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In this paper we assess the influence of CPU architectures commonly used in HPC systems
on the efficiency of the implementation of algorithms used for direct numerical simulation (DNS)
of turbulent flows. We consider a stably stratified turbulent plane Couette flow as a benchmark
problem supplemented with the additional transport of passive substances. The comparison in-
cludes the Intel Xeon, AMD Rome x86 CPU architecture processors and the Huawei Kunpeng
ARM CPU processor. We discuss the role of memory-oriented optimizations on the efficiency of
tracer transport implementation on each platform.
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Introduction

Numerical simulation of geophysical turbulent flows today remains one of the most chal-
lenging computational problems. The large-scale complex climate and weather forecast models,
research studies of the physics of turbulence dynamics and engineering computational fluid dy-
namics (CFD) applications belong to foremost demanding tasks for all HPC centers. All of these
problems involve the numerical solution of hydrodynamic equations obtained from the well-known
Navier-Stokes system of equations with additional simplifications implied for specific problem.

While large body (which to the author’s knowledge is an understatement) of scientific lit-
erature is devoted to the development of efficient numerical methods, algorithms for solutions
of CFD problems, the emergence of exascale computing presents new and continuing challenges:
how well do commonly used and well-known approaches are suited for the current and next-
generation HPC systems? Major challenges are related to the massive concurrent and highly
heterogeneous environments in terms of both memory and computations used or expected to be
used in supercomputers, resulting from the development of more energy- and computationally-
efficient hardware. Even the often considered algorithms for solution of wide range of problems
in CFD applications, e.g., FFT or multigrid methods, to name a few, may require reformulation
and optimization for such HPC architectures [2, 8].

Though a notable development of supercomputers in the last decades is the advent of co-
processors, e.g., GPU-based computing, a more recent approach for building HPC systems is
associated with the ARM-based CPUs designed with energy-efficiency considerations kept at
the forefront [19]. These considerations are essentially tied with the computational performance
achievable by large-scale HPC systems highly restricted by power consumption. A notable exam-
ple in this regard is the Fugaku supercomputer with ARM-based A64FX 48C 2.2GHz CPUs at
the RIKEN Center for Computational Science, which leads the June 2021 TOP500 list of fastest
HPC systems.

In this paper we consider DNS (Direct Numerical Simulation) of turbulence as a computa-
tional benchmark to compare the performance of CPUs with distinct architecture: Intel Xeon
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Gold, AMD Rome and the ARM-based Huawei Kunpeng 920. DNS of turbulence implies the nu-
merical solution of Navier-Stokes system of equations as is and consequently requires to resolve
all energy significant scales of turbulent motions down to the smallest scales, where the dissipa-
tion of energy takes place. While LES (Large-Eddy Simulation) and RANS (Reynolds-Averaged
Navier-Stokes) models may be used to study flows on larger scales (up to planetary one), they
rely on additional turbulence closure assumptions to represent the momentum, heat and other
scalar fluxes attributed to the small scales, which are not resolved on the computational grid
or excluded from the coarse physical model itself. On the contrary DNS models are devoid of
such assumptions and provide invaluable data for insight into turbulence dynamics, development
of RANS and LES turbulence models and parameterizations albeit at the expense of very high
computational cost [11, 12]. These high computational requirements of DNS are especially pro-
nounced for geophysical turbulence. For example, a crude estimate may be obtained considering
the Reynolds number Re, which represents the ratio of largest to smallest scales of motion and
may reach values of around 107–109 in the atmospheric and oceanic boundary layers [22, 31]. The
size of a computational grid for a DNS of 3D turbulence is known to scale as Re9/4, which shows
that doubling of the Reynolds number increases the computational cost by almost an order of
magnitude when accounting also for the time dependence of equations of motion and assuming
linear computational complexity (in terms of number of grid cells) of the algorithm. To put that
into perspective, numerical simulations, for example, of turbulent channel flows require on the
order of 103 CPU cores for Re values exceeding 105 and feasible computational time frame, see,
e.g. [16].

The computational benchmark considered in this study is based on stably stratified turbulent
plane Couette flow, which is extensively used in studies of turbulence dynamics [7, 17, 29] and
verification of turbulence closures developed for large-scale models of atmosphere and ocean [16,
30]. The Couette flow is a shear flow of viscous fluid between two plane parallel walls moving
relative to each other in the absence of external pressure gradient. The simple formulation and
geometry of the flow eases implementation of numerical algorithms and their comparison.

