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Weather forecast services in urban areas face an increasingly hard task of alerting the pop-

ulation on extreme weather events. The hardness of the problem is due to the dynamics of the

phenomenon, which challenges numerical weather prediction models and opens an opportunity for

Machine Learning (ML) based models that may learn complex mappings between input-output

from data. In this paper, we present an ongoing research project which aims at building ML pre-

dictive models for extreme precipitation forecast in urban areas, in particular in the Rio de Janeiro

City. We present the techniques that we have been developing to improve rainfall prediction and

extreme rainfall forecast, along with some initial experimental results. Finally, we discuss some

challenges that remain to be tackled in this project.
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Introduction

Precipitation nowcasting, a few hours ahead forecast for extreme rainfall events, is a rele-

vant research topic with important impact on urban areas monitoring decision-making. In large

cities, such as Rio de Janeiro, heavy precipitations events have been registered, especially dur-

ing summer, causing property damage, citizens mobility disruption, and even deaths. A single

extreme rainfall event, occurred in 2011 in a Rio de Janeiro nearby town, claimed the lives of

more than 900 people. As the effects of climate change become stronger, more frequent episodes

such as this are likely to be observed [12]. Despite the efforts dispensed to improve strong events

forecast accuracy, results of the Rio Operation Center7 (COR), a department of the municipality

responsible for throwing alerts of extreme events, need improvements. In a 2019 internal study,

da Silva [10] analyzed 168 rain alerts, from February 2019 to May 2019, emitted by COR. On

the total forecasts emitted by COR classified as strong rain, only 12% did materialize as such.

More interestingly, 35% of the these alerts corresponded to actual no rain observed. Conversely,

considering the total forecast events for moderate rain, 49% had no rain and 2% faced heavy

rain. Thus, there is a clear need to improve on extreme weather forecasts in urban areas, and

in particular for the Rio de Janeiro city. Current approach followed by COR involves the in-

terpretation by meteorologists of the results of numerical weather predictions (NWPs), such as:

COSMO [1] and the Weather Research and Forecasting (WRF) model [2]; and the follow-up on

radar images, electromagnetic discharge and other meteorology related sensors. In this context,
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a recent research track has explored the opportunities of applying machine learning models in

the prediction of extreme weather events [11, 16, 18]. While the prediction of normal weather

condition benefits from the huge history of recorded weather related observations, which can be

directly used for model training, a major challenge in the extreme weather context is the small

number of events. Fortunately, extreme weather events are still rare, specially in a particular

region, such as the Rio de Janeiro city. As a result, few data points are available recording

the data patterns of these events. Learning under such a constrained scenario has been studied

under the umbrella of learning with small data [5, 23].

In this paper, we describe our initial contributions towards using Machine Learning (ML)

models for predicting extreme weather events. We focus on a particular type of extreme event,

namely, rainfall. We present three alternative approaches we have been investigating to solve

this forecasting problem, along with initial validation experiments for each one of them. The

first approach aim at building deep learning models that learn spatio-temporal signals obtained

from precipitation observations, captured from weather stations, as well as weather forecast data

computed by NWPs. The second approach leverages DL models built using the first approach

but focusing on a particular spatial forecasting region of interest. Finally, the third one, proposes

an extreme weather forecast dataflow.

The remainder of this paper is structured as follows. Section 1 formalizes the problem. Next,

Section 2 contextualizes the problem presenting the geographic regions of interest and available

data sources. In Section 3, we describe the ML approaches we have been investigating for weather

forecast. Section 4 discusses experiments evaluating the presented approaches. Section 5 presents

related work. Then, in Section 6, we describe the challenges we foresee in this project. Finally,

we conclude highlighting some final remarks and pointing to future work.

1. Problem Statement

In this paper, we deal with the problem of precipitation forecasting. We take a machine

learning approach to it. We assume the existence of several spatiotemporal data sources from

which the parameters of the forecasting models can be fitted.

Informally, a spatiotemporal data source provides measurements that have stamps in both

space and time. Formally, we define a spatiotemporal data source as a sequence of observations

made at regular time intervals: X̃ = [X1, X2, . . . , XT ]. The interval ∆t between two observations

defines the temporal resolution of the data source. Each observation Xi ∈ RH×W×C , for i =

1, 2, . . . , T consists of a regular grid that determines the spatial location of interest, where H

and W specify the number of horizontal and vertical elements (i.e., subdivisions) in the grid,

respectively. We call each of the H ×W subdivisions in the grid a cell. The values H and W

control the spatial resolution of the data source, since they determine the height and width

of each cell, which we denote by ∆h and ∆w, respectively. For each element in the grid map,

C represents how many meteorological variables (e.g., precipitation, temperature, humidity)

are measured simultaneously. Each data source has its particular set of observed meteorological

variables.

In a machine learning-based spatiotemporal forecasting model, its parameters are fitted us-

ing a set of one or more spatiotemporal data sources as training data. Such a model can be viewed

a function f that maps an input sequence of past observations X̃in = [Xt−Tin+1, . . . , Xt−1, Xt]
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to an output sequence of predicted observations X̃out = [X̂t+1, X̂t+2, . . . , X̂t+Tout ] (see Eq. 1).

The lengths of these sequences (denoted by Tout and Tin) may differ. However, while Cin ≥ 1

(i.e., several meteorological variables can be used as predictors), Cout = 1 (since there is only

one target variable, namely, precipitation).

X̂t+1, X̂t+2, . . . , X̂t+Tout = f(Xt−Tin+1, . . . , Xt−1, Xt) (1)

If it is the case that more than one spatiotemporal data source is available, we assume that,

as a preprocessing step, these data sources are conciliated with relation to spatial and temporal

resolutions to form an aggregated data source in which each element in a grid map contains the

union of all predictor variables in the component data sources.

The problem of precipitation forecasting is very challenging, and several factors contribute

to this. For example, some of the data sources may have missing data, some elements in the grid

maps may not be observable, conciliation of different spatial and/or temporal resolutions may

be needed, inherent sparseness of precipitation data, just to mention a few.

2. Available Data Sources

As we discuss in Section 5, a number of ML based models for extreme events have been

proposed lately. A common understanding is that extreme events nowcasting considers temporal

extrapolation of trends derived from several types of sensors informing about local weather

conditions, such as radar, satellite, meteorological stations, among others [33]. Indeed, while

investigating approaches to extreme rainfall events in the city of Rio de Janeiro, we are confronted

with a set of data sources that can contextualize each extreme event, compensating for the

scarcity of samples and for resulting data imbalance during training.

In Fig. 1, we depict the geographical area of interest for our work. This region was delim-

ited with the help of meteorologists that make part of our team. The total corresponding area

is 84.23 Km × 48.42 Km. The upper left and lower right coordinates of the rectangle corre-

sponding to the region are (lat = –23.1339033365138, lon = –43.8906028271505) and (lat =

–22.649724748272934, long = –43.04835145732227), respectively.

