involved in making such decisions, acting only on fragments in

their subdomains. As a result of the trial move, the fragment may remain in the same subdomain

or move to one of the 26 adjacent subdomains. To ensure conflict-free distribution of fragments

across subdomains, it is enough to associate with each fragment a special index indicating the

direction of the transition (from 1 to 27) and send it along with the coordinates. Conflict-freeness

is guaranteed by the fact that the first time the fragments are distributed by single processor

when preparing the initial configuration, and the control of their movement is performed by the

head processors of domain groups, each in its own domain.

The computer codes (fortran77 + MPI 1.2) developed by author as well as instructions ‘how

to run’ are available from the author on reasonable request.

3. Performance and Scalability of the Computational

Algorithm

To verify the program and evaluate the performance and scalability of the underlying algo-

rithm, two well-studied liquids were chosen: water and n-hexane. The calculation model of the

first one is represented by molecules consisting of one fragment (H2O), while the molecules of

the second one are composed of six fragments connected via single covalent bonds (Fig. 1). For

each substance, three variants of simulated systems were prepared and brought into thermody-

namic equilibrium at a temperature of 298 K and atmospheric pressure, differing in the size and

number of molecules in the main cell (see section ‘Systems under Consideration’). Small-sized

systems were divided into 8 (2×2×2), medium-sized systems into 64 (4×4×4), and large ones

into 216 (6×6×6) domains. The edge length of the domain of aqueous systems was, on average,

50.15 Å, while that of n-hexane systems was 40.3 Å.

In the course of computational experiments, we measured the execution time for the task

of calculating the density and heat of evaporation of the simulated liquid, which requires, on

average, 5000 trial moves of the Metropolis et al. procedure [2, 18] per each fragment. For each

system, a series of calculations was performed, gradually increasing the number of processor cores

in domain groups in the following order: 1, 2, 4, 7, 14, 28, and 35. Due to limited computing

resources (no more than 80 nodes equipped with 28 cores), no tests were performed on medium-

sized systems for 35, and for large models for 28 and 35 cores in domain groups. Recall that

M=m.N processor cores are required to run the test. Here N is the number of domains, and m

is the number of processor cores in the domain group.

Figure 3 shows the dependence of the test execution time on the number of processor cores

in the domain group on a logarithmic scale. Data for large systems (N=216 domains, m from

1 to 14) are not shown, as they are only a fraction of a percent higher than the corresponding
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Figure 3. The test execution time for water and n-hexane models of small and medium size
depending on the number of processor cores in the domain group. The symbols on the lines
indicate the results for 1, 2, 4, 7, 14, 28 and 35 processor cores

medium sized systems. The difference in test execution time for small and medium systems is

more noticeable and may be due to fewer data exchanges in the case of eight domains [14, 25, 26].

This figure clearly shows that after 28 a further increase in the number of processor cores in

domain groups becomes impractical. Note that, obeying the Amdahls law, this effect is universal,

since it practically does not depend on the kind of fragments and the presence of covalent bonds

between them, as well as on the size of the domains (on average, the domain of the aqueous

system contains 4208, and n-hexane – 1800 fragments) and the number of interaction partners

for each fragment (for a water molecule, on average, about 1380, and for a fragment of an n-

hexane molecule, 850). As it has been seen in Fig. 4, despite the fact that the Amdahls law limits

the increase in performance due to the increase in the number of cores in domain groups, the

tenfold acceleration of calculations is a very powerful incentive to use parallelization/splitting

of the loop over interaction partners in addition to domain decomposition.

The most important result obtained in these computational experiments is the absence of a

noticeable increase in the calculation time with an increase in the size of the simulated system,

which is achieved by proportionally increasing the number of processor cores used. The curves

in Fig. 3, which show the execution time of test calculations for systems of different sizes, begin

to diverge noticeably only when large domain groups of processor cores are used.