The problems of urban air quality, chemical pollutant dispersion, aerosol distribution fore-
cast add substantial computational complexity in the atmospheric models. In general they may
require numerical solution of more than one hundred of additional prognostic equations for con-
centrations of different tracer species [20]. The similar computational problem also arises in
ocean-biochemistry coupled models [26]. In this study we consider the transport of passive trac-
ers as a proxy of such models, supplementing the DNS model of turbulent plane Couette flow
with advection-diffusion type equations for substances concentration. This allows us to assess
the efficiency of the implementation of the algorithms for solving scalar transport equations on
different CPU architectures and the role of memory optimizations.

The paper is structured as follows. In Section 1 we introduce the governing equations of the
DNS model and the numerical methods. The implementation aspects of the DNS code used for
comparison study are reviewed in Section 2. The setup of numerical experiments and the details
of code tuning and compilation for specific CPUs are given in Sections 3 and 4. The results of
performance comparison and the influence of memory optimizations are discussed in Section 5,
followed by summary and conclusions.
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1. Governing Equations and Numerical Method

The dynamics of thermally stratified fluid are governed by the Navier-Stokes system of
equations in the Boussinesq approximation. The corresponding momentum, continuity and heat
advection-diffusion equations in divergent form are written as:
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where u(x, t) = (u1, u2, u3)
T ≡ (u, v, w)T is the velocity vector, p(x, t) – pressure, Θ(x, t) –

potential temperature, ν and χ are molecular coefficients of kinematic viscosity and thermal
diffusivity respectively, ρ0 is the reference density, x = (x1, x2, x3)

T ≡ (x, y, z)T and t is time.
The last term on the right-hand size of the equation (1) describes buoyancy forces acting on the
fluid in the vertical direction, where α – thermal expansion coefficient, g – acceleration due to
gravity and δij – Kronecker delta.

Besides the equations (1)–(3) we consider additional passive tracer transport equations for
substances concentrations Ck(x, t) expressed as:
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where 1 ≤ k ≤ nc and no summation over index k is assumed, nc – number of tracer species and
χk is molecular diffusivity coefficient for k-th tracer.

The projection method [4] is applied for the time advancement of momentum equations (1)
coupled with incompressibility constraint (2). At the first stage the intermediate velocity ũi is
calculated using the flow state at the n-th time step:
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Here explicit in time second-order Adams-Bashforth approximation is used for the right-hand
side Ri, which contains the contributions from advection and diffusion fluxes. The velocity ui on
the new (n+ 1)-th time step is calculated at the second stage of projection method as:
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, (6)

where ∆t is the discrete time step and q is a scalar correction to the pressure field and pn+1 =

pn+ρ0q. The pressure correction is obtained by applying the divergence operator to equation (6)
and solving the Poisson equation:
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∂xi∂xi
=

1

∆t

∂ũi
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This ensures that the velocity field satisfies the continuity equation at each time step. The
boundary conditions for the Poisson problem directly follow from the boundary conditions on
the velocity field with equations (1) and (2) taken into account. The heat and scalar transport
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equations are solved in the same way using the explicit in time Adams-Bashforth second-order
method, so the temperature Θn+1 is known at the first stage (5) of projection method.

Second or fourth-order finite-difference schemes [14, 25] on rectangular structured grids with
staggered arrangement of nodes are used for approximation of spatial derivatives. The finite-
difference approximation is momentum and energy conservative with the advection terms ex-
pressed in skew-symmetric form.

Biconjugate gradient stabilized (BiCGstab) iterative method [27] with a V-cycle geometric
multigrid preconditioner [24] is used for solving the finite-difference approximation of the Poisson
equation (7). On each grid in the multigrid sequence, smoothing iterations are performed by
successive upper relaxation method (SOR) for red-black ordering of nodes. The projection onto
coarse grid and the prolongation operator onto a fine grid correspond to a bilinear interpolation
consistent with the averaging operator used in finite-difference stencils.