In this figure, one can find markers for the location of the 33 weather stations, monitored

by COR. These station provide online real-time information about weather conditions in the

city. Most of these stations are only pluviometric (i.e., measure only precipitation), while seven

of them are meteorological (i.e., besides precipitation, they also gather data on temperature,

humidity, wind and pressure). The temporal resolution of these stations is fifteen minutes.

By analysing the small dots and triangles marked in Fig. 1, we can also observe a great

imbalance in the distribution of these stations throughout the city. Moreover, the considered

area contains a chain of mountains that crosses the city with significant coverage by the tropical

forest, which brings humidity to the city and, at the same time, offers obstacles to the dynamics

of weather systems. Rio de Janeiro is a coastal city, and is under the influence of SACZ (South

Atlantic Convergence Zone), two factors that add to the complex climatic scenario observed in

the city.

Most of the weather stations available in our study have been collecting data since 1997

(with some interruptions due to maintenance events). Table 1 presents summary information

about the distribution of rainfall (precipitation) severity levels, considering the time series of

F. Porto, M. Ferro, E. Ogasawara, T. Moeda, C.D.T. Barros, A. Chaves Silva, R. Zorrilla...

2022, Vol. 9, No. 1 51



Figure 1. Spatial region of interest for our study in the Rio de Janeiro city. The light grey area

correspond to land. The dark grey area correspond to sea. Small black dots mark the location

of pluviometric stations. Black triangles mark the location of meteorological stations

all thirty three stations in the period from 2018-01-01 to 2021-12-31. These levels were defined

by a group of meteorologists at AlertaRio, an organization linked to the city’s municipality and

responsible for providing weather bulletins to the population. One can notice that this data

source corresponds to a very unbalanced dataset. Specifically, only 0.17% of the observations

are considered extreme events, according to the AlertaRio’s severity level classification scheme.

However, the occurrence of these kind of events has historically caused great negative impact to

the metropolitan area of Rio de Janeiro, and their precise forecasting would be of paramount

importance to the city.

Table 1. Rain rate statistics of data provided by the 33 weather
stations monitored by COR in the period from 2018-01-01 to
2021-12-31

Rain Rate (mm/h) Proportion (%) Severity Level

0 ≤ x < 5 97.31 No / Light

5 ≤ x < 25 2.19 Moderate

25 ≤ x < 50 0.33 Heavy

x ≥ 50 0.17 Rainstorm

In addition to the weather stations, there is a list of other complementary data sources

that we plan to use to train ML models for extreme precipitation forecast. In Tab. 2, we depict

the different data sources we aim at using to contextualize extreme weather events, and their

corresponding responsible organization. Bellow, we list additional relevant information about

these other data sources.
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Table 2. Available data sources and their providers

Simulations from meteorological models IAG8

Fluviometric stations INEA9

Radars INEA, AlertaRio10

Weather buoys Brazilian Navy11, Portal SIMCosta12

Electromagnetic activity Furnas13, SOS Raios14

Pluviometric/meteorologial stations GeoRio

Satellite data INMET15

Weather balloon Tom Jobim Airport

• Simulations from meteorological models. We have available data from simulations produced

by NWP systems, namely, COSMO and GFS25. The geographical area filtered from the

two datasets covers the Rio de Janeiro city and was fixed at Latitude [−19.5,−24.5] and

Longitude [−40.5,−45.5]. The time interval was set to the period from January 2015 to

March 2021. From the data obtained in the spatio-temporal region defined above, we com-

puted a new more fine grained grid dataset. The latter includes a grid of 300× 300 meters

within the limits of the area defined by the original filtered dataset. The values for each

new grid point are the fruit of an interpolation computing an average among the three

nearest points in the filtered dataset inversely weighted by their distance to the new point.

• Fluviometric stations. INEA provides twenty three fluviometric stations that record river

levels every 15 minutes. This data has been collected since 2008.

• Radar data. INEA has two meteorological radars, both with a radius do 250 Km

covering the Rio de Janeiro area and their surroundings. Their coordinates are

(Lat: −22◦59’35.81077”S, Lon: −43◦35’16.65427”W) and (Lat: −22◦24’20.99917”S,

Lon: −41◦51’37.65632”W). This data is being collects since 2015. Each one of them pro-

duces data every five minutes.

• Weather buoys. These sensors collect variables such as dew point, water temperature,

pressure, humidity, wind speed and direction. New data is available every one hour. This

data source is available since 2019.

• Satellite data. We also collect electromagnetic activity data from the GOES satellite

through Amazon API. This data source is available since 2018. This data source produces

a data file every twenty seconds.

• Weather baloon. Every 6 hours, a weather balloon (filled with hydrogen or helium gas)

equipped with a radiosonde raises to the atmosphere from the Tom Jobim International

airport, located in Rio de Janeiro. Its goal is to collect meteorological data (humidity,

temperature, air pressure) at different altitudes. This balloon reaches an altitude of 25 Km.

While the balloon is suspended, its radiosonde sends the data via radio to a ground station.

8https://www.iag.usp.br/
9https://alertadecheias.inea.rj.gov.br/
10http://alertario.rio.rj.gov.br/
11https://www.marinha.mil.br/
12https://simcosta.furg.br/
13https://www.furnas.com.br/
14https://detectorderaios.com.br/
15https://portal.inmet.gov.br/
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In addition to the available data sources describing real-time weather condition, COR me-

teorologists provided us with information regarding previous extreme rainfall events, with the

dates and time of their occurrence.

3. ML Approaches for Precipitation Forecast

To face the challenges involving extreme rainfall prediction in urban areas using ML models,

we count with our previous experiences in building spatiotemporal ML models for weather

predictions. Our expectation is that we can build on these experiences to tackle the particularities

of extreme weather events. In particular, we are currently investigating three approaches to

produce ML models for precipitation forecast. In this section, we briefly describe each of these

approaches. In Section 4, we conduct some initial experiments we have run to validate these

approaches.

3.1. Regression Approach

We start by describing the first approach, which considers the target variable as a contin-

uous one. Hence, in this approach we are trying to fit regression models. We investigate the

application of two deep learning architectures in this approach, namely, YConvLSTM [34] and

STConvS2S [7]. Both models, which are results of recent investigations carried out by the au-

thors, are suited to capture spatial and temporal features by design and automatically make a

connection between temporal and spatial features. As a result, these models can capture com-

plex dependencies, both intra- (time only or space only) and inter-dimensional (time and space)

patterns. In this section, we provide a general view of these two architectures. In Section 4, we

describe how these generic schemes are instantiated to be used with the data available in our

initial experiments.