As shown by additional calculations, in our model, the root-mean-square deviation of n-

hexane atoms from the average position after performing 24000 trial moves (on average) for

each fragment is 0.76±0.19 Å at T=306 K. In the calculations of the protein molecule by the

Monte Carlo method, where parameters of the force fields relevant at that time, a significantly

lower value of 0.082 Å was obtained for this characteristic [20]. In turn, it was noted that the

rmsd of atoms of the same molecule reaches 0.75 Å after 105 time steps performed by the

molecular dynamics method. At the same time, the rmsd of n-hexane atoms after the same
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Figure 4. Acceleration of calculations of small and medium-sized water and n-hexane models
depending on the number of processor cores in the domain group. The symbols on the lines
indicate the results for 1, 2, 4, 7, 14, 28 and 35 processor cores

number of trial moves per each fragment is 1.36±0.37 Å in our model. It can be seen that the

use of molecular models with moderate stiffness of covalent bonds between fragments makes it

possible to surpass the molecular dynamics method in terms of the efficiency of scanning the

configuration space of the model by increasing the displacement amplitude of atoms in one step

of the computational procedure.

To date, several articles have been published that provide data on the performance of popular

software packages. Thus, in the article [15] one can find data on the calculations of the F1-ATPase

system (327506 atoms), comparable in size to one of the systems we considered: the medium-

sized model of liquid n-hexane (384000 atoms). As seen in Fig. 4 of the article [15], it takes 100, 65

and 35 ms to execute one time step by the NAMD2 package when using 256, 448 (interpolation)

and 1000 processor cores on the IBM Blue Gene/L supercomputer. In our case, it takes 117.6,

80.3 and 55.7 ms to perform similar work for the medium-sized liquid n-hexane model using 256,

448 and 896 processor cores on the K60 supercomputer (https://ckp.kiam.ru). This comparison

shows that even without deep, including low-level, code optimization, our approach ensures high

performance of the program developed on its basis.

Concluding this section, we recall that the development of a highly efficient program for

molecular Monte Carlo calculations requires solving two main problems: taking into account

intramolecular degrees of freedom and parallelizing the calculations over the Markov chain un-

derlying the computational algorithm. The first of them is proposed to be eliminated by dividing

biopolymer molecules into rigid compact fragments connected by single covalent bonds of mod-

erate stiffness. To solve the second one, domain decomposition in combination with splitting

loops over lists of interaction partners is well suited. Note that the implementation of domain

decomposition in the Monte Carlo method is fundamentally different from its implementation

in the molecular dynamics method, where all atoms are displaced at one time step. We add that
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the problem of applying domain decomposition in calculations of molecular systems using the

procedure of Metropolis et al. [2, 18] is very poorly covered in the literature, so we believe that

this article will provide new information useful for developers of supercomputer programs.

Conclusion

In this paper, we have considered the main factors affecting the performance of Monte

Carlo calculations for large models of molecular aggregates, and also proposed effective methods

for solving the identified problems. Thus, the use of domain decomposition and distributed

computing on hundreds of processor cores not only eliminates the problem of lack of RAM, but

also provides the possibility of simultaneous execution of the Metropolis et al. procedure [2, 18]

in each domain. The minimum size of a domain is determined by the cutoff radius for interactions

between atoms and the thickness of the buffer zone; therefore, each domain can contain several

thousand atoms. To further speed up calculations in domains, it is necessary to split the loop

over the list of interaction partners, assigning to each domain not one processor core, but a

group of 7–14 cores, using data replication. This will further reduce the calculation time by an

order of magnitude. The problem of slow diffusion in the configuration space of molecules with

internal degrees of freedom [20] is proposed to be solved using a simplified treatment of the

strain energy of covalent bonds and angles [27, 31, 32].

As shown by computational experiments with all-atom models of water and n-hexane, the

strategy of parallelization of calculations proposed by us makes it possible to develop highly

efficient programs for modeling biopolymers in an aqueous solution by the Monte Carlo method

in the framework of classical physics.

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-

mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work

without further permission provided the original work is properly cited.
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