2. Implementation

For computational tests and performance comparison we use the unified DNS -, LES -,
RANS - code [15, 16] developed at the Research Computing Center of Lomonosov Moscow State
University jointly with the Marchuk Institute of Numerical Mathematics RAS, which solves a
set of partial differential equations governing the dynamics of geophysical boundary layers, with
focus on simulating atmospheric and oceanic boundary layer structure and evolution. The numer-
ical model is especially suited for simulating the flows over a complex terrain, e.g. an urbanized
surface inter alia, using immersed boundary methods [15]. The code implements a collection
of finite-difference and finite-volume schemes, iterative and direct methods for solution of sys-
tems of linear equations, turbulence and subgrid closures in the LES and RANS framework,
particle transport and tracking submodule with different options of complexity. The DNS -,
LES -, RANS - model is extensively used for turbulence dynamics research [16, 29, 30], simu-
lations of the atmospheric flows [7, 9, 23] and studies of lake hydrodynamics [6, 21]. The code
is written in C/C++ programming language and supports hybrid architectures of modern day
supercomputers using the combined MPI-OpenMP-CUDA stack.

In its simplest form the algorithm for solving the particular discrete problem (1)–(4)
corresponds to a linear algebra problem with large sparse matrices, e.g., consists of matrix-
vector/matrix multiplications, calculation of linear combinations of vectors, dot and cross prod-
ucts, solution of linear systems of equations, etc. Matrix operations in the code are implemented
in “matrix-free” form meaning that the matrix elements are not stored in memory and instead
matrix-vector products are represented as functions corresponding to some discretization method.
This allows to significantly decrease the number of memory access operations, which is a com-
mon bottleneck for these types of problems. We stress that the algorithm implies calculations
involving sparse matrices and the benchmarks similar to HPCG [5], in general, will be more
representative of the implementation performance, compared with common benchmarks (e.g.,
HPL) oriented at dense matrix problems.

MPI library is used for 1D, 2D or 3D spatial decomposition of the computational grid among
MPI-processes. Different algorithms for MPI exchanges are implemented as their efficiency is
known to be dependent on the computational platform, in particular the ones based on MPI
derived datatypes or manual packing and unpacking of messages, with blocking or nonblock-
ing MPI primitives, etc. Common optimizations for improving scaling on HPC systems include
options for combining MPI data exchanges for a number of arrays (e.g., vector or tensor compo-
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nents) or increasing the width of the grid halo region (see, e.g. [3]) for reducing latency of MPI
communications. The latter allows to reduce the number of calls to MPI functions but at the
cost of additional computational overhead, which may be negligible when the size of the problem
on MPI-process is comparatively small. For large-scale simulations (where the grid may contain
more than 108 cells) the code also makes use of parallel file I/O operations through MPI-IO
interface.

A hybrid MPI-OpenMP approach is supported, where the calculations on each MPI-
process are performed by OpenMP threads. In this case only the thread support mode
MPI_THREAD_FUNNELED is implemented, that is each MPI-process is multi threaded, but only the
master thread performs calls to MPI communication functions. In parts of the code, where large
MPI communication overhead is expected (e.g., iterative methods for solving linear systems), non
blocking MPI subroutines are used with overlapping computations and communications where
possible. The implementation of MPI communications and computational functions makes use
of the OpenMP “orphan” directives, which if necessary allows to decrease the number of implicit
thread synchronization points by merging code parts in a single parallel region.

The code is structured in a such way as to separate the solution of high-level “numerical” and
“physical” problems from the code related to parallelization or low-level algorithm optimization
highly dependent on the computational architecture. This is consistent with recent approaches
proposed for implementation of next generation Earth system models, see [18], for multi- and
many-core heterogeneous HPC systems. The principal advantage of such separation of concerns is
ability to tune the code for different architectures without modifying the high-level and problem
specific part of the code. The separation of high- and low- level primitives in the DNS -, LES -and
RANS -code is based on the C++ template specialization functionality and, in particular, is used
for the implementation of code on GPU architecture within the CUDA programming framework.