Figure 2. YConvLSTM architecture uses ConvLSTM layers to generate Xt+Tout predictions
that are a combination of C components, with dimension H ×W , applied as a channel in the
convolutional layer. In this work C represents several NWP models used as input
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Figure 2 depicts the YConvLSTM architecture. The latter is an adaptation of the CONVL-

STM model [30], which was proposed to improve rainfall nowcasting. The main novelty intro-

duced by the YConvLSTM deep learning model is to adopt a learning process that combines

predictions from multiple numerical weather prediction models. In YCONVLSTM, the different

predictions produced by the component numerical models are conciliated into a single spatial

and temporal grid. Thus, at each point of the grid and time instant, a list of prediction values

produced by the NWP models is associated. The slicing of the 3D grid at each time-instants

produces frames that are input to the deep learning model. The list of prediction values asso-

ciated at each 2D frame is mapped to the channel structure expected by the convolution input

frame. The prediction process is qualified as auto-regressive, as it reads a single variable type as

input (i.e. precipitation volume) and produces future predictions of the same variable type.

This can be seen as a multivariate regression model, since the variable of interest is predicted

by a combination of predictors.

Figure 3 depicts the architecture of the STConvS2S model. STConvS2S [7] is a sequence-to-

sequence architecture comprised exclusively of convolutional layers. Convolutions are performed

with factorized 3D kernels. The architecture is comprised of three component blocks, each one

in turn is a sequence of factorized convolutional layers. These blocks are applied sequentially

to a given input. The first component is the temporal block, responsible for extracting temporal

features through the temporal kernels. The temporal block uses causal convolutions to maintain

temporal coherency during prediction. The second component is the spatial block, responsible

for receiving the output of the previous block and extracting spatial features through the spatial

kernels. Following the spatial block is the temporal generator block, designed to increase the

sequence length Tin if the task requires a longer predictive horizon, where Tout > Tin. Finally,

the output of this last block is further fed into a final convolutional layer to complete the

prediction. Different from YConvLSTM, STConvS2S is an autoregression model, because the

target variable is predicted based on its own past states.

Figure 3. STConvS2S architecture is composed only of 3D CNNs, which are divided into three
blocks to predict an output with temporal size Tout. The first block learns a temporal repre-
sentation of the input sequence followed by a block that extracts only spatial features. This
architecture can uses the channel in the first convolutional layer to combine several spatiotem-
poral inputs with dimension H ×W × T . Source: [7]
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3.2. DJEnsemble Approach

Another initiative developed within the DEXL Lab16 builds on the traditional ensemble of

models to achieve improved local weather forecasts. We start by taking into account the well

known “No-Free-Lunch Theorem” [29, 36], which, informally, states that no learner can succeed

on all learning tasks. A corollary to this theorem is that for a given problem there will be a

region of the data space where an optimal model trained with a sampled distribution of the

domain will produce predictions that are sub-optimal. We built on this result and introduced a

data pre-processing step in ML model selection for weather prediction [24].

3.2.1. Data pre-processing

This pre-processing step aims at identifying regions of the data space that share similar data

patterns. We consider the spatial domain of interest discretized in a set of point locations, for

instance the positions of weather sensors, and model the observations at each point as time-series.

Thus, let us consider a discretized spatiotemporal domain D = {d1, d2, ..., dn}, where di =

{pi = (x, y), si}, 1 ≤ i ≤ n, p = (x, y) is a spatial location (longitude, latitude) and si =<

v1, v2, .., vk > is a time-series of observations. We accounted for seasonality effects on time-series

of weather observations by splitting them into annual periods. Thus, each time-series corresponds

to the observations of one location during one year. We partition the domain D into disjoint

sub-domains S, S ⊆ D. Such partitioning is obtained through the clustering of the set of time-

series si at each domain point pi ∈ D, 1 ≤ i ≤ n. The k-means clustering algorithm was used to

compute the disjoint partitioning of the domain. In order to compute the distance between time-

series, we adopted the Dynamic Time Warping (DTW) algorithm [27]. Thus, after clustering,

each time-series si is annotated with the cluster-id it was associated to. The choice involving the

number (ie. k) of partitions for a given time-series dataset is obtained by computing partitions

for different values of k and using the Silhouette score [26] to rank the resulting clustering. The

Silhouette score is obtained by first computing a per time-series mean internal clustering DTW

distance (a) divided by the mean extra-cluster DTW distance, for the nearest extra-cluster (b).

The Silhouette score is obtained by computing the mean over all per time-series scores. Finally,

in order to define rectangular spatial areas that conform to the expected frame structure of

data inputs to Deep Learning (convolutional) models, we structured the domain time-series into

disjoint rectangular tiles, T = {t1, t2, . . . , tt}. In this setting, each time-series si ∈ D is associated

to a single tile tj ∈ T . Moreover, tiles are constructed such that a maximum ε of variation in

different clusters is observed. Thus, given si ∈ tj , the set of time-series associated to a tile tj ,

we define tx = arg max
k

sum(xi, xi = 1 if si ∈ ck) as the maximum number of time-series

associated to the same cluster in tile tj , with ck identifying a cluster. Then, the tiling algorithm

assures the constraint for all tiles tj ∈ T, 1 ≤ j ≤ t: tx
|tj | ≤ ε, where |tj | is the number of time-

series in tile tj . Therefore, at the end of the pre-processing stage, we have a tiled spatiotemporal

domain, where each tile exhibits similar data behaviour corresponding to its weather history. As

a final step in data pre-processing, we compute for each tile ti its time-series representative, sr.

The representative in a tile ti is a time-series sr ∈ S whose average DTW distance, dtw(sr, sj),

between sr and all time-series sj ∈ tj is the smallest. Finally, we expect that the structuring

of spatiotemporal domain into tiles to provide a more precise learning experience such that a

model optimized to a tile is less prompt to suffer from the effect of the non-free-lunch theorem

when applied to tiles with similar data distribution.

16http://dexl.lncc.br
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3.2.2. Model selection

Once the spatiotemporal domain D has been structured into tiles, the DJEnsemble approach

is ready to compute predictions. We consider spatiotemporal predictive queries Q = {R,M},
where R ⊆ D is a spatiotemporal region where weather predictions are to be computed and

M = {m1,m2, ...,mm} is a set of pre-trained candidate ML models. Each mj model has been

trained in a subset Sj of the domain D. Therefore, for each mi model, there is a set of tiles

{t1, ..tk} that were used for the model mi training. We can interpret that as building specialized

ML models for a region of particular weather characteristics. Thus, we could have a model built

on time-series of the south region of the Rio de Janeiro city, which is a coastal area between

the sea and the mountains, and another model built on the north of the city where weather

tends to be hotter and less influenced by the sea humidity. The DJEnsemble approach works

by finding for each predictive query Q the set of models in M ′ ⊆ M whose training data,

induced by the data distribution of tiles used for their training, most closely approximates the

data distribution of the tiles covered by the query region Q.R. This is obtained by comparing

the distances between time-series representatives among the query tiles and the model training

tiles. Observe that the set of candidate models M may not have been trained on data from

query region Q.R. Nevertheless, DJEnsemble is still able to indicate the best candidate model

whose data distribution most closely approximates that of the query region. Finally, we want to

highlight that the improvements on extreme weather events precision forecasts may involve the

ability to use specialized models whose training capture nuances of the weather behavior of a

region. We expect that the ideas induced by the DJEnsemble may contribute to a more precise

ML based extreme weather forecast.

