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Partial differential equations (PDEs) are pervasive in vast domains of science and engineering.
Although there is huge legacy of numerical methods for solving direct and inverse PDE problems,
these methods are computationally expensive for many fundamental and real-life applications,
demanding supercomputer resources. Moreover, existing methods for PDEs identification assume
concrete functional forms for the coefficients to be found, significantly limiting the range of possible
solutions. The mentioned circumstances lead to increasing interest in AI-based methods for direct
solving and identification of PDEs. In this study, we propose a novel method based on artificial
neural networks (ANNs) for the identification of partial differential equations. The method does not
require any strong a priori assumptions regarding the family of the functions approximating PDE
coefficients. It allows one to approximate the coefficients of a PDE based on the observed evolution
of PDE direct solution. We demonstrate efficacy and high accuracy of ANN-based method in
case of diffusion equation and nonlinear diffusion-advection equation (Richards equation) applied
to the simulation of heat and moisture transfer in soil. We demonstrate that the novel method
implemented on Ascend platform using the mixed precision floating point operations overperforms
the classical gradient descent method in Barzilai–Borwein stabilized modification (BBstab, realized
on a conventional central processor), in terms of MAPE (mean absolute percentage error) and
RMSE (root mean square error) of approximated coefficients at least an order of magnitude.
We also found that ANN-method is much less sensitive to initial guess of parameters compared
to BBstab approach. Since the considered equations are of generic form, we anticipate that the
proposed ANN-based method can be successfully exploited in other applications. These potential
applications include hydrodynamic-type problems, e.g., optimization of turbulence closures, where
the assumed reference solutions of PDEs are usually obtained from high-resolution direct Navier-
Stokes simulations.

Keywords: partial differential equations, artificial neural networks, machine learning, inverse
problems, land surface model, Richards equation, Ascend platform.

Introduction

Partial differential equations (PDE) are pervasive in many domains of science and engineer-
ing. Over the past decades, multiple methods have been proposed which allow to solve PDEs
numerically, such as finite elements method (FEM), finite differences method (FDM), finite vol-
umes method (FVM), etc. Such methods allow to achieve good accuracy of the numerical solution,
but often are computationally expensive, which becomes an important limitation in applications
when one needs to perform thousands or even millions of simulations. Such scenarios are com-
mon in engineering, e.g., the problem of finding optimal configuration of design parameters may
require a large number of forward simulations for individual parameter sets. Another category
of problems where traditional numerical methods often require heavy computations are inverse
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or data assimilation problems where the governing PDEs need to be reconstructed based on
the measurement data or data of very-fine-scale simulations recognized as “truth” (e.g., direct
numerical simulations in turbulence [35]).

The limitations of classical numerical methods resulted in the increasing interest in AI-
based methods for solving and/or identification of PDEs which hold a perspective of effectively
addressing the above mentioned issues. These AI-based methods can be split into two major cat-
egories: data-driven methods and physics-informed ones. The former category includes methods
which use only observation data to implicitly reproduce the physics of natural phenomena, with
Fourier neural operator (FNO) [29] and deep operator networks (DeepONet) [32] being some of
well-known examples. Physics-informed methods, in contrast, leverage known information about
governing physical laws. The most famous and likely most widely used method in this category
is physics-informed neural networks (and its flavours) [22, 38–40], developed by research group
of professor G. Karniadakis at Brown University.

The application of AI-based methods allowed to achieve notable results in areas like protein
structure prediction [4, 25], photonics [44], the solution to Schrödinger equation for fermions [37],
quantum transport [45], molecular dynamics [23], climate analytics [28], weather prediction [43],
computational fluid dynamics (CFD) [16, 30], solid mechanics [19], Earth radiation belt model-
ing [10] and others.

While the interest of scientific community in AI-based methods of solving PDEs does increase
quickly, most case studies presented so far leverage single precision arithmetic and thus focus
on commodity hardware such as CPU and general-purpose computing on graphics processing
units (GPGPU), even though specialized deep learning accelerators could be a perfect hardware
target for such technologies in theory, due to their higher computational performance. However,
the important question which needs to be addressed to evaluate the usefulness of AI accelerators
in the field of scientific computing is whether the half precision arithmetic typically supported by
those accelerators would allow to achieve acceptable accuracy in the problems of interest. This
motivates us to thoroughly consider the question of datatype precision in the current paper where
to the best of our knowledge we present the first case study of using specialized AI accelerator
for solving the PDE identification problem relevant to land surface modeling field via artificial
neural network (ANN) based algorithm.

The paper is organized as follows: in the Section 1, we present the context of the problem of
PDE identification and the specifics of the downstream tasks we consider in this study that are:
soil heat conductance and soil water content dynamics. We introduce the PDEs that describe
these physical processes. These PDEs are subjects to identify in our study. In Section 2, we
present the methods for the identification of PDEs we developed in our study. Both classical
method (Section 2.3) and the one based on artificial neural networks (ANNs) (Section 2.4) are
presented in this section in a unified manner in order to make it easy for a reader to compare the
approaches and find the key differences. In Section 2.4 we describe our method based on ANNs
in detail, including the physics-guided regularizations, our improved scalars and tensors scaling
scheme, and the scheme of random re-weighting of individual elements of loss sums. In Section 3,
we present the results we deliver in this study. We compare the accuracy and the performance
of classical identification method we reproduce in this study, with the accuracy and performance
of the method based on ANNs we propose in this study. In Conclusions section, we summarize
the paper and draw the conclusions based on our results.
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1. Problem Setup

1.1. General Remarks on the PDE Identification Problem

Let us assume we have a partial differential equation or a system of PDEs supplemented
with appropriate initial and boundary conditions:

Bf +A [λ(f)] f = g, (1)

where B and A are differential operators, λ(f) is a coefficient of the operator A which is a function
of solution f , g is a given right-hand side (r.h.s.) function of time and space. Below we confine
ourselves to operators A which are linear on λ. The inverse problem is formulated as follows:
the PDE solution f is given, B and A are known, λ(f) has to be found. For any test function
(coefficient) λ∗(f) = λ(f) + δλ(f), we get a residual of (1), defined as ε:

Bf +A [λ(f) + δλ(f)] f − g = ε, (2)

A [δλ(f)] f = ε. (3)

The residual ε is zero if δλ(f) = 0. The opposite is not true in general case, i.e., there might
be non-trivial solutions δλ(f) of equation (3) with ε. This means the solution of inverse problem
is not unique in general case. The practical consequence of this fact is that minimizing ε to
zero over a space of λ∗(f) functions does not necessarily provide δλ(f) → 0. In this study, we
impose additional constrains on λ∗(f), which ensure the correct solution of the inverse problem,
including the monotonicity and matching the known points of λ(f) (see Section 2.4.3).

Let us assume now, that we have a solution of (1), f , at a set of nodes in time and space
(say, data of fine-scale measurements or simulations with a priori correct but computationally
expensive mathematical model). Then, the equation (1) can be discretized as follows:

ε∗hτ
.
= Bhτ fhτ +Ahτ [λ(fhτ ) + δλ(fhτ )] fhτ − ghτ = εhτ +O(hn) +O(τm), (4)

where h and τ stand for spatial and temporal spacing of the mesh where the above mentioned
data is available, fhτ , ghτ , εhτ are the projections of f , g, ε onto the mesh, n and m are the
orders of approximation of A and B by discrete analogues Ahτ and Bhτ , respectively. Now,
under fixed h and τ , minimizing the norm of residual of (4), ||ε∗hτ ||, over λ∗(fhτ ) does not lead
to vanishing of εhτ and δλ(fhτ ) → 0. This is because the residual of discretized PDE is caused
by both the deviation of test coefficient function from the true one and discretization errors, so
that vanishing ||ε∗hτ || means εhτ → O(hn) +O(τm). In this study, we minimize the discretization
issue by using fine-resolution grids for PDE approximation.

1.2. Equations for Soil Thermodynamics and Hydrodynamics in Weather
and Climate Models

The land surface scheme is a necessary compartment of any numerical weather forecast
system or the Earth system model. Its key feature is the presence of a number of loosely con-
strained parameters of PDE coefficients which need to be identified using observation data. This
includes the biophysical properties of soil and vegetation responsible for simulation of soil mois-
ture regime and river runoff, inter alia. In this paper, we suggest a new ANN-based approach
for identification of heat conductance and Richards equations. These equations are standard for
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land surface schemes, and are used in the land surface scheme jointly developed by the Institute
of Numerical Mathematics (INM) RAS and Lomonosov Moscow State University (MSU). This
land surface scheme is a module of the national INMCM Earth system model [42] and SLAV
numerical weather forecast system [13].