3. Numerical Model Setup

In what follows we consider the stably stratified turbulent plane Couette flow as a computa-
tional benchmark. The flow, while highly idealized, may be seen as model problem for studying
the dynamics of thermally stratified sheared fluid in the surface layer of the atmosphere [13],
where the total momentum and heat fluxes are approximately constant with height. The experi-
ment setup corresponds to the one used in [7, 16, 29]. The velocity u(x, t) and temperature Θ(x, t)

are prescribed on the upper and lower walls of the channel: u = −U0/2, Θ = Θ1, v = w = 0

for z = 0 and u = U0/2, Θ = Θ2, v = w = 0 for z = H, where the stable stratification is
imposed by setting Θ2 > Θ1, U0 is the relative wall velocity and H is the channel height. The
Dirichlet boundary conditions are applied for the scalar concentrations Ck(x, t) at the walls. In
the horizontal directions periodic boundary conditions are used. The flow is characterized by
the dimensionless Reynolds number Re = U0H/ν, Richardson number Ri = gα(Θ2 −Θ1)H/U

2
0 ,

Prandtl number Pr = ν/χ and the Schmidt numbers Sck = ν/χk. Figure 1 shows the char-
acteristic S-shaped vertical distribution of the mean tracer concentration C(z) and streamwise
velocity component U(z), averaged in horizontal homogeneous directions and time, and the in-
stantaneous passive tracer concentration at the center of the channel, z = H/2, obtained in the
high resolution simulations [16] of neutrally stratified Couette flow for Re = 8 × 104 with the
DNS code used in this study.

To measure CPU performance of the code, we fix the streamwise and spanwise sizes of the
channel in the numerical experiments as Lx = 6H and Ly = 4H, respectively, and consider
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Figure 1. (a) The normalized mean streamwise velocity (blue) and normalized tracer concen-
tration profiles (red); (b) instantaneous normalized tracer concentration in the −xy plane at
z/H = 0.5 for neutrally stratified turbulent Couette flow

two grid resolutions: low resolution model configuration with grid dimensions (nx, ny, nz) =

(96, 64, 64) and high resolution configuration (nx, ny, nz) = (192, 128, 128) (denoted hereafter as
LR and HR in tables and figures), where nx, ny and nz are the number of grid cells in horizontal
−x, −y and vertical −z directions. The grid step in the vertical direction is refined near the
walls according to transformation z = H/2(1 + tanh(η)/ tanh(η0)), where |η| < η0, and the
spatial discretization is second-order accurate. In the horizontal directions we use second-order
accurate, as well as fourth-order accurate spatial discretizations. The Reynolds number is kept
fixed Re = 5200, the bulk Richardson number is set as Ri = 0.01 to maintain the influence of
stable stratification on the flow and the Prandtl and Schmidt numbers are set to 0.7. The grid
resolution allows to appropriately resolve all necessary spatial scales of the flow in the core of
the channel and near the walls for this particular set of parameters. On the other hand the grid
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size chosen for the LR and HR cases matches the expected characteristic number of grid cells per
computational node ratio in large-scale simulations. Time step is chosen to maintain same CFL
number of around 0.1 between all experiments. In addition we set the number of tracer species
nc = 10 to mimic reduced acid-base atmospheric chemistry models [28].

For the case of fourth-order accurate method we use only second-order accurate 7-point sten-
cil approximation of the finite-difference Laplace operator in the geometric multigrid iterations
to implicitly define the BiCGstab preconditioner. This only mildly affects the overall convergence
of the iterative method even for high-resolution simulations, but considerably decreases the MPI
communications resulting from parallel implementation of Gauss-Seidel/SOR algorithms. As the
computational grid is anisotropic due to smaller grid steps in the vertical direction and the near-
wall refinement, we use the approach proposed in [10] for coarsening in the multigrid algorithm.

Additionally we do not consider the possible tuning of the multigrid preconditioner MPI
implementation for specific computational architectures and instead use the same parameters
obtained by improving the convergence rate alone. The multigrid method performs successive
coarsening of the computational grid to reduce the error for a given approximation of solution
to the linear system. When the grid is coarsened in the multigrid V cycle and the computational
task size on some MPI-process becomes smaller than a prescribed threshold, then the MPI-
process is excluded from computations and its domain is merged with one of the neighbouring
MPI-processes. This in general improves the performance as for sufficiently small problem the
increase in the number of parallel processes leads to increase of the computational time due to
communication and synchronization overheads. On the upper branch of the V cycle (consecutive
grid refinement starting from the coarsest resolution) an inverse process is implemented – the data
from MPI-process is scattered to neighbouring inactive processes when local grid size becomes
large enough to benefit from using additional parallel tasks. It is evident that the performance of
the mulitgrid algorithm on specific CPU architecture may depend on the depth of grid coarsening
(as is the convergence of the method), threshold values defining sufficiently “small” problem size
and the number of smoothing iterations. Thus we assume that the contribution of the multigrid
method corresponds to a “worst case scenario” and the scaling of the iterative method for the
solution of Poisson equation may at least be not optimal. In general, we stress that the runtime
share of the iterative method for solution of Poisson equation may vary with the grid resolution,
multigrid algorithm parameters and the Re and Ri particular values.