3.3. Classification Approach

In this approach, we frame the problem of forecasting extreme rainfall events as a binary

classification task. It considers extreme precipitation as an anomaly on the time-series of rainfall

observations. We consider a particular type of spatiotemporal data source, namely, data coming

from a set of meteorological stations, each one of them having collected observations about mul-

tiple weather variables over a given period of time, one of them necessarily being precipitation.

We also assume the times series coming from these meteorological stations all have the same

temporal resolution. For the particular data source we used, this temporal resolution was fifteen

minutes.

3.3.1. Construction of the labelled dataset

As a first step in this approach, we had to build a classification dataset, in which the

target variable is binary: the value 1 indicates the occurrence of an extreme precipitation,

and the value 0 indicates otherwise. Hence, we had to map continuous values of precipitation

to discrete (binary) values. For this, we built a semi-automatic instance labelling system. In

particular, we used a particular type neural network, the Self-organizing Map (SOM) [19]. SOM

neural networks are models based on the functioning of neurons in the human brain’s cortex, in

which learning happens through a process of competition among its neurons. During training,

a multidimensional data point is mapped to a 2D topological map. The latter suggests a visual

interpretation of the input data, where discrepant points can be highlighted [20]. To define a
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SOM architecture, several hyperparameters must be defined, such as dimensions and shape of

the topological map, and the neighborhood function.

To train the SOM model, we concatenated all the time series coming from the meteorolog-

ical stations. As a result, a multivariate time series was built containing observations from all

stations. Notice that, when building this dataset, we completely disregarded the spatial loca-

tions of the meteorological stations. The rationale for that is that we wanted the SOM model

to capture patterns of anomaly (with respect to the precipitation variable) irrespective of the

spatial location.

During training, the data instances were processed in incremental windows of 96 instances,

each window corresponding to one day of measurements of the meteorological stations. When

processing the set of windows, say wi, the model also receives the information provided by the

previous map on wi−1, in order to form the map solution set S.

As a last activity in this step, the solution set of generated maps S is visually analyzed to

assist in labelling the instances. The descriptive method we established for the visual analysis of

SOM maps to detect a shape anomaly consists of interpreting the amplitudes of the displacement

rates of the distances between the spatial components x, y and z in relation to the sequence of

maps si ∈ S. A shape anomaly is detected and annotated in Y if there is a discrepant amplitude

of the component z, correlated to (x, y), whose displacement varies in a discrepant way in relation

to the adjacent maps si−1 and si+1, where (x, y) represents the topographic ordered pair in the

map and the component z the topographical error.

3.3.2. Assessment of the labelled dataset

The visual interpretation of the SOM model in the first step was helpful because it assisted

in the labelling of observations as either normal or anomalous. The goal of this second step was

to assess the quality of the labelling conducted in the first step. For this, we fitted a decision

tree (DT) model to the labelled dataset.

A DT is a symbolic classification method applied in this work as a tool to assess the quality

of the annotations of detected events. In the structure of a DT, each data instance follows a

unique path for its classification, depending on a set of comparison rules, of the If-Then type,

which are performed in each node of the tree, determining whether the result should proceed

left or right, thus building the DT [31]. The DT learning algorithm splits the training example

into subsets, represented in its leaves, in which points falling in the same leave are explained by

a conjunction of predicates over independent features of the dataset.

In our scenario, the dependent variable is the label indicating the value status as normal

or anomalous, whereas the independent variables are the features describing each time instant:

precipitation, humidity, etc. If we consider that the independent variable observe a certain state

when anomalous phenomenon occurs, which differs from the state of a normal status, then we

can expect leaves comprising a single value. Therefore, we propose to compute the entropy of a

DT classification. DTs with lower entropy would indicate that leaves share similar values and the

annotations of anomaly would tend to be correct. Thus, as a criterion for evaluating labelling

step, we established that the more accurate the adjustment of the DT algorithm, the better

would be the qualitative labeling process of anomaly detection. If the results obtained after

fitting the DT model were not satisfactory, the process is restarted with a new hyperparameter

configuration for training the SOM model. Otherwise, we proceed to the third (and last) step

to fit a classification model to the previously labelled dataset.
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3.3.3. Model fitting through LSTMs

In this last step, the goal was to fit the binary classification model to predict the label (either

extreme/anomalous or normal) for a given instance. For this, we used a Long Short-term Memory

(LSTM) neural network, due to the capacity of its units to learn long sequential patterns of data

behavior. The LSTM architecture is a type of recurrent neural network, which are designed to

analyze the behavior of data sequences over time. As stated in [13], an LSTM model addresses

the problem of vanishing gradients, incorporating functions (gates) into its state dynamics to

maintain or discard information. The original LTSM formulation features three gates: input,

forget and output.

After model fitting, the model is evaluated. If the obtained results are not satisfactory, the

process is restarted from step 1 (dataset labelling). Otherwise, the resulting classification model

is ready to be used for inference.

3.4. Discussion

The YConvLSTM model [34] implements a post-processing ensemble approach on the output

of NWPs. It builds on the architecture proposed by Shi et al. [30] extending it to cope with

the input coming from n NWP simulators. We also discussed STConvS2S, originally presented

in [7]. The model comprises a autoregressive CONV2D+1 architecture suited for spatiotemporal

prediction. Although these two models were able to minimize rainfall prediction error with

respect to individual NWPs, they were not designed for the forecasting of extreme weather

events. In fact, as discussed in Ding et al. [11], deep learning models tend to either underfit

or overfit on extreme weather predictions, due to the imbalance on training datasets. Thus,

as an initial attempt to close this gap, we presented a dataflow of machine learning models,

combining Self Organized Maps (SOM), Decision Tree and LSTM, specifically designed for

extreme precipitation detection. The task is modeled as a binary classification where extreme

events are annotated to the observational data. Finally, we presented the DJEnsemble approach

that considers a spatiotemporal ensemble of ML models.

4. Experiments

In this section we report initial experiments with all approaches described in Section 3.

These experiments aim at highlighting the potential of the different approaches towards the

challenges in extreme weather events forecast.

4.1. Validating the Deep Learning Approaches

In this section, we present some preliminary experiments we conducted to train and val-

idate out two Deep Learning models, YConvLSTM and STConvS2S (see Section 3). In these

experiments, we trained both models using the same dataset. This dataset contains precipitation

simulation data obtained from two numerical models, COSMO and GFS25. The temporal range

of the observations is from January 2018 to April 2021. The data are arranged in a 7 × 7 grid

covering the city of Rio de Janeiro (see Fig. 1). The time distance between each grid (i.e., the

temporal resolution) is 3 hours.