The basic numerical kernel of any land surface scheme is a solver for an equation system
governing heat and water transport in soil. This system includes heat equation:

ρc
∂T

∂t
=

∂

∂z

(
λT
∂T

∂z

)
+ ρd (LiFi − LvFv) , (5)

where T is temperature, ρc is volumetric specific heat of soil, ρd is dry soil density, L and F are
specific heat and rate of water phase transition (subscript i standing for freezing/melting and v
denoting evaporation/condensation processes), t is time, z is a spatial coordinate directed along
gravity. Importantly, the heat conductivity coefficient λT is a function of liquid water content
W (expressed in kg/kg or m3/m3), i.e., it depends on the solution of the equation set. The l.h.s.
represents the change of soil enthalpy, and terms to the r.h.s. stand for heat conductance and
heat release/consumption due to phase changes. An equation for liquid water content is referred
to as Richards equation and takes into account vertical transport (diffusion and gravitational
infiltration), freezing/melting and evaporation/condensation:

∂W

∂t
=

∂

∂z

(
λW

∂W

∂z

)
+
∂γ

∂z
− Fi − Fv −Rroots −Rrunoff , (6)

where γ is gravitational water flux, Rroots is soil moisture uptake by roots, and Rrunoff is a sink
of water due to horizontal runoff. This equation involves a concept of soil moisture potential
(or water retention curve, WRC), Ψ, and hydraulic conductivity, γ, which are dependent on
moisture W , defining coefficients λW , γ as functions of PDE solution. The liquid water diffusiv-
ity λW (W ) and hydraulic conductivity (HC) γ(W ) are related functions, i.e.:

λW (W ) = γ(W )
∂Ψ(W )

∂W
. (7)

At least 22 semi-empirical forms are proposed for the WRC function [12], fitting different sets
of empirical data with different performance. The WRC function explicitly enters the hydraulic
conductivity function. For instance, choosing Mualem approach for HC quantification [36], one
arrives to:

γ = γsW̃
1/2



∫ W̃

0

dW̃ ′

Ψ(W̃ ′)

(∫ 1

0

dW̃ ′

Ψ(W̃ ′)

)−1

2

, (8)

where W̃ .
= (W −Wr)/(Ws −Wr) is a degree of soil moisture saturation, subscripts “s” and “r”

standing for saturated and residual quantities of liquid water in a soil matrix. Thus, introduc-
ing in (8) and (7) n = 22 forms of WRC yields 22 possible pairs of functions (λW , γ), based on
Mualem equation. Given existence of different theoretical approaches (including Mualem’s formu-
lation (8)) to quantify hydraulic conductivity [9, 14, 36], say, m approaches, we get m∗n possible
functional forms for a pair (λW , γ), which is ∼ 100 for the current state of the field. This clearly
shows that no generally accepted formulations for these two coefficients are available, so that
a method, deriving coefficients λW (W ) and γ(W ) independently from data on measurable vari-
ables such as W with very general a priori assumptions on these functions (such as positive
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definiteness, monotonicity) would ease the collection of more empirical data on WRC and HC
functions and eventually serve the development of unified theory.

The dynamics of water vapor (V , kg/kg) in soil pores in the INM RAS-MSU land surface
model is governed by diffusion equation with evaporation/condensation term:

∂V

∂t
=

∂

∂z
λV

∂V

∂z
+ Fv, (9)

(λV – diffusivity coefficient for the water vapor) while the evolution of ice content I (kg/kg) is
defined by phase transitions only:

∂I

∂t
= Fi. (10)

The system of equations (5), (6), (9), (10) is supplemented in the land surface model by boundary
conditions, representing heat and moisture balance at the top and bottom margins of the soil
column:

− λT
∂T

∂z

∣∣∣∣
z=0

= Rnet −Hs − LEs, (11)

− λW
∂W

∂z

∣∣∣∣
z=0

= rpr − Es, (12)

V |z=0 = V0(t), (13)
∂T

∂z

∣∣∣∣
z=H

=
∂W

∂z

∣∣∣∣
z=H

=
∂V

∂z

∣∣∣∣
z=H

= 0. (14)

Here, Rnet is the net radiation, Hs and LEs are sensible and latent heat fluxes in the surface
air layer, respectively, L – specific heat of evaporation/condensation, rpr – the liquid water
flux to the soil from rain or melted snow. The lower boundary conditions mean zero flux. The
infiltration flux, γ is non-zero at the lower bound of soil column, and is assumed to contribute
the river runoff. The aforementioned boundary conditions are prone to uncertainties induced by
quantifying radiation and heat fluxes, both in measurements and theoretical approaches. Thus, in
this study, we make use of a fact that at the diurnal scale, the temperature and moisture remain
almost constant at sufficiently large depth, and follow sinusoidal pattern at the soil-atmosphere
interface (see Problem Specification section).

1.3. Problem Specification

The key feature of the soil model described above is a set of PDE coefficients, which are
dependent on PDE solution. These coefficients are routinely not measured. Our objective is to
find coefficients as functions of solution, given the solution is known. The temperature T and
moisture W can be available either from observations or from reference direct problem solution
with a priori given coefficients. In order to simplify the task, we neglect water phase transitions,
root uptake, horizontal runoff, which leaves us with a set of two equations – (5), (6) – with
Fi = Fv = Rroots = Rrunoff = 0:

ρc
∂T

∂t
=

∂

∂z

(
λT
∂T

∂z

)
, (15)

∂W

∂t
=

∂

∂z

(
λW

∂W

∂z

)
+
∂γ

∂z
, (16)
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and the simplified Dirichlet-type boundary conditions are specified as:

f |z=0 = f1 +
1

2
(f2 − f1) (1 + sin(ωt− π/2)) , (17)

f |z=H =
1

2
(f1 + f2) , (18)

where f = T, W , W1 = Wmin, W2 = Wmax, and T1 = Tmax, T2 = Tmin (Tmin = 0 K,
Tmax = 5 K, Wmin = 0.2 kg/kg, Wmax = 0.65 kg/kg), and ω is a frequency of the surface
forcing, in this study set as ω = 2π/Td, Td = 24 h. We substituted the conventional flux-type
boundary conditions (11)–(14) with (17)–(18) to avoid additional uncertainties associated to
parameterization of heat and moisture turbulent fluxes to the atmosphere (whereas Dirichlet
conditions are directly measurable). The initial profiles for temperature and moisture are:

f |t=0 = f1 + (1− exp(−λdecz))(f2 − f1), (19)

with f = T, W , λdec = 3 m−1.
The coefficients λT , λW and γ are assumed to be the functions of W only, i.e., no explicit

dependence on z is imposed owing to the vertical soil structure. In other words, all soil physical
parameters (e.g., soil porosity, heat conductivity of solid particles, hydraulic conductivity at
saturation, etc.) potentially affecting thermal conductivity and Richards equation coefficients
are taken as depth-independent.

Equations (9) and (10) are no longer a part of the problem, due to neglecting the phase
transitions. The depth of soil is set as H = 1 m, a depth where diurnal oscillations are typically
vanishing in real soils. In this study, the direct problem is solved using the reference (“true”)
functions describing λT , λW , γ using finite difference scheme and thus providing Thτ , Whτ at
a fine grid, with number of layers nz = 1000, and timestep ∆t = 10 s or ∆t = 1 h. Then the
reference λT , λW , γ are sought given Thτ , Whτ only. The two methods for seeking the PDE
coefficients are used:
• method constructed by joining the well-known elements (referred to hereafter as “classical

method”): the functional form of coefficients is given by one of options well-established
in soil science (Cote-Konrad [11] or Johansen [24] representations of λT , and Mualem-van
Genuchten [17], Books-Corey [7] or Gardner [15] formulae for λW , γ), the parameters of
these forms are optimized by stabilized Barzilai–Borwein algorithm [6, 8];
• new artificial neural network (ANN)-based method: the functional form of coefficients
λT , λW , γ is represented by artificial neural network, and the parameters of ANN are
optimized.

In the implementation of ANN method, a special focus is put on the impacts of using FP32
(floating point, 32 bits) and FP16 (floating point, 16 bits) precision on solution wall-clock time
and accuracy of inverse problem solution using the Ascend platform provided by Huawei.

In both methods of PDE identification, the parameters of analytical forms for λT , λW , γ are
sought to minimize a loss function of PDE residual εhτ (see eq. (4)), where operators Bhτ and Ahτ
represent discretization of heat conduction (15) and Richards (16) equations. The discretization
of heat conduction equation and diffusive part of Richards equation is central-difference in space
and 1st order implicit in time. The advective part of equation (16) is approximated by 1st order
explicit scheme in time and central-differences in space. Thus, the Richards equation is solved
by time-splitting by physical processes (terms to the r.h.s. of (16)).
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2. Methods

2.1. Reference Solutions

2.1.1. Heat conduction equation

To produce the reference numerical solution of direct heat conduction problem, we use the
Cote-Konrad model for coefficient of soil heat conductivity [11] (hereafter denoted as “C-K”):

λT = λT,dry + (λT,sat − λT,dry)Ke, (20)

λT,dry = ξ10(−η∗p), (21)

λT,sat = λpwλ
1−p
sp , (22)

Ke = (KteW̃ )/(1 + (Kte − 1)W̃ ), (23)

where λT,dry and λT,sat are the values of conductivity coefficient for dry and saturated soil,
respectively, Ke is the so-called Kersten number, p is the soil porosity (taken as 0.496, from the
measurements in soil of Meteorological Observatory of Moscow State University [27]), λw is heat
conductivity of water, λsp is heat conductivity of soil solid particles (taken as 2.5 W m−1 K−1),
and the soil-type specific constants are set to be representative of silt and clay: Kte = 1.69, η =

1.8, ξ = 1.7 W m−1 K−1, ρc = 2.4×106 J m−3 K−1. The Cote-Konrad model is a representative
of a class of conductivity models based on normalized heat conductivity concept, where Kersten
number is used to interpolate between dry and saturated soil state.