The discussed setup allows us to directly assess the performance of the numerical methods
and algorithms for solving the system of equations (1)–(4). We measure the runtime for different
components of the algorithm: projection method (eqs. (5), (6) and (7)), Poisson equation (7)
solved within the projection method, the heat equation (3) and the tracer transport equations (4).
The performance metrics were gathered for 10H/U0 dimensionless time units which corresponds
to 3200 time steps in HR case and 1600 time steps in the LR case. This is done in order to get
sufficient statistical data and to diminish model initialization latency in the results.

4. Code Compilation and Tuning

For performance comparison it is desirable that the code allows to use extended instruction
sets available on each CPU architecture. The different code components were thoroughly checked
to at least allow compiler autovectorization for each server with specific compiler suite available.
In particular, it turned out that some components were not autovectorized, when using the GCC
compiler suite. The high potential for code runtime reduction by using vectorized instruction
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sets was evident by the results for simple linear algebra math and stencil kernel tests and also
for the DNS numerical model on all the CPU systems considered.

To improve autovectorization of the code, we focused on implementation of the projection
method, eqs. (5) and (6), and scalar transport, eqs. (3) and (4). This included simplifying memory
access patterns in loops and modifying implementation of OpenMP thread decomposition, which
in some instances limited compiler optimizations. The subsequent code tuning to allow autovec-
torization resulted in overall reduction of total computational time over 20% for LR and 25% for
HR cases, with the most significant improvements detected for the heat/tracer transport equa-
tions – around 50%. While this optimization improved the code performance on Intel Xeon Gold
and AMD Rome platforms, it showed even better speed up on the ARM-based Kunpeng 920,
especially for the solution of passive transport equations.

To ease comparison of CPU platforms we only use the results obtained with the latest
versions of the GCC compiler suite and OpenMPI library available on each server, i.e. GCC 9.3
with OpenMPI 4.0 on AMD Rome, GCC 10.2 with OpenMPI 4.3 on Intel Xeon Gold, and
GCC 10.3 with OpenMPI 4.3 on Kunpeng 920 CPUs. The use of Intel compiler suites for the
tests on Intel Xeon Gold CPU showed only slightly worse/better performance depending on the
code setup.

While we use the same code without any further fine tuning for any specific architecture,
the compiler keys were optimized to give the best performance where possible. The default GCC
keys supplied with the DNS code were used on the ADM Rome and Intel Xeon Gold systems:

mpicxx -c -fopenmp -O3 -fno-strict-aliasing -funroll-loops -march=native
-std=c++0x↪→

The porting of the DNS model to the ARM-based 2x48 Kunpeng 920-4826 Taishan server
was straightforward and did not require any specific changes to the code. The default GCC
compiler keys were supplemented with a general ARM v.8.2-a target key -march=armv8.2-a, as
GCC provided -march=armv8.2-a+crypto+fp16 as native target. For optimization additional
extensions +rdma and +lse were considered. Those provide Round Double Multiply Accumulate
(RDMA) and Large System Extension (LSE) instructions respectively. LSE key is meant to
optimize atomic instructions by replacing the old styled exclusive load-store using a single CAS
(compare-and-swap) or SWP (for exchange) and are known to inherently increase performance
of applications using atomics. We also enabled -fomit-frame-pointer key, which avoids the
instructions to save, set up and restore the frame pointer; on many targets it also makes an extra
register available. The resulting optimized compiler key set for the Kunpeng 920 platform is:

mpicxx -c -fopenmp -O3 -fno-strict-aliasing -funroll-loops
-march=armv8.2-a+rdma+lse -std=c++0x↪→

For coarse grid size, in LR case, this optimization yields 25% reduction in total time on av-
erage between the number of cores used. This is achieved by faster execution time of projection
method and time advancement of heat/tracer transport code. With the grid refinement the ac-
celeration due to optimized keys levels on average at 13% and seems to not affect the heat/tracer
transport equation subroutines. Speedup appears to change little when the number of cores is
increased.
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5. Comparison and Discussion