For training the YConvLSTM and STConvS2S models, we set the following learning task: we

use the previous ten observations (at timesteps t−9, t−8, . . . , t) to predict the next observation
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(at timestep t + 1). We use as predictors the outputs of the above mentioned NWP models.

Our target variable is precipitation. Furthermore, we used data in the temporal range between

years 2018 and 2019. Data from 2020 were used for validation. Finally, we set data collected

in 2021 for testing their generalization performance, which we estimated using Mean Squared

Error (MSE). The sizes (i.e., number of observations) of the training, validation and test sets

are 5840, 2928, and 849, respectively.

The hardware infrastructure used in training both models has the following hardware set-

tings: CPU Intel(R) Core(TM) i7-7740X CPU @ 4.30GHz; GPU: GeForce GTX 1080 Ti 11GB;

RAM: 32GB.

We conducted 10 runs of training using the STConvS2S architecture. For these ten runs, we

got an average training time of approximately 14 min, with a standard deviation of 3.91 seconds.

Also for these 10 runs, the resulting average MSE (on the test dataset) was 2.0052, with a

standard deviation of 0.2145. Figure 4 presents the learning curves resulting from training the

STConvS2S model in one of the runs. The hyperparameters used to fit the STConvS2S model

were the following: learning rate = 5e-6; optimizer: RMSProp, with alpha set to 0.99; eps: 1e-6;

weight decay set to 1e-1. We trained the model for 200 epochs, and used a batch size of 64. The

resulting MSE on the test set was 1.802.

Figure 4. Learning curves obtained during one of the runs of STConvS2s model training. The
losses are MSE values measured over the rainfall domain. Hence their unit is squared millimeters
(mm2) of rain over the specified period. The vertical dashed line indicates the epoch in which
the best model (measured in the validation set) was obtained

To assess the difficulty of detecting extreme events, we manually picked ten events between

January and April of 2021 that were considered extreme in our test dataset. We wanted to

know if the model was capable of making good predictions of these picked up extreme events.

We analysed two scenarios. We first considered all the spatial observations of these ten extreme

events that presented the highest precipitation. The resulting MSE in this case was 22.20. In

the second scenario, we considered the ten largest precipitation values in the same time period.

In this case, the MSE value increased to 174.88. As a conclusion, the model error considering
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only extreme events was much higher when compared to the average MSE value measured in

the whole test set. We attribute this difference in predictive quality to the sparseness of extreme

events, one of the many challenges we face in this project (see Section 6 for further discussion

on this subject).

In a second validating experiment, we trained the YConvLSTM model using the same

hardware infrastructure described above. The model was trained for 200 epochs with a batch

size of 64, as its training time is significantly higher than the STConvS2S. The architecture

consists of two ConvLSTM layers with 32 and 64 filters each and was optimized using the Adam

optimizer and Keras default hyperparameters. We achieved the loss of 1.773 MSE on the testing

set. The average training time was 50 minutes. Figure 5 presents the learning curves resulting

from training the YConvLSTM model in one of the runs.

Figure 5. Learning curves obtained during one of the runs of YConvLSTM model training. The
losses are MSE values measured over the rainfall domain. Hence their unit is squared millimeters
(mm2) of rain over the specified period. The vertical dashed line indicates the epoch in which
the best model (measured in the validation set) was obtained

We also conducted the same experiment regarding extreme events on the predictive model

produced by the YConvLSTM architecture (we used the same manually picked 10 extreme

events in our test dataset). In the first scenario, the resulting MSE was 100.23, and in the second

scenario the value increased to 534.18. As already happened with STConvS2S, the YConvLSTM

model also had much difficulty to correctly predict extreme events.

4.2. Validating the DJEnsemble Approach

In this section, we depict an experiment comparing the DJEnsemble approach against other

ensemble types. In the traditional ensemble approach, each available model is run over the entire

query region and the prediction results are linear combinations of each prediction. In the stacking

ensemble approach, a model is trained with data produced by a set of component models. The

new model can be a linear regression learning algorithm, for example. The predictions are
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Figure 6. Queries over the temperature (left) and rainfall (right) domains

obtained by invoking the stacking model (ie. the predictor) on the outcome of the component

models’ predictions.

The data used in the experiments is a subset of the Climate Forecast System Reanalysis

(CFSR) dataset that contains air temperature observations from January 1979 to December 2015

covering the space between 8N-54S latitude and 80W-25W longitude (temperature dataset) [22].

Additionally, we use a subset of the rainfall dataset from NASA’s TRMM and GPM missions,

with rainfall collected for the same spatial region as in the CSFR dataset over 22 years (rainfall

dataset) [14]. The inclusion of experiments with temperature and precipitation aim to assess

the approach prediction quality under different spatio-temporal patterns. We present the results

of five queries executed on these data. Temperature is considered by meteorologists as an easy

variable to model as opposed to rain, which is considered one of the most complex variables

to predict. The temperature is homogeneously distributed in large spatial regions, while the

rainfall is more heterogeneous and concentrated in small areas. Based on these, we can argue

that we define queries on data with different behavior (i.e. data distribution). Figure 6 depicts

the regions corresponding to every query. Each color represents a region with different data

distribution (i.e. cluster). Table 3 summarizes the results for a traditional ensemble, a stacking

ensemble, and DJEnsemble. DJEnsemble achieves the best accuracy for all the queries. The gap

between DJEnsemble and the other ensembles is as much as a factor of 9.

Table 3. RMSE over the temperature (Q1, Q2 and Q5) and precipitation
(Q3 and Q4) domains. Precipitation values represent an estimate for the
volume of rainfall, in millimeters, in a global 0.1o spatial grid and half
hourly intervals. The temperature values correspond to a resolution of
6 hours intervals and a spatial grid of 0.5o, in Celsius

Query R[lat, lon] Trad. ensemble Stacking DJEnsemble

Q1 [70:130, 95:140] 25.01 7.28 3.35

Q2 [60:110, 40:80] 27.88 5.52 4.29

Q3 [125:175, 25:90] 14.28 13.96 5.34

Q4 [0:40, 60:130] 8.80 12.94 6.04

Q5 [59:100, 25:100] 29.10 5.04 3.18
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These results, originally presented in [24], are reproduced here to illustrate the potential of

the DJEnsemble approach towards more precise data driven ML model predictions of meteoro-

logical variables.

4.3. Validating the Classification Approach

In this section, we present an experimental evaluation of the method introduced in Sec-

tion 3.2.2. The hardware configuration used in these experiments is the following: CPU: 280× In-

tel(R) Xeon(R) Gold 5220 CPU @ 2.20GHz; RAM: 512GB.