2.1.2. Richards equation

To produce reference numerical solutions of Richards equation (16), we involved widely used
functions of the soil moisture developed by Mualem [36] and van Genuchten [17] for the liquid
water diffusivity λW (W ) and hydraulic conductivity γ(W ) (hereafter abbreviated as “M-vG”):

λW,M−vG(W ) =
γs(1−m)

αm(Ws −Wr)
W̃ 1/2−1/m

[(
1− W̃ 1/m

)−m
+
(

1− W̃ 1/m
)m
− 2

]
, (24)

γW,M−vG(W ) = γsW̃
1/2
[
1−

(
1− W̃ 1/m

)m]2
. (25)

These functions monotonically increase with liquid moisture content W , and are zero in the
origin (W = Wr). The parameters in the above formulae are taken from [27]: m = 0.272,
γs = 3.78D−1sec ms−1 (hydraulic conductivity of saturated soil), α = 0.7 m−1, Wr = 0.149,
Ws = 0.7, where Dsec = 86400 s is a day duration.

2.2. General Approach of the Study

In this paper, we present two methods for PDE identification: classical method and ANN-
based approach. We compare them in terms of wall-clock computational time and accuracy. In
both methods, the coefficients of PDEs are sought as those minimizing the PDE residual εhτ ,
where the Bhτ and Ahτ operators correspond to central differences in space and 1st order scheme
in time.

Key Differences in Classical and ANN-based Methods. The methods presented in this
study have a similar structure, differing in the components:
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• loss function, which is a measure of εhτ deviation from zero in classic method and is a more
complex metrics in a case of ANN-based method,
• explicit form of coefficients λT , λW , γ as functions of soil moisture W ,
• method for the optimization of parameters in the assumed coefficient functions of W .

In the later sections, the detailed description of classical and ANN-based methods highlight these
features.

2.3. Classical Method

2.3.1. Loss function

The loss function in classical method is defined as RMSE of εhτ computed in time and space,
where the boundary mesh nodes are excluded, i.e.:

LCM =


 1

(nz − 1)nt

nz∑

i=2

nt∑

j=1

(
εjhτ,i

)2


1/2

, (26)

with i standing for index of depth level, j denoting the time instant, nt being the number of
timesteps (in classical method, nt = 24, corresponding to ∆t = 1 h).

2.3.2. Assumed form of solution

Having data on the measured evolution of physical variables (soil temperature T and mois-
ture W ) we always do not know the real functional forms of λT (W ), λW (W ), γ(W ), so that
any functional form which is assumed during inverse problem solution differs from that provided
by nature. The indirect corroboration of this statement is provided by existence of ∼ 100 pairs
of explicit functions λW (W ), γ(W ) reported in literature, none of which performs best on all
the empirical datasets. At the same time, it is generally accepted that the heat conduction (15)
and Richards (16) equations are exact. In the classical method of PDE identification, the dif-
ference between real and assumed types of PDE coefficients inevitable in real applications is
imitated by using the widespread representations of heat conductivity, liquid water diffusivity
and hydraulic conductivity which are different from Cote-Konrad and Mualem-van Genuchten
formulae, used to compute reference solution, respectively. At the same time, using the functional
form of λT (W ), λW (W ), γ in PDE identification algorithm which are the same to ones used to
produce reference direct problem solution allows to check the correctness of the gradient-descent
algorithm in classical method as the latter allows to provide exact inverse problem solution in
this case.

For solution of inverse temperature conduction problem we use the Johansen parameteri-
zation of heat conductivity [24], which involves the normalized heat conductivity concept (20),
and the geometric mean approach for conductivity coefficient of saturated soil (22), however,
proposes the different (compared to C-K) formulations for dry soil conductivity and Kersten
number (hereafter referred to as “Joh”):

λT,dry =
C1ρdry + C2

ρp − C3ρdry
, (27)

Ke = W̃ , (28)

A General Neural-Networks-Based Method for Identification of Partial Differential...

26 Supercomputing Frontiers and Innovations



where dry soil density ρdry and mean soil particles density ρp are expressed in g cm−3, and
C1 = 0.135, C2 = 0.0647, C3 = 0.947 are empirical constants. The second equation in a set
above has been suggested for fine soils.

For identification of the Richards equation (16), the Brooks-Corey parameterization [7] (here-
after referred to as “B-C”):

λW,B−C(W ) =
γs|Ψmax|b
Ws −Wr

W̃ b+2, (29)

γB−C(W ) = γsW̃
2b+3, (30)

and the Gardner parameterization [15] (hereafter denoted as “Gard”):

λW,Gard =
γsa

1/c

c
W̃ 1/2W

c+1

c , (31)

γGard = γsW̃
1/2W

2c+2

c , (32)

are involved, a, b, c are empirical constants to be calibrated, see details in Section 2.3.3.

2.3.3. Optimization method

As the functional forms of λT , λW , γ are defined above, the task of PDE identification
is reduced to finding optimal values of parameters in formulas (27)–(28), (24)–(25), (29)–(30),
(31)–(32). These parameters are sought using gradient descent method in Barzilai–Borwein mod-
ification, having the form [6]:

xn+1 = xn − Γn∇LCM (xn), (33)

Γn,0 =
|(xn − xn−1)T (∇LCM (xn)−∇LCM (xn−1))|

||(∇LCM (xn)−∇LCM (xn−1))||2 . (34)

Here, xn is a vector of parameters at n-th iteration, vertical index T stands for vector transpose.
The gradient of the loss function∇L(xn) at each iteration is found by finite-differencing, gradient
descent rate Γn is set to Γn,0 in conventional BB method, and in this study we use the stabilized
Barzilai–Borwein method [8], which introduces the following limiting of the descent rate:

Γn = min(Γn,0,Γ
stab
n ), (35)

Γstabn =
∆

||∇LCM (xn)|| , (36)

where ∆ is maximal value allowed for ||xn+1 − xn||. This method is referred to as BBstab, and
is free from large “jumps” of parameter vector xn during iteration process, which are known
to happen in conventional BB algorithm, and were observed in the course of Richards equation
identification process in our study. As the physical parameters entering x have different scales, the
equation being identified is rewritten in terms of parameters, normalized by respective maximal
values, so that x is sought in a unit hypercube, and ∆� 1.

The loss function LCM (x) is defined as a RMS of finite-difference equation residual at a given
set of test coefficients taken over all time and depth combinations of the mesh (equation (26)).

The parameter vector is dependent on a PDE being identified:
• x

.
= (p, λsp,Wr,Ws) in C-K case of temperature equation (15),

• x
.
= (p, λsp, ρp,Wr,Ws, ρdry) in Joh case of temperature equation,
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• x
.
= (m, γs, α,Wr,Ws) in M-vG case of Richards equation (16),

• x
.
= (b, γs,Ψmax,Wr,Ws) in B-C case of Richards equation,

• x
.
= (c, γs, a,Wr,Ws) in Gard case of Richards equation.

The criterion to stop iterations used in our study is satisfaction of any of the two inequalities:
LCM changes negligibly with iteration number or n > nmax. The first guess x0 significantly
affects the number of iterations needed to converge to true solution. Moreover, given that some
of parameters in λW and γ vary between soil types orders of magnitude (e.g., γs), the initial guess
far from optimal value leads to large error in solution. In the numerical experiments presented
below, we use the values x0 = 0.5 ∗ xtrue, x1 = 0.6 ∗ xtrue (Barzilai–Borwein method needs
first two points in x-space to start iterations by formula (33)–(34)), which ensured the correct
convergence. Alternatively, to compute x1, one may use (33) with some small Γ0. Other choices
of initial guesses (e.g., x0 = 0.1 ∗ xtrue, x1 = 0.2 ∗ xtrue; x0 = 1.9 ∗ xtrue, x1 = 1.8 ∗ xtrue),
have been tested and delivered comparable results in accuracy and number of iterations. In
addition to numerical experiments, where all parameters listed above were optimized, a set of
simulations were conducted, where all but two parameters were fixed to known reference values,
and the these two were optimized only. It was found that nmax = 100 ensures convergence (i.e.,
negligible change of LCM with iteration number) of the algorithm for both PDEs studied in this
paper and both types of optimization.