We run the turbulent Couette flow benchmark with setup presented in the previous sections
on three different platforms: 2x64 AMD Rome 7H12 (2.6 GHz) with 256GB DDR4 RAM node of
the Mahti CSC supercomputer based on the Atos BullSequana XH2000 system, 2x48 Kunpeng
920-4826 (2.6 GHz) with 512GB DDR4 on TaiShan 200 server and 2x18 Intel Xeon Gold 6140
(2.3 GHz) node with 384GB DDR4. We limit computational tests to the intra-node scalability
and run-time analysis.

The benchmark results are presented for the MPI only implementation, except when the
full computational node was utilized. In the latter case the results correspond to the MPI-
OpenMP hybrid mode of the DNS code with 2 OpenMP threads per MPI process. The OpenMP
only implementation showed better scaling compared with MPI only for low core count and
with specific thread/core bindings used, e.g., scaling in single NUMA domain on AMD Rome
platform. In general the MPI only implementation turned out to be faster than OpenMP only
or MPI-OpenMP hybrid and the gap is more pronounced for coarse grids. This is related to
thread synchronization overheads, which are as expected more evident for small size problems.
On the contrary, when all cores of the two-socket nodes were used, the MPI-OpenMP hybrid
implementation showed consistent improvement, in particular, in the multigrid algorithm due to
overlapping communications and computational subroutines, and reduced run-time on each of
the systems considered. Note that on all nodes the hyperthreading or SMT use was disabled, as
it rarely benefits memory bound applications.

The run-time per 1000 time steps for single core tests and when using the maximum number
of cores available on each node (2x64 cores on AMD Rome, 2x18 on Intel Xeon Gold and 2x48 on
Kunpeng 920) are presented for the LR and HR cases in Tabs. 1 and 2, respectively. Here x2 and
x4 denote the second- or the fourth-order finite-difference approximation used in the horizontal
directions. For all CPUs the use of higher order scheme results in increase on average of only
about 30% in computational time. The difference is even slightly lower for the HR case than for
LR coarse grid. The only exception is found for the Kunpeng 920 system, where the maximum
run-time increase of about 50% is reached for the HR single core test. The actual number of
floating point operations in the algorithm increases by more than twofold for the fourth-order
scheme (but still second-order in the vertical direction), e.g., 16 FLOP per grid cell and time step
in second-order scheme compared to 38 FLOP when using fourth-order scheme for calculation
of diffusion terms. This shows that the implementation of higher-order schemes are much more
efficient on all CPUs irrespective of the architecture and in general should be preferred for CFD
memory bound applications where it well suits the numerical and physical problem.

The overall three times higher run-time on single core for Kunpeng 920 CPU compared to
other two platforms is partially related to its shorter vector instructions length, 128-bit NEON
SIMD extension vs. 256/512-bit for AVX2/AVX512 extensions for Intel and AMD processors.
However, the difference in run-time between CPUs changes when the full node is utilized with
Kunpeng processor outperforming the Intel Xeon Gold node, which alludes to better intra-node
scalability on the ARM-based Kunpeng 920 platform.

To delve into more detailed analysis, we look into run-time shares of the model components on
different platforms relative to the number of cores used. Figure 2 depicts the corresponding share
of the run-time attributed to each code component, where ‘proj. method - poisson eq.’ in
the figure legend denotes the run-time share of the projection method with the exception of the
solution of Poisson equation (7), which is shown as ‘poisson eq.’ component. The ‘heat eq.’
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Table 1. LR case run-time, in seconds per 1000 time steps

AMD Rome 7H12 Intel Xeon Gold 6140 Kunpeng 920
single core, x2 and (x4) 39.94 (54.58) 48.53 (59.84) 123.70 (166.28)
max cores, x2 and (x4) 2.16 (2.89) 5.94 (7.94) 2.12 (2.90)

Table 2. HR case run-time, in seconds per 1000 time steps

AMD Rome 7H12 Intel Xeon Gold 6140 Kunpeng 920
single core, x2 and (x4) 285.23 (372.19) 391.11 (458.09) 1018.81 (1511.12)
max cores, x2 and (x4) 10.23 (13.49) 26.