We used data from the seven meteorological stations (see Fig. 1). Specifically, we considered

the periodic measurements of three variables, namely precipitation, temperature and humid-

ity. We selected a subset of these time series covering the period from December 1st, 2015 to

March 17th, 2021. To prepare the data, some pre-processing steps were required. Initially, we

applied data normalization and interpolation of missing values through the mean value. In the

results reported in this study, there was no treatment for removing noise in the data, as this op-

eration had a negative influence on the dataset labelling step (Section 3.3.1). The normalization

of the input data for an interval between [0, 1] was obtained through the method MinMaxS-

caler [28]. Working with data at the same scale is a good practice when it comes to distance

calculation algorithms. It also speeds up the optimization process for generating models via

gradient-based learning algorithms, as in the case in SOM neural networks.

In the first step (see Section 3.3.1), we started by training the SOM model. For this, 100.000

iterations for training were defined, the learning rate starting at 0.6 with the radius of the

training area starting at 0.5. Then, the visual analysis of the generated maps and the subsequent

annotation of the instances were performed on the data set.

After the first step, the resulting labelled dataset was subdivided into six disjoint subsets

(A1 to A6). Table 4 summarizes these subsets.

Table 4. Information about Meteorological datasets

Subset Number of Instances Period

A1 38.112 01/12/2015 a 31/12/2016

A2 35.040 01/01/2017 a 31/12/2017

A3 35.040 01/01/2018 a 31/12/2018

A4 35.040 01/01/2019 a 31/12/2019

A5 35.136 01/01/2020 a 31/12/2020

A6 7.296 01/01/2021 a 17/03/2021

To exemplify the way in which the maps produced by the SOM model were visually ana-

lyzed to pinpoint extreme precipitation events, the SOM output for subset A6 is presented in

Fig. 7. (However, this process was applied to all subsets.). The amplitudes of the component z

correspond to the similarity errors of the instances in the accommodation in the node in the

topographic mesh of the produced map. High amplitudes represent extreme events. Figure 8, in

addition to the z component, the x and y components correspond to the topographic coordi-

nates of the map. Vertical lines in red correspond to the beginning of the annotation of detected

anomalies. The correlation between the three components represents the similarities, as well as

the breaking of the similarity in relation to the input space. Thus, these correlations between
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the peaks of the z component and the sudden and prolonged change in the x and y components

were interpreted as anomalies of form.

Figure 7. z z-component produced by SOM for subset A6

Figure 8. z components x, y, and z produced by the SOM for the subset A6. Vertical lines in
black correspond to major shape anomalies detected and vertical lines in light gray correspond
to minor anomalies

To validate the accuracy of the classification performed in the previous step, seeking to

reduce subjectivity inherent to the visual analysis, a DT algorithm was applied and the result

evaluated for each subset. The annotated dataset was divided into 70% for training and 30% for

testing. We evaluated the labels annotated in the datasets by analyzing the test of the models

fitted with such data, using the cross validation, ROC curve, and F1-score metrics. Obtained

results are shown in Tab. 5.

Table 5. Summary of decision tree results for the entire dataset

Dataset ROC Precision Sensitivity F1-score Cross Validation (10x)

A1 to A6 0.8976 0.98/0.85 0.99/0.81 0.98/0.83 0.9700 (+/– 0.01)
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Finally, the step described in Section 3.3.3 was carried out to generate the binary classifi-

cation model for predicting the occurrence of extreme events. An LSTM neural network model

was trained for each subset. Similar to what we did in the second step, the data instances in

each subset were also split in 70% used for training and 30% for testing. An Embedding layer

was used in order to make the data streams continuous and dense.

Due to the imbalance of binary labels, experiments were performed with different balance

proportions using the Synthetic Minority Over-sampling Technique (SMOTE) class from the

imbalanced-learn library [15]. As mentioned by the documentation of this library, SMOTE and

its variations work best if done in combination with some major class subsampling method. Thus,

the applied methods of oversampling and undersampling are applied consecutively through a

pipeline on the data provided by SMOTE and the random method RandomUnderSampler. Thus,

all LSTM models were trained, tested and evaluated using the SMOTE methodology, according

to the aforementioned strategy.

The network architecture was defined with a single hidden layer with 21 LSTM units. The

Adam optimizer with a learning rate of 0.001 was used. The number of training epochs was set

to 100, and the batch size equal to 32. The loss function used was the binary crossentropy. The

value of 252 was determined for the length of the string that returns to the model. In order to

reduce overfitting, one Dropout layer with value of 0.3 were used. Finally, an output layer of just

one unit was defined with the sigmoid activation function providing the result as a probability

value. Each classification model trained with one given subset was validated against the other

subsets.

We built ROC curves to evaluate the classification performance of the models fitted with

each subset. Figure 9 illustrates the results obtained for the model trained on subset A6 (we

present just one curve for lack of space).

Figure 9. ROC plot of trained model with A6 dataset

Comparisons between classification performances are shown in Tab. 6. Each model was

trained with a given subset and then applied to the other subsets for inference. The first col-

umn corresponds to the models generated by the subset in parentheses. The best results are

highlighted in bold. We considered the union of the subsets as a sample of the complete data

domain. Under this assumption, and considering the proportion to the total of samples at each

subset, we computed the standard deviation (StdDev) for the F1 score for each model. The

standard deviation average for all models is 0.07764.
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Table 6. Summary of LSTM model validation results. F1-score metric

Model/Data A1 A2 A3 A4 A5 A6 StdDev

m(A1) – 0.4659 0.6779 0.4476 0.6152 0.6590 0.0441

m(A2) 0.5877 – 0.6797 0.4490 0.6141 0.6598 0.0367

m(A3) 0.4116 0.0964 – 0.2919 0.6110 0.6571 0.0945

m(A4) 0.3924 0.4620 0.6811 – 0.1102 0.0903 0.1021

m(A5) 0.5898 0.4697 0.6796 0.4479 – 0.6607 0.0433

m(A6) 0.6267 0.0025 0.0125 0.7743 0.5609 – 0.1450

5. Related Work

Nowcasting deals with the problem of short-term forecasting of extreme weather events.

These events may include the determination of the future track of a particularly severe storm

for warning purposes, the estimation of the amount of additional precipitation that will fall in a

given area in the next few hours, severe wind, winter precipitation types, etc. In addition, various

types of meteorological data could be used to forecast severe weather events, including radar

measurements, satellite data, and weather stations’ observations [35]. This section presents a

literature review of recent solutions for weather nowcasting applied on different source of data.

The works presented here focus on Artificial Intelligence, mainly in Machine Learning based

solutions.