2.4. Neural-Network-Based Solution

2.4.1. PDE identification as a differentiable inverse problem

In this study, we consider PDE identification as an inverse problem of regression type (see
Problem Specification section). In both cases of simulated evolution and a solution given by
regular observations, we refer to the given evolution as the true one. However, when using the true
evolution as a reference, one still cannot apply routine data science approach for approximating
the coefficients λT , λW and γ with ANNs. Instead, in case of ANN-based method, we propose to
minimize the error of an integrated evolution within the gradient minimization approach given the
coefficients λT , or λW and γ approximated by ANNs that are essentially differentiable parametric
functions of potentially unlimited expressive power. More precisely, we propose minimizing PDE
residual or, equivalently, the error of the tendencies ∂T

∂t (in case of heat diffusion equation)
and ∂W

∂t (in case of Richards equation). The tendencies are estimated using finite-differences
approximation of the equations (5) and (6). Finite-differencing is a differentiable operation as
well as loss function characterizing errors of tendency estimates. Thus, there is a straight-forward
way for the computation of the gradients of the loss function w.r.t. parameters of the functions
modeling λT , or λW and γ. In Fig. 1, we present our ANN-based approach in a form of data-flow
and operations scheme for Richards equation as a demonstrative example. Due to similarity of
the derivatives inference, optimization procedures and regularizations applied in cases of heat
diffusion equation and Richards equation, we further use X as a substitute correspondingly for
W or T (e.g., see Fig. 1). We also present the formulae considering Richards equation case
with λW and γ terms further in this section. At the same time, the derivatives inference, the
regularizations and optimization procedure are the same for λT in case of heat diffusion equation.
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Figure 1. The PDE identification approach using ANNs Fλ and Fγ for Richards equation (16) in
case of either (a) measured evolution, or (b) modeling the reference evolution using known coef-
ficients λW and γ. Here X is a substitute for W , the similar algorithm is applied for temperature
equation (X = T ). The bold red arrows indicate the computational graph that involves chain
rule (a.k.a. backpropagation) for evaluating the gradients of loss function L w.r.t. the parameters
θλ of Fλ and θγ of Fγ . In this paper, the case (b) is considered only

2.4.2. Assumed form of solution

In this method, the approximations of the coefficients λT , λW and γ of the heat conduc-
tion (15) and Richards equations (16) are represented by artificial neural networks (ANNs)
denoted further as either FNN,λT , FNN,λW and FNN,γ or FλT , FλW and Fγ (for the sake of clar-
ity). The architecture of the ANNs is the same for all the cases. It is the fully-connected ANNs
(a.k.a. multilayer perceptron) with six layers. The layers are wide for the networks to have high
enough expressive power for approximating functions like eqs. (20), (24) and (25). We optimized
the structural hyperparameters of the networks ensuring the capability of approximating the
target functions by solving simple supervised problem with target values generated by “true”
forms like eqs. (20), (24) and (25). In order to improve convergence, we used Mish activation
function [34] for all layers except the last one, where we used linear activation.

2.4.3. Loss function

The basic part of the loss function in this study is a weighted sum of the three components:
MAPE of tendency, MSE (mean square error) and MAE (mean absolute error) of PDE residual:

L = αmse
1

N

∑
ε2hτ + αmape

1

N

∑
∣∣∣∣∣

̂(∂X/∂t)hτ − (∂X/∂t)hτ,true
(∂X/∂t)hτ,true + ε

∣∣∣∣∣+ αmae
1

N

∑
|εhτ | , (37)

where N is a number of mesh nodes over which the PDE residual and discrepancy between
test and reference tendencies are summed, X stands for T or W , depending on equation being
identified, the subscript “hτ ” indicates variables discretized on the mesh, the hat (̂...) denotes
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values calculated using test PDE coefficients represented by ANNs, and ε = 10−8 is a number
added for numerical stability. Note that ̂(∂X/∂t)hτ − (∂X/∂t)hτ,true = εhτ .

Zero-Point Regularization. In order to stabilize the ANN training and improve the con-
vergence, we complemented the loss function (37) with the regularization terms informed by
physical constraints. First, one may note that dry soil should not conduct liquid water. This
is in agreement with the reference solutions for λW and γ given by eqs. (24) and (25). Thus,
λW (W = 0) = 0, and γ (W = 0) = 0. We implemented the respective regularization loss terms
as:

Lreg,zp = αzp,λ × |FNN,λW (W = 0)| , (38)

Lreg,zp = αzp,γ × |FNN,γ (W = 0)| , (39)

where αzp,λ and αzp,γ are regularization coefficients related to the zero-point values of λW and
γ approximated by the ANNs FNN,λW (W ) and FNN,γ (W ), correspondingly.

Known Points Regularization. In a real-world application case, one may improve the con-
vergence with a regularization encouraging the ANNs to predict specific known (e.g., measured)
values of PDE coefficients for a set of argument values Xkp. We call the respective loss term the
known-points regularization:

Lreg,kp = αkp,λ ×
∑

i

|FNN,λW (Wkp,i)− λW (Wkp,i)| , (40)

Lreg,kp = αkp,γ ×
∑

i

|FNN,γ (Wkp,i)− γ (Wkp,i)| , (41)

where αkp,λ and αkp,γ are regularization coefficients related to the values of λW and γ correspond-
ingly in a limited set of known points Wkp,i approximated by the neural networks FNN,λW (W )

and FNN,γ (W ); i enumerates measured tuples of Wkp, λW and γ. In our study, the number of
known points is 3.

Derivative Penalty. One may also note that the coefficients λW and γ are strictly increasing
functions, which is a case for all analytical representations (including Mualem-van Genuchten,
Brooks-Corey and Gardner) for physical reasons. According to this constraint, we introduce
corresponding physics-guided regularization terms that we call derivative penalty:

Lreg,dp = αdp,λ ×
∑

∂FNN,λW
(W )

∂W
<0

∣∣∣∣
∂FNN,λW (W )

∂W

∣∣∣∣ , (42)

Lreg,dp = αdp,γ ×
∑

∂FNN,γ (W )

∂W
<0

∣∣∣∣
∂FNN,γ (W )

∂W

∣∣∣∣ . (43)

The regularizations presented in eqs. (38)–(43) are “soft”, meaning they do not necessarily de-
liver the desired properties of the approximations. Thus, one may note that the derivative penal-
ties in eqs. (42) and (43) do not necessarily guarantee strictly ascending ANN-approximations
for λW and γ. In order to additionally encourage the ascending approximations, we complement
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the loss function with one more term which encourages the networks to output less value at the
left margin of the X range compared to the output at the right margin of X range:

Lreg,lr = { αlr,λ × |FNN,λW (Xmax)− FNN,λW (Xmin)| if FNN,λW (Xmax) < FNN,λW (Xmin)

0 otherwise
(44)

Lreg,lr = { αlr,γ × |FNN,γ (Xmax)− FNN,γ (Xmin)| if FNN,γ (Xmax) < FNN,γ (Xmin)

0 otherwise,
(45)

where Xmin and Xmax are the lower and higher limits for X that are either inferred from
measurements or set by a researcher conducting a computational experiment. In case of X being
substitute for W , one may set the lower limit to 0 and higher one to the maximum value inferred
from data. In case of X being substitute for T , both lower and higher limits may be set to the
values inferred from data. Here one needs to pay attention to the way we inject regularization
terms into loss function. In particular, one should pay attention to derivative penalty Lreg,dp,
since gradients of this loss term w.r.t. network parameters includes second-order derivatives
∂FNN (W,θ)
∂W∂θ , which is computationally expensive. In order to save computational power, we do not

compute the derivative penalty using the W and T profiles themselves since the number of data
points in this case is batch_size*nz. Instead, we compute derivative penalty using additional
sample of T and W values distributed uniformly in the range [Tmin, Tmax] and [Wmin,Wmax]

correspondingly. The same applies to the regularization terms Lreg,zp, Lreg,kp. In this case, the
number of data points is managed by a researcher. We set this number to nz. Here, Tmin and
Tmax are the maximum and minimum values of temperature in the limited set of measured known
data points; Wmin and Wmax – the same for liquid water content W . This way, we managed to
improve the performance approximately 6-8 times compared to that when using computations
with full training set of W and T profiles.

Rescaling Neural Networks Output. ANNs are known to be strongly overparameterized
and thus having too high expressive power for representing functions of relatively simple form. In
the case of limited support of target value distribution, one may need to restrict the distribution
of the output of the network. One way to do so is using a finite-bounds activation function for
the output layer, e.g., tanh or sigmoid. These functions are known to saturate which may cause
optimization difficulties and low approximation accuracy in some argument ranges. In our study,
we use dynamic min-max rescaling of the network output for both λW and γ networks:

ζ = FNN (X) , (46)

ζ̃ = ζmin,true +
ζ − ζmin

ζmax − ζmin
× (ζmax,true − ζmin,true) , (47)

where ζ is the substitute for λW or γ; ζ̃ is the substitute for λW or γ rescaled using min-
max scheme; ζmin,true and ζmax,true are the minimum and maximum values of true λW or γ in
the [Xmin, Xmax] range; ζmin and ζmax are the minimum and maximum values of ANN-based
approximations for λW or γ in the [Xmin, Xmax] range. One may note that the values ζmin and
ζmax may not be the ones FNN (Xmin) and FNN (Xmax) due to inaccurate meeting of the strictly-
ascending requirement by the neural network. On the contrary, here we consider once again the
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known-points values for ζmin,true and ζmax,true to be the ζXmin,true and ζXmax,true. These values
are guaranteed to be minimum and maximum ones due to strictly ascending λW and γ.

Initial Guess. There is a well-known issue related to the choice of initial guess for the ANN
parameters θλT , θλW and θγ of the networks FNN,λT , FNN,λW and FNN,γ . One may even choose
an initialization that would prevent a network from training. In [33], the importance of proper
initialization is demonstrated. In this paper, the authors demonstrated that one needs to initial-
ize deep ANNs with ReLU activations using random variables drawn from a uniform or normal
distribution with parameters dependent on layers’ sizes. This is done for the variance of activa-
tions of hidden layers and the output layer to remain nearly constant, which prevents output
and gradients variances from vanishing or exploding. The most successful initialization at the
moment is Kaiming He [21]. However, the so-called “gain” parameter in Kaiming He initializa-
tion [21] is computed using the size of layers’ weight tensors with the assumption of either ReLU
of Leaky ReLU nonlinearity. In our study, we use Mish activation functions, thus, there may
be a need for a derivation of proper gain value. We did not conduct this research. Instead, we
assumed that Mish has the effect on the distributions of activations similar to ReLU due to
their large-scale similarity. Thus, in our study, we used Kaiming He initialization with gain value
similar to the one computed with ReLU nonlinearity assumption. The results of our ANN-based
method presented in Section 3.2 confirm the validity of this decision.

Optimization of Hyperparameters. In this study, we demonstrate that the balance between
the multipliers standing before the loss function terms is crucial for the stability of training, for
Richards equation (16) identification. In order to stabilize the training, we explored the space of
hyperparameters.

Learning Rate Schedule. In our study, we exploited stochastic gradient-based optimization
procedure, which implies iterative increment of network’s parameters with adjusted loss gradients
multiplied by a small factor namely learning rate. In recent studies, the importance of learning
rate scheduling was shown [31]. However, we found that with the stability improvements presented
further in this section, there is no need to apply sophisticated learning rate schedules. Thus, we
employ exponential decay of learning rate. Typically, the starting leaning rate is 10−4, and the
decay rate is 10−2. Thus, to the end of the training, learning rate decreases to 10−6 level.

2.4.4. Optimization and implementation details

In case of ANN-based PDE identification of our study, in the numerically-simulated evolu-
tion, the number of z-levels is nz = 1000, and the number of time steps is nt = 8640 (∆t = 10 s)
which corresponds to 24 hours of modeled time. The optimization of ANNs implies stochastic
optimization algorithms (in this study, we employ Adam [26]). For this algorithm, to evaluate loss
function, we implemented data sampler, which draws batch_size time steps from the reference
PDE solution dataset.

In our study, we found that Adam optimization is not enough for the stable loss function
minimization and for reaching the solution with low uncertainty in case of Richards equation
problem. Inverse PDE problems are known for sensitivity of the solution to input data. One more
issue compromising the solution stability is the mixed precision computations which requires
particular attention in case of small and large loss values and gradient values. There are known
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approaches of loss scaling and corresponding gradient inverse scaling by NVIDIA [1]. However,
we faced the issue of partly implemented method of NVIDIA loss scaling in Tensorflow 1.15,
which fails to run in case of provided software and hardware stack (see Section 2.5). In order to
achieve stable and converging training of ANNs for λW and γ approximations, we implemented
several additional approaches described below.

Scaling Scheme for Scalars and Tensors. Optimization of ANNs using mixed precision
floating-point calculations is complicated by the narrow range of values represented in FP16.
General description of computational issues related to FP16 is presented on NVIDIA web-site.
The NVIDIA loss scaling [1] is implemented in detail in Tensorflow 2.x, and is partially im-
plemented in Tensorflow 1.15. On Huawei Ascend platform, Tensorflow 1.15 was more matured
at the time that the study was conducted, thus, we developed a new scheme for loss scaling
which may be characterized as more “gentle” yet efficient. The same scheme may be employed
for gradient scaling in a case the tensors are found vanishing.

The main goal of the scheme is to preserve the scale of loss function values close the order
of 100. To do so, we introduce the following variables:
1. a factor for exponential moving average fema. We typically set it to 0.1;
2. loss which is subject to scale L. This loss value is the one we compute directly using networks

outputs with equations (37)–(45);
3. current loss scale s;
4. scaled loss Ls;
5. log2(Ls), denoted as l2;
6. exponentially moving averaged value of the loss Lema;
7. exponentially moving averaged value of log2(L), denoted as l2,ema;
8. gradients gs computed using backpropagation implemented in auto-differentiation schemes

of Tensorflow or other autodiff frameworks. These gradients are calculated from scaled loss
values Ls;

9. inverse-scaled gradients g.
The operation of loss scaling and gradients inverse scaling are linear operations:

Ls = L× s, (48)

gs = ∇θLs, (49)

g = gs/s, (50)

where θ is a set of parameters (a.k.a. weights) of ANNs involved in loss function computations,
and ∇θ is a gradient over this parameter set.

The operations for scale s adjustment are the following:

L(τ)
ema = L(τ−1)

ema × (1− fema) + L(τ) × fema, (51)

l
(τ)
2 = log2 L

(τ)
ema, (52)

l
(τ)
2,ema = l

(τ−1)
2,ema × (1− fema) + l

(τ)
2 × fema, (53)

s(τ) = 2−bl
(τ)
2,emae, (54)

where bxe denotes rounding to a nearest integer; τ is the number of iteration of adjustment
(typically coincides with the number of optimization iteration). With this scheme, the loss scale
remains to be of order 100.
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With the same scheme, one may apply gradient scaling for its expected absolute value to
be of order 100. To do so, the only corrections to the scheme presented above are the following:
instead of L, one needs to use the scale of L̃ = mean |gθ|, where g is gradient tensor of a neural
network w.r.t. parameters tensor of a particular layer of a network. In case of some other variable
of interest A subjected to scaling, the scheme looks the following:

As = A× sA, (55)

Ã(τ)
ema = A(τ−1)

ema × (1− fema) +A(τ) × fema, (56)

a
(τ)
2 = log2A

(τ)
ema, (57)

a
(τ)
2,ema = a

(τ−1)
2,ema × (1− fema) + a

(τ)
2 × fema, (58)

s
(τ)
A = 2−bl

(τ)
2,emae, (59)

where Ã is sample mean of |A| in case of A being a tensor with rank greater than zero, and
Ã = A in case of A being a scalar. This way, we scale the gradients and values of (∂X/∂t)hτ
preventing them from becoming small enough to vanish to FP16-zero level in case of quadratic
loss components MSE

[
( ̂∂X/∂t)hτ , (∂X/∂t)hτ,true

]
.

The gradient scaling scheme has an impact on the optimization procedure. First, using this
scheme, one introduces noise into stochastic optimization when the scale s is changing, since
the change is made in a discrete multiplicative manner (see eq. (54)). Second, when one applies
gradient scaling presented in this study, the magnitude of gradients is preserved of order 100. In
common gradient optimization algorithms, the gradients’ magnitudes are assumed to decrease
over time, resulting in sampling of the loss landscape with increasing resolution and, thus, finding
the solution with increasing accuracy. This behavior is essentially equivalent to learning rate
decrease, which does not take place in case gradient scaling applied. Thus, one needs to pay
additional attention to setting the learning rate schedule, which may play the role of a factor
increasing the resolution of loss landscape sampling.

Reducing the Interaction between Loss Sum Components. There is one more issue
of the ANN-based identification of the Richards equation related to smooth nature of γ func-
tion. The finite-difference approximation of the gravitational infiltration term in the Richards
equation (16) is:

(
∂W

∂t

)

γ,i

=

(
∂γ(W )

∂z

)

i

≈
γ(Wi+1/2)− γ(Wi−1/2)

∆zi
,

MSE

[(̂
∂W

∂t

)

γ,hτ

,

(
∂W

∂t

)

γ,hτ,true

]
=

1

N∆z

N∑

i=1

[(̂
∂W

∂t

)

γ,hτ,i

−
(
∂W

∂t

)

γ,hτ,true,i

]2
,

MAE

[(̂
∂W

∂t

)

γ,hτ

,

(
∂W

∂t

)

γ,hτ,true

]
=

1

N∆z

N∑

i=1

∣∣∣∣∣

(̂
∂W

∂t

)

γ,hτ,i

−
(
∂W

∂t

)

γ,hτ,true,i

∣∣∣∣∣ ,

MAPE

[(̂
∂W

∂t

)

γ,hτ

,

(
∂W

∂t

)

γ,hτ,true

]
=

1

N∆z

N∑

i=1

∣∣∣∣∣∣

(̂
∂W
∂t

)
γ,hτ,i

−
(
∂W
∂t

)
γ,hτ,true,i(

∂W
∂t

)
γ,hτ,true,i

∣∣∣∣∣∣
.

(60)

Here, we replaced residual by difference of tendencies, i.e., εhτ = ̂(∂W/∂t)hτ − (∂W/∂t)hτ,true
and ∆zi with ∆z for the uniform z mesh, i enumerates individual components of loss sums. One
may note that the consequent terms of MSE, MAE and MAPE sums interact between each other
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due to smoothness of the γ function (see details in Appendix A). We also found empirically that
the gradients of these loss function terms are zero almost everywhere except for small subset of
depths including the boundaries at z = 0 and z = H (Fig. 2a).

(a) (b)

Figure 2. MAEγ loss gradients w.r.t. γ as individual sum terms vs. γ: (a) in case of standard
MAEγ formulation; (b) in case of random re-weighting of individual MAEγ sum terms according
to eq. (61). The logarithmic scale uses additive log-stability term 10−14

In order to alleviate this issue, we introduce the technique of random re-weighting of loss
sum components. We reformulate the loss function terms the following way:

LMSE =
1

N∆z

N∑

i=1

WMSE,i ×
[(̂

∂W

∂t

)

γ,hτ,i

−
(
∂W

∂t

)

γ,hτ,true,i

]2
,

LMAE =
1

N∆z

N∑

i=1

WMAE,i ×
∣∣∣∣∣

(̂
∂W

∂t

)

γ,hτ,i

−
(
∂W

∂t

)

γ,hτ,true,i

∣∣∣∣∣ ,

LMAPE =
1

N∆z

N∑

i=1

WMAPE,i ×

∣∣∣∣∣∣

(̂
∂W
∂t

)
γ,hτ,i

−
(
∂W
∂t

)
γ,hτ,true,i(

∂W
∂t

)
γ,hτ,true,i

∣∣∣∣∣∣
.