Ravuri et al. [25] developed a Deep Generative Model of rainfall (DGMR) for radar’s proba-

bilistic nowcasting of precipitation. Their nowcasting algorithm is a conditional generative model

that predicts N future radar fields given M past radar fields using radar-based estimates of sur-

face precipitation at a given time point. Learning is framed in the algorithmic framework of

a conditional generative adversarial network (GAN), which is specialized for the precipitation

prediction problem and is driven by two loss functions. These functions guide the parameter

adjustment by comparing real radar observations to those generated by the model. The first loss

is defined by a spatial discriminator, a CNN that aims to distinguish individual observed radar

fields from generated fields. The second loss is defined by a temporal discriminator, a 3D CNN

that aims to distinguish observed and generated radar sequences. The model is trained on a

large corpus of precipitation events, 256× 256 crops extracted from the radar stream, of length

110 min (22 frames). All models are trained on radar observations for the UK from 2016–2018

and evaluated on a test set from 2019. DGMR performance ranked first for its accuracy and

usefulness in 89% of cases against two state-of-art methods (PySTEPS and Unet). According

to the authors, their model produces realistic and spatiotemporally consistent predictions over

regions up to 1,536 km × 1,280 km and with lead times from 5–90 min ahead. Despite the ac-

curacy and operational utility, the prediction of heavy precipitation at long lead times remains

difficult for all approaches.

The work of [8] proposes a classifier named RadRAR (Radar products values prediction

using Relational Association Rules) for convective storms nowcasting based on radar data. In

addition, RadRAR is intended to prove that relational association rule mining applied on radar

data helps discriminate between severe and normal weather conditions. RadRAR is trained on

radar data collected from normal weather conditions and learns to predict whether the radar

echo values will be higher than 35dBZ, indicating the occurrence of a storm. Experiments are
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conducted on real radar data provided by the Romanian National Meteorological Administration

for the 5th of June 2017. It was a day with moderate atmospheric instability manifested through

thunderstorms accompanied by heavy rain and medium-size hail. Analyzing the experimental

results and the comparison to existing approaches, the authors conclude that the RadRAR is

effective for predicting if the radar echo values are higher than 35dBZ, obtaining performances

better than the results from the literature and a Critical Success Index of 61%.

Agrawal et al. [3] present an application of DL to the problem of predicting the instantaneous

rate of precipitation one hour into the future from radar data with high-resolution (1 km× 1 km).

More specifically, the model uses the ubiquitous U-Net Convolutional Neural Network (CNN).

Dataset is from multi-radar multi-sensor (MRMS), removing non-meteorological artifacts and

projects the combined observations onto a rectangular grid. Forecasting is treated as an image-

to-image translation problem where is given a sequence of n input radar images that start at

some point of time, tin1, and end at tinn. The task is to generate the radar image at some point in

the future, tout. Before training the model, data is transformed, labeling images by quantifying

precipitation rates into four discrete ranges, based on three thresholds of millimeters of rain

per hour. This step provides three binary classifications that indicate whether the rate exceeds

thresholds that roughly correspond to trace rain, light rain, and moderate rain. In sequence,

they partition the US into 256 km × 256 km tiles and independently make predictions for

each tile. Model is trained on data collected in 2018 and tested on data for 2017 and 2019.

Results show their model performs better than MRMS persistence, optical flow (OF) and, the

High Resolution Rapid Refresh (HRRR) system (the current best operational NWP available

from NOAA) one-hour forecast methods. However, once the prediction window is increased to

approximately 5 hours, the HRRR models consistently outperform their approach.

Sønderby et al. [32] introduce MetNet, a Neural Weather Model (NWM) that forecasts rates

of precipitation with a lead time of up to 8 hours at the high spatial resolution (1 km × 1 Km)

and at the temporal resolution of 2 minutes using radar images and spectral bands of satellite as

input data. MetNet covers a 7000× 2500 km geographical area corresponding to the continental

United States. MetNet relies on mosaicked ground based radar and satellite imagery as input

and the predictions take in the order of seconds independently of lead time and can be done

in parallel. They cast precipitation forecasting as a structured prediction problem where the

output comes in the form of a three-dimensional tensor. Each value of the tensor corresponds to

a time and a location and indicates the corresponding rate of precipitation measured in mm/h.

Target precipitation rates are estimated by the MRMS ground based radars as a function of

the returned radar echoes. MetNet architecture combines a CNN, which encodes the time slices

sampled every 15 minutes with a Convolutional LSTM to processes the time slices in the direction

of time. Results show the performance of MetNet at various precipitation thresholds and find

that MetNet outperforms HRRR Numerical Weather Prediction at forecasts of up to 7 to 8 hours

on the scale of the continental United States.

The work [9] explores SOM to detect patterns on real radar data from Romenia National

Meteorological Administration. The main goal is to provide better insight regarding how the

values of weather radar products are evolving in time, both in calm and severe weather condi-

tions, with the broader goal of using these findings for weather nowcasting. In addition, they

investigated if SOM can distinguish severe weather conditions from radar data. The exported

raw data collected through the radar scans during one day (24 h) on a particular geographic

region is provided as a sequence of dimensional matrices. A matrix corresponds to a specific
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timestamp t and a meteorological product. For each time moment t, a sequence of matrices

(3D data grid) is available, containing the values for various radar products at time t. Two

data sets were constructed for representing the radar data collected during the timestamps on a

day. One dataset uses the entire set of meteorological products provided by the radar (i.e., 24).

Another one employs only 13 products: base reflectivity of particles on six elevations, velocity

on six elevations, and the estimated quantity of water contained by a one square meter column

of air. To detect the underlying structure of the datasets, the SOM model is applied to obtain an

unsupervised two-dimensional representation of the datasets . The corresponding U-matrices are

analyzed and compared for assessing the relevance of the meteorological products used in detect-

ing the timestamps when a certain meteorological event occurred. Through this methodology,

SOM detects temporal intervals where certain meteorological phenomena occur. The U-matrix

visualization for the SOM built using the proposed data model shows readable changes in the

meteorological products almost 2 hours before the event, which might help forecast the start of

the phenomena. In general, they conclude that there is a slow change in the values over time,

except when certain severe phenomena occur.

RainNet [4] introduces a deep neural network that aims at learning representations of spa-

tiotemporal precipitation field movement and evolution from radar data to provide skillful pre-

cipitation nowcasts. RainNet follows an encoder-decoder architecture, as U-Net [3]. The encoder

progressively downscales the spatial resolution using pooling, followed by convolutional layers.

The decoder progressively upscales the learned patterns to a higher spatial resolution using

upsampling, followed by convolutional layers. RainNet was trained to predict precipitation at

a lead time of 5 min, using several years of weather radar. Dataset covers Germany with a

spatial domain of 900 km × 900 km and has a spatiotemporal resolution of 1 km in space and

5 min in time, respectively. Verification experiments were carried out on 11 summer precipita-

tion events from 2016 to 2017. Since RainNet uses a convolutional architecture and does not use

LSTM layers to propagate information through time, it was only trained to predict precipitation

at 5 min lead times. So, a recursive approach was implemented using RainNet predictions to

achieve a lead time of 60 min. Results showed that RainNet competes against a conventional

nowcasting model based on optical flow. This work confirms [3] that CNNs provide a firm basis

for competing with conventional nowcasting models based on optical flow.

Song et al. [33] present an Artificial Neural Network (ANN) nowcasting model for hourly

summer precipitation over the Eastern Alps. The ANN model, a Multilayer Perceptron (MLP), is

developed for the nowcasting of hourly precipitation for a one-hour lead time. Several predictors

from diverse sources are used as input, including QPE, QPF, three INCA convective analysis

data (CAPE, CIN, MCONV), and three radar data composite measurements of five C-band

radars (MAXCAPPI, ECHOTOP, VIL). The performance of the MLP model is compared with

the traditional INCA extrapolation technique and a multiple linear regression approach (MLR)

model. The available period for both radar products and raw INCA forecasts is the summer

period of 2012–2014 (June to September) yielding 12 months in total. The dataset is divided

into the training set, containing ten randomly chosen months, and the verification set, containing

the remaining two months. The independent verification months, August 2013 and July 2014,

are used to evaluate the performance of the proposed nowcasting methodology. Precipitation

case studies were analyzed, and the results showed that both the MLR and MLP models could

predict the precipitation similarly to the INCA extrapolated forecast. However, the forecast

by MLP model is better than INCA, providing more detailed small-scale structures. Also, the
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precipitation intensity of the MLP model forecast is closer to gridded precipitation observations

than the INCA.

The study presented in [6] uses video prediction deep learning (VPDL) algorithms applied

in precipitation nowcasting for São Paulo, Brazil. They use the PredRNN++ as a VPDL model

to predict reflectivity images and precipitation edges from weather radar images for up to 1-

h lead time and compare the results with ENCAST, an extrapolation-based model used for

precipitation nowcasting. PredRNN++ utilizes causal LSTM to capture complex dependencies

and variations and gradient highway unit (GHU) to keep the gradients during training. This

study uses a dual-polarization S-band (SPOL) Doppler weather radar from the Department of

Water and Electric Energy, manufacture Selex ES GmbH, installed at Ponta Nova, State of São

Paulo, Brazil. These radar measurements are restricted to 100 km of range for the period of

March 2015 to December 2019 with a time interval of 5 min. The results have some limitations,

and the authors propose several improvements; despite this, they advocate that VPDL model

has good potential as an additional tool to assist nowcasting.

Jiang, Ma and Wu [37] main purpose is to propose nowcasting precipitation prediction at

target station within 1–2 hours in the future using the radar historical map sequence in the

past 1.5 hours. Also, a solution to deal with missing data in this kind of dataset. For this

purpose, they train a CNN and two auxiliary ML models (NN and gradient boosting decision

tree – GBDT) using different features from the real Hubei dataset. This dataset comprises radar

reflectivity maps, precipitation and rainfall time recorded by ground monitoring stations, and

stations’ altitude, latitude, and longitude. For training are used 2300 samples and the remain-

ing 200 samples for evaluation. Results showed that the precipitation nowcasting mechanism

was suitable for radar reflectivity data with single or cumulative altitudes. The models showed

better performance than traditional optical flow methods, and the CNN model performed best

compared with the other 2 ML models. Finally, the authors conclude that their way of deal-

ing with missing data on the experiments does not have a large negative impact on prediction

performance.

6. Challenging Aspects

In this section, we present some of the challenges we are facing in the current project, with

emphasis on our geographic region of interest, the Rio de Janeiro municipality. For some of

them, we also present the lines of investigation we plan to follow.

• Missing data. An important line of research in this project has to do with an investigation

of the procedure for handling missing data. As an example, we have the case of simulation

data from meteorological models. In this case, not all models present data for the entire

time series. It would be interesting to investigate how incomplete data for certain criteria

can be used to improve training done with data from periods where there is complete

observation.

• Relief influence. One challenging aspect that was raised by the specialists is that forecast of

meteorological variables in the city of Rio de Janeiro is directly influenced by the geography

of the location. Hence, we plan to investigate how information about the municipality’s

relief can be used to increase the predictive power of forecasting models.

• Data sparsity. Another complicating factor found concerns the sparseness of observed data

related to a combination. We actually empirically observed the result of this data property

in our preliminary experiments with Deep Learning models (see Section 4.1). A possible
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solution to this problem involves an investigation of data subsampling and augmentation

techniques. Another envisioned solution is the training of prediction models using Physics

Informed Machine Learning [17]. This approach allows the training of models to take

into account restricted the evolution of the underlying physical phenomena, as a way of

compensating for the sparseness of the observed data.

• Spatially non-uniformity of observations. Another interesting aspect worthy of scientific

investigation concerns the fact that observations from various data sources planned to be

used in model training are collected in regions of space that do not form a regular grid. For

example, the 33 meteorological stations under AlertaRio’s responsibility are distributed

in such a way that most of them are located in the eastern region of the municipality

(see Fig. 1). Another example concerns observations from metoceanographic buoys. This

is a complicating factor when considering the use of classical convolutional neural network

architectures, which assume that training data is represented as regular lattices. Possible

solutions are the use of neural network architectures for graphs, such as Graph Neural

Networks [21].

• Adding other data sources. During the first phase of the project, the team identified several

data sources potentially relevant for tuning the prediction models (see Tab. 2). It is natural

to think that there must be other sources not yet considered that might be equally relevant.

We have already mentioned the issue of relief before. Other data sources that are on the

team’s investigation horizon are related to aerosols, COR cameras located in key positions

of the city, and radar images all potentially useful at the nowcasting prediction level.

• Consideration of the dynamics of events. At this point of investigation, we are interested

in evaluating how we can capture the fine dynamics of events in space-time. We consider

that this real-time dynamic must interact with the predictions, correcting them. As an

example, we have the effect of side winds influencing the occurrence of convective rain

and impacting its location and timing. Other elements are the so-called meteorological

phenomena, such as Trough17, and how to consider them in the learning process.

Conclusion

Extreme weather events have become stronger and more frequent worldwide. The concentra-

tion of the population in large urban areas places the occurrence of extreme weather events, such

as strong rain, as a risk for the population. Governments have been investing in apparatus to

monitor weather sensors and in organizations responsible for alerting the population and taking

measures ahead of the extreme event. In this context, this paper describes an initiative we have

been developing with the Rio de Janeiro municipality in building ML models to forecast extreme

rainfall events a few hours ahead. Our initial investigations show that building ML models to

predict extreme events is a very challenging problem, due to their scarcity of occurrences and

fast dynamics.

As for the computational experiments, we presented initial results in this paper. We plan

to do a more thorough experimental comparison using stronger baselines in future work. How-

ever, our initial computational experiments have led us to believe that, to achieve more precise

forecasts, we will need to combine multiple data modalities. Hence, we plan to enrich the data

we learn from with other available weather sensors we allude to in Section 2. We also envision

the need of need fundamental ML research to cope with the challenges aspects of the problem

we pointed out in Section 6.

17An elongated geographic region presenting relatively low atmospheric pressure.
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