(61)

Here, we generate the weights as Gaussian random variable: W ∼ N
(
1, σ2

)
, where σ may be

optimized during hyperparameters optimization stage. In our study, we set σ = 0, 1. As a result,
the loss gradients became more informative and are not zero, as shown in Fig. 2b.

2.4.5. Further details of the ANN-based solution for Richards equation

We found that λW -network converges much faster compared to the one approximating γ
due to the strongly interacting loss sum components in the latter case described in the
previous section. Moreover, the λW -network converges to a very good approximation with
MAPE (λW ) ≈ 10−2. Thus, in this study, we used the approach of consequent training of γ-
and λW -networks. First, we trained λW -network with the γ-network initialized to output zeros.
Then, after a fixed training period, we freeze the λW -network and optimize the one approximat-
ing γ.

2.5. Hardware and Software

Numerical experiments with classical method of PDE identification were performed on Mac-
Book Pro, 2.3 GHz Intel Core i5, 8 Gb RAM, 2133 MHz, LPDDR3.
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Computations using ANN-based approach were conducted on Atlas 800 Training Server
(Model 9010) with 8-socket Huawei Ascend 910 NPUs, 16 Huawei 64-bit TaiShan CPU cores at
2.4 GHz. Each NPU provides three HCCS links and a maximum bandwidth of 90 Gbit/s. The
server supports two CPUs with up to 3.8 GHz frequency, 38.5 MB L3 cache, and three 10.4 GT/s
UPI links, up to to 24 DDR4 RDIMMs, 16 GB, 32 GB or 64 GB per DIMM. The capacity of
HBM is 32 GB with bandwidth 1228 Gbit/s.

In this study, we developed the software package implementing our ANN-based method
using Python 3.5.7 [41] with Tensorflow 1.15 (within the session.run() approach and explicit
computational graph definition) [2]. We also used numpy [20] and other python modules typical
for data science data processing and visualization.

2.6. Metrics for Quality of the Inverse Problem Solution

The values of coefficients λW and γ range of orders of magnitude depending on the argu-
ment W , as well as corresponding tendency of the solution ∂W/∂t in Richards equation (16).
Thus, in order to represent the accuracy of the inverse problem solution, we use several quality
measures: RMSE (λX); MAPE (λX); RMSE (γ); MAPE (γ). We calculate these measures using
conventional RMSE (·) and MAPE (·) formulations without any re-weighting. We also use the
following error metrics: RMSE ((∂X/∂t)hτ ) which is equivalent to root mean squared εhτ , and
MAPE ((∂X/∂t)hτ ) (X = W,T ):

Qrmse,εhτ = RMSE

[(
∂X

∂t

)

hτ

]
=

√√√√ 1

N

N∑

1

ε2hτ , (62)

Qmape,εhτ = MAPE

[(
∂X

∂t

)

hτ

]
=

1

N

N∑

1

∣∣∣∣∣
εhτ(

∂X
∂t

)
hτ,true

+ ε

∣∣∣∣∣ . (63)

3. Results and Discussion

3.1. Stabilized Barzilai–Borwein Method

First, we consider the loss function LCM of two parameters, where the rest parameters are
fixed to reference values, and where LCM is computed at a regular grid 30×30 (Fig. 3 and 4). The
range of parameters covers most of variability reported in soil science. Note the single minimum
of loss function for each of three functional forms of test coefficients. The minimum in parameter
space of reference C-K and M-vG form delivers exact solution of the inverse problem. However,
in a case, where all (from 4 to 6) parameters are optimized, the minimum of LCM is no more
unique (including a scenario of inverse problem solution, where C-K and M-vG forms are used),
which is manifested by the fact that the argument of loss minimum found by BBstab method
does depend on initial guess (not presented in this paper).

As a result of multiple minima of LCM in parameter space, optimal coefficient functions,
provided by all analytical forms, significantly differ from the reference ones (Fig. 5ab, 6a–c, 7a–
c). The thermal conductivity coefficient remains the same order of magnitude over the W range,
and the absolute error does the same. Using the Joh formulation provides significantly larger
errors compared to a case of using C-K representation. For Richards equation (16), the optimal
test coefficients significantly deviate from reference ones as well, with absolute error increasing
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towards W values close to saturation. Surprisingly, seeking Richards coefficients in M-vG way,
does not necessarily provide the smallest MAPE and RMSE respective to “true” coefficients,
compared to other scenarios (e.g., compare B-C and M-vG results for γ), which means the
choice of initial M-vG parameter values close to exact ones is crucial for solution accuracy.

(a) The case of Cote-Konrad (C-K) formulation (b) The case of Johansen (Johansen) formulation

Figure 3. Loss function LCM of two parameters (porosity, p, and heat conductivity of soil
particles, λsp) being optimized in the cases: Cote-Konrad (C-K, left) and Johansen (Johansen,
right) formulas for thermal conductivity in test evaluation of thermal conductivity equation (15)
residual εhτ , the realistic reference solution T of PDE being produced using C-K formulation

3.2. Neural-Network Method

Here, we present results of the optimization of ANNs within the framework described in
Section 2.4, for the Richards (16) and temperature conductance (15) equations with realistic
reference direct problem solution. We use soil column temperature and moisture profiles generated
by direct solution of PDEs for 24 hours of model time. This way, we obtained 8640 profiles. For
each of these profiles we apply our scheme described in Section 2.4. We use stochastic optimization
with batch_size=128 number of profiles per iteration, each containing nz = 1000 number of z-
levels.

We optimized some of the hyperparameters of the method using Optuna framework [3]. To
optimize the hyperparameters, we compute quality metrics of the solutions with λT in case of heat
conductance equation or λW , γ in case of Richards equation modeled by ANNs for each set of hy-
perparameters; the learning rate schedule was set to exponential decay with starting value 1e-4,
decay rate 1e-2 and number of steps 8192. We found that in this setup, the ANNs optimization
can converge with reasonable quality, thus we have the opportunity to assess the quality metrics
for each set of hyperparameters. We performed 3500 runs optimizing the following hyperparame-
ters: αmse, αmape, αmae, αzp, αdp, αkp. A sample for each of these hyperparameters was generated
using log-uniform sampling with the distribution support [1, 1014]. As a result, we found the
following hyperparameters that let us train our networks reaching appropriate quality Qrmse,εhτ
and Qmape,εhτ : αmse = 1011, αmape = 10, αmae = 1, αzp = 108, αdp = 10, αkp = 108 (see
(37), (38), (41), (42)). With these hyperparameters, we then trained the networks FNN,λW and
FNN,γ in case of Richards equation (16), and FNN,λT in case of heat conductance problem (15).
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(a) The case of Mualem-van Genuchten (M-vG)
formulation

(b) The case of Brooks-Corey (B-C) formulation

(c) The case of Gardner (Gard) formulation

Figure 4. Loss function LCM of two parameters being optimized in the cases: Mualem-van
Genuchten (M-vG, (a), parameters are γmax, m), Brooks-Corey (B-C, (b), parameters are
Ψmax, b) and Gardner (Gard, (c), parameters are a, c) formulas for moisture diffusivity and
hydraulic conductivity coefficients used in test evaluation of Richards equation (16) residual εhτ ,
the realistic reference PDE solution W being produced using M-vG formulation

Important part of our study was focused on computations in mixed precision (MP). We ob-
served that the out-of-box MP settings resulted in the drop of accuracy comparing to single preci-
sion, but we managed to stabilize those using the black-list of operations which were prohibited to
run in FP16: "Exp", "Tanh", "TanhGrad", "Div", "Sub", "Pow", "Add", "Mul", "Log".
With this black-list and the stability improvements described in detail in Section 2.4, we man-
aged to reach the quality of the approximation similar to FP32 computations (see results in
Tab. 1 and 2) without negative impact to the computational efficiency. We also tested the com-
putational efficiency (performance) in FP32 and mixed-precision. The quantitative results for
heat conductance problem are presented in Tab. 3. Corresponding measures for Richards equa-
tion case are presented in Tab. 2 and 4. One may note, that in Tab. 4, we show the performance
estimates in iterations per second. Here, one iteration corresponds to 128000 profile elements per
second since the number of moisture profiles is exactly 128 per batch (iteration), and number of
z-levels is 1000 for ANN-based experiments in this study.
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RMSE = 6.1×10&'
MAPE = 1.7×10&)

(a)
reference:          Cote-Konrad
approximation: Cote-Konrad form

(a) The case of BBstab method, C-K formulation

reference:          Cote-Konrad
approximation: Johansen form

RMSE = 1.5×10&'
MAPE = 4.2×10&*

(b)

(b) The case of of BBstab method, Johansen formu-
lation

(c)

RMSE = 3.2×10'()
MAPE = 6.4×10',

reference:          Cote-Konrad
approximation: ANN, FP32

(c) The case of ANN, FP32 precision

(d)

RMSE = 3.6×10'()
MAPE = 8.1×10'+

reference:          Cote-Konrad
approximation: ANN, MP (Ascend)

(d) The case of ANN, mixed precision (MP)

Figure 5. Thermal diffusivity coefficient λT for soil as a function of volumetric moisture con-
tent W being approximated (a) in a form given by C-K formulae in test solution of heat con-
duction equation using BBstab optimization procedure; (b) in a form given by Johansen formula
in test solution of heat conduction equation using BBstab optimization procedure; (c) in a form
of artificial neural network, FP32 precision computations; (d) in a form of artificial neural net-
work, MP computations employed on Ascend compute platform. Here, we produce the reference
solution using the C-K formulation

The results of PDE identification using ANN-based method are shown in Fig. 5cd, 6d, 7d.
One may see excellent correspondence between the reference forms of the coefficients and the
approximations made by ANNs.

We found that ANNs optimization process may begin to diverge if one continues to run it
long enough in case of Richards equation problem. Thus, there is a room for decision at which
point to get the snapshots of the networks and corresponding quality measures. In case of real-
world application, one cannot compute quality measures for the parameters λT , λW and γ due
to unavailability of their ground truth. Thus, one cannot formulate the stopping rule for ANNs
optimization based on RMSE (λW), MAPE (λW), RMSE (γ) or MAPE (γ). The only indicators
one may use to judge on solution accuracy during optimization process are the measures of
discrepancy between true and approximated PDE tendencies Qrmse,εhτ or Qmape,εhτ . In our study,
we used Qrmse,εhτ as the indicator for the stopping rule, thus, in eqs. (1) and (2) we demonstrate
the quality measures corresponding to optimal (minimal) Qrmse,εhτ
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RMSE = 6.42×10()
MAPE = 0.13

(a)
reference:          MvG
approximation: MvG form

(a) The case of BBstab method, M-vG formulation

reference:          MvG
approximation: Brooks-Corey form

RMSE = 2.0×10&'
MAPE = 0.13

(b)

(b) The case of BBstab method, B-C formulation
(c)

RMSE = 4.4×10&'
MAPE = 0.44

reference:          MvG
approximation: Gardner form

(c) The case of BBstab method, Gard formulation

(d)

RMSE = 7.5×10'(
MAPE = 0.01

reference:          MvG
approximation: ANN, MP (Ascend)

(d) The case of ANN, mixed precision (MP)

Figure 6. Diffusion coefficient for soil moisture λW as a function of volumetric moisture con-
tent W being approximated given forms of (a) M-vG, (b) Brooks-Corey (B-C) and (c) Gardner
(Gard) formulae for moisture diffusivity λW and hydraulic conductivity γ coefficients in test
solution of Richards equation (16), BBstab optimization procedure applied. In (d), we present
diffusion coefficient for soil moisture being approximated given artificial neural networks for
moisture diffusivity λW and hydraulic conductivity γ coefficients in test solution of Richards
equation (16), MP computations employed on Ascend compute platform. Here, we produce the
reference solution using the M-vG formulation

Table 1. Quality measures of the temperature conductance equation (15)
identification. The ANN-based solutions are obtained using Ascend compute platform

method; MAPE (λT /ρc) RMSE (λT /ρc) Qmape,εhτ Qrmse,εhτ
FP32/MP - m2s−1 - K s−1

ANN, MP 8.1× 10−4 3.6× 10−10 7.04× 10−3 1.9× 10−6

ANN, FP32 6.4× 10−4 3.2× 10−10 4.1× 10−4 5.2× 10−7

BBstab(C-K), FP32 1.7× 10−2 6.1× 10−9 3.6× 10−2 1.6× 10−6

BBstab(Joh), FP32 4.2× 10−2 1.5× 10−8 8.7× 10−2 4.1× 10−6

3.3. Relative Performance of ML-Based Method vs. Classical PDE
Identification Method

Tables 1–2 and 3–4 allow the direct comparison of BBstab and ANN methods in terms of
error metrics and computational efficiency, respectively. Though being faster in wall-clock time,
BBstab method significantly underperforms in accuracy. In MAPE and RMSE for temperature
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RMSE = 4.3×10'(
MAPE = 0.76

(a)
reference:          MvG
approximation: MvG form

(a) The case of BBstab method, M-vG formulation

reference:          MvG
approximation: Brooks-Corey form

RMSE = 2.3×10'(
MAPE = 0.31

(b)

(b) The case of BBstab method, B-C formulation
(c)

RMSE = 3.4×10'(
MAPE = 2.3

reference:          MvG
approximation: Gardner form

(c) The case of BBstab method, Gard formulation

(d)

RMSE = 9.5×10'(
MAPE = 0.09

reference:          MvG
approximation: ANN, MP (Ascend)

(d) The case of ANN, mixed precision (MP)

Figure 7. Hydraulic conductivity coefficient for soil moisture γ as a function of volumetric mois-
ture content W being approximated given forms of (a) M-vG, (b) Brooks-Corey (B-C) and (c)
Gardner (Gard) formulae for moisture diffusivity λW and hydraulic conductivity γ coefficients
in test solution of Richards equation (16), BBstab optimization procedure applied. In (d), we
present hydraulic conductivity coefficient for soil moisture being approximated given artificial
neural networks for moisture diffusivity λW and hydraulic conductivity γ coefficients in test
solution of Richards equation (16), MP computations employed on Ascend compute platform.
Here, we produce the reference solution using the M-vG formulation

Table 2. Quality measures of the Richards equation (16) identification. The ANN-based
solutions are obtained using Ascend compute platform

method; MAPE (λW ) MAPE (γ) RMSE (λW ) RMSE (γ) Qmape,εhτ Qrmse,εhτ
FP32/MP - - m2s−1 m s−1 - s−1

ANN 1.01× 10−2 8.9× 10−2 7.5× 10−9 9.5× 10−9 5.8× 10−1 6.1× 10−8

MP
BBstab(M-vG) 1.3× 10−1 7.6× 10−1 6.4× 10−7 4.3× 10−7 1.2× 100 1.3× 10−6

FP32
BBstab(B-C) 1.3× 10−1 3.1× 10−1 2.0× 10−6 2.3× 10−7 1.2× 100 1.2× 10−6

FP32
BBstab(Gard) 4.4× 10−1 2.3× 100 4.4× 10−6 3.4× 10−7 8.1× 10−1 3.1× 10−6

FP32

conductivity, liquid water diffusivity, and hydraulic conductivity, BBstab demonstrates error
values 1–3 orders of magnitude higher than those obtained with ANN method.
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Table 3. Performance estimates of the temperature conductance
equation (15) identification. The ANN-based solutions were
obtained using Ascend compute platform

method FP32/MP perf., it/sec Tc, iter Tc, w.time

ANN MP 8.68 11800 2086 s.
BBstab(C-K) FP32 9.1× 10−2 100 1096 s.

BBstab(Joh) FP32 9.1× 10−2 100 1053 s.

Table 4. Performance estimates of the Richards equation (16)
identification. The ANN-based solutions were obtained using
Ascend compute platform

method FP32/MP perf., it/sec Tc, iter Tc, w.time

ANN MP 9.1 15507 2500 s.
BBstab(M-vG) FP32 1× 10−1 100 994 s.
BBstab(B-C) FP32 1.2× 10−1 100 843 s.
BBstab(Gard) FP32 1.1× 10−1 100 939 s.

3.4. Relation to Results of Other Groups

An idea to reconstruct the Richards equation from measured data on soil moisture has
got development during recent years. In [5], the ANN with monotonicity constraints were used
to approximate coefficients of the Richards equation of the same form as used in our study.
The reference solutions were produced by HYDRUS-1D model with Mualem-van Genuchten
formulation for PDE coefficients. The results of inverse problem solution are thoroughly analyzed
from the point of soil physics, however, no comparison with the baseline PDE identification
method (like BBstab in our case) is provided and the visual inspection of figures in the cited
paper allows to conclude that in our study the ANN-based algorithm produces solution with
much higher accuracy. In [18], the ANNs are involved to recover the linear Richards equation
containing additional terms of higher-order derivatives. In contrast, our approach sticks to classic
nonlinear form of Richards equation, having solid physical basis. In both mentioned papers, the
input data for identification problem was synthetic, produced by direct problem solution with
parameters and/or boundary conditions, instructed from real measurements; the same strategy
applied in our work.

Conclusions

In this study, we propose a novel method based on ANNs for the identification of partial
differential equations. We demonstrated its efficacy and high accuracy in a case of diffusion equa-
tion applied to the problem of heat conduction in soil, and nonlinear diffusion-advection equation
(Richards equation) applied to the soil moisture simulation. We also propose physics-guided and
other types of regularizations for the stabilization of neural networks training. We found that
in case of the identification of advection term, one may face the issue of strong interaction be-
tween loss sums elements in MSE, MAE and MAPE, which may cause uninformative gradients
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and, in turn, poor identification quality and high uncertainty in approximated PDE coefficient.
To alleviate this issue, we elaborated random re-weighting of the individual components of these
terms’ sums, which resulted in informative gradients, stabilized training and good approximation
of the PDE coefficient. The usage of novel AI Ascend platform allows to significantly speedup
implementation of ANN-based algorithm.

Regarding the quality of the PDE identification, we draw the following conclusions:
• novel method based on ANNs for the identification of PDE coefficients describing heat and

moisture transport in soil implemented on Ascend platform using mixed precision floating
point operations overperforms the classical gradient descent method in Barzilai–Borwein
stabilized (BBstab) modification, in terms of MAPE and/or RMSE at least an order of
magnitude;
• BBstab method requires good initial guess of parameters being optimized to converge to

true solution, whereas, for ANN method, the sensitivity of training results to initial guess
is much less limiting the accuracy of solution.

The ANN-based method we developed for PDE identification may be used in research ar-
eas other than soil thermodynamics. The Richards equation is a diffusion-advection type equa-
tion, with highly nonlinear advective term. We expect applicability of suggested approach to
hydrodynamic-type problems, e.g., developing turbulence closures, where the reference solutions
of PDEs are usually obtained from high-resolution direct Navier-Stokes simulations. Moreover,
our method of ANN-based identification is not limited to the cases where a PDE solver is im-
plemented in a form of finite-difference approximation, it can be used in conjunction with any
other differentiable numerical PDE solvers.
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Appendix A. On the Interaction of the Loss Sum Elements
in Approximated Advection Term

In Section 2.4.4, we stated that in Richards equation case, there is an issue of loss sum
elements strongly interacting with each other resulting in uninformative gradients. In particular,
this feature takes place when one considers the advective term ∂γ

∂z of the r.h.s. of Richards
equation within our approximation approach. In this section, we present the derivation of the
gradients of loss sums in eq. (60) w.r.t. γ in order to demonstrate either their reduction to zero
or to come constant independent of ground truth, in case of smooth function γ (W ) and fine
z-grid.

Let us consider the loss function of a tendency ∂W
∂t concerning the term ∂γ

∂z :

L = Err

(
∂W

∂t

∣∣∣∣
γ

)
= Err

(
∂γ

∂z

)
, (64)

where Err is either MSE, MAE or MAPE.

A.1. MSE Term

First, we consider MSE
(
∂γ
∂z

)
(see the details for MAE and MAPE further).

L =

N∑

i=1

(
∂γ

∂z

∣∣∣∣
NN,i

− ∂γ

∂z

∣∣∣∣
true,i

)2

, (65)

where i enumerates z-elements of a soil profile.
In our scheme, the r.h.s. of Richards equation is approximated using finite differences, thus,

one may express the loss sum the following way:

L =

N∑

i=1

(
∆γ

∆z

∣∣∣∣
NN,i

− ∆γ

∆z

∣∣∣∣
true,i

)2

, (66)
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In our method, z-grid is uniform, thus, all the ∆zi are equal: ∆zi = δz,∀i. Let us denote
L′ the finite-difference approximated loss term multiplied by δ2z : L′ = δ2zL. Then this term is
expressed the following way:

L′ =
N∑

i=1

(
∆γ|NN,i − ∆γ|true,i

)2
, (67)

Let us denote ν = γNN , and τ = γtrue for the convenience and brevity. Consider the
expansion of the sum in eq. (67):

L′ =
N∑

i=2

(νi − νi−1 − τi + τi−1)
2 =

= . . .+ (νj − νj−1 − τj + τj−1)
2 + (νj+1 − νj − τj+1 + τj)

2 + . . . =

= . . .+ ν2j + ν2j−1 + τ2j + τ2j−1−
− 2νjνj−1 − 2νjτj + 2νjτj−1 + 2νj−1τj − 2νj−1τj−1 − 2τjτj−1+

+ ν2j+1 + ν2j + τ2j+1 + τ2j−
− 2νj+1νj − 2νj+1τj+1 + 2νj+1τj + 2νjτj+1 − 2νjτj − 2τj+1τj + . . .

(68)

Here, j is an index of some arbitrary sum element in the expansion. When one would like
to compute the gradients of the loss term L w.r.t. parameters θγ of the neural network Fγ

approximating γ coefficient, the chain rule is applied in the following form:

∂L
∂θγ

=
1

δ2z

∂L′
∂θγ

=
1

δ2z

∂L′
∂γ

∂γ

∂θγ
=

1

δ2z

N∑

i=1

∂L′
∂νi

∂νi
∂θγ

.

Since the most of the expanded sum terms in eq. (68) are not dependent of νj , the finite-
difference approximated gradient of the loss L′ w.r.t. γ for an arbitrary j-th element νj is ex-
pressed the following way:

∂L′
∂γ

∣∣∣∣
j

=
∂L′
∂νj

=

=
∂

∂νj

(
2ν2j − 2νjνj−1 − 2νjτj + 2νjτj−1 − 2νjνj+1 + 2νjτj+1 − 2νjτj

)
=

=2ν2j + 2νj (−νj−1 − τj + τj−1 − νj+1 + τj+1 − τj) .

(69)

Since the function γ is supposed to be smooth, and also the z grid has 1000 levels with fine
resolution, one may observe the following approximate equalities:

νj+1 + νj−1 ≈ 2νj ,

τj−1 + τj+1 ≈ 2τj .
(70)

Thus, the gradient in eq. (69) is transformed the following way:

∂L′
∂νj

=
∂

∂νj

(
2ν2j + 2νj (−2νj + 2τi − 2τj)

)
≈ −4νj . (71)

Thus, in case of smooth γ function and fine z-grid, one may clearly see that the gradi-
ents of MSE loss of the advective term do not depend on external data γtrue, and, thus, are
uninformative.
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A.2. MAE Term

In this section, we consider MAE
(
∂γ
∂z

)
.

L =

N∑

i=1

∣∣∣∣∣
∂γ

∂z

∣∣∣∣
NN,i

− ∂γ

∂z

∣∣∣∣
true,i

∣∣∣∣∣ , (72)

where i enumerates z-elements of a soil profile. Similar to the derivation of MSE term, we use
ν and τ notation for γNN and γtrue correspondingly. We also use the following notation here:
L′ = δzL. Thus, the gradient of the MAE loss term is expressed the following way:

∂L
∂θγ

=
1

δz

∂L′
∂θγ

=
1

δz

∂L′
∂γ

∂γ

∂θγ
=

1

δz

N∑

i=1

∂L′
∂νi

∂νi
∂θγ

.

Let us consider the gradient of the expansion of the L′ term w.r.t. some arbitrary sum
elements νj in case of finite-difference estimated derivatives ∂γ

∂z :

∂L′
∂νj

=
∂

∂νj

N∑

i=2

|νi − νi−1 − τi + τi−1| =

=
∂

∂νj
(. . .+ si (νj − νj−1 − τj + τj−1) + si+1 (νj+1 − νj − τj+1 + τj) + . . .) ,

where sj = 1 in case (νj − νj−1 − τj + τj−1) ≥ 0, and sj = −1 otherwise. Since ν and τ are
smooth, and z-levels are small, one may consider the case sj = sj+1 most frequent compared to
the case sj = −sj+1. In case sj = sj+1:

∂L′
∂νj

∣∣∣∣
sj=sj+1

= si
∂

∂νj
(νj − νj−1 − τj + τj−1 + νj+1 − νj − τj+1 + τj) = 0,

which is an uninformative gradient.
In case sj = −sj+1:

∂L′
∂νj

∣∣∣∣
sj=−sj+1

= sj
∂

∂νj
(νj − νj−1 − τj + τj−1 − νj+1 + νj + τj+1 − τj) = 2sj ,

which is an uninformative gradient since it is not dependent of “true” values that are τ in this
notation. Thus, in this section, we demonstrated that in case of MAE loss term, its gradients
w.r.t. γNN,j are uninformative constants - either zero or ±2δz. This is in agreement with Fig. 2,
where one may observe that the gradients with added 10−14 stability value are either 10−14 or
some constant.

A.3. MAPE Term

In this section, we consider MAPE
(
∂γ
∂z

)
.

L =

N∑

i=1

∣∣∣∣∣∣∣

∂γ
∂z

∣∣∣
NN,i

− ∂γ
∂z

∣∣∣
true,i

∂γ
∂z

∣∣∣
true,i

∣∣∣∣∣∣∣
, (73)
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One may notice that τ is smooth, thus, in case of finite-difference approximation of the
derivatives in this loss term, ∆τj ≈ ∆τj+1. The derivation of the gradients in this section is
similar to the previous section A.2 with the only reservation of denominator ∆τj , thus, the
gradients may be expressed the following way:

∂L′
∂νj

∣∣∣∣
sj=sj+1

= 0,

∂L′
∂νj

∣∣∣∣
sj=−sj+1

=
2sj
∆τj

.

(74)

Here one may note once again that the case si = sj+1 is much more frequent compared to
the case si = −sj+1 due to smoothness of γ coefficient and FNN,γ neural network. Thus, major
gradient values are zeros which is uninformative. This is in agreement with Fig. 8, where one
may observe that the gradients with added 10−14 stability value are mostly 10−14 with some rare
exceptions. In Fig. 8b, one may also observe that random re-weighting of individual MAPE sum
elements according to eq. (61) made the gradients informative.

(a)

(a) The case of routine MAPEγ formulation

(b)

(b) The case of random re-weighting of individual
MAPEγ sum terms

Figure 8. MAPEγ loss gradients w.r.t. γ as individual sum terms vs. γ: (a) in case of rou-
tine MAPEγ formulation; (b) in case of random re-weighting of individual MAPEγ sum terms
according to eq. (61). Here we present it in logarithmic scale with additive log-stability term
10−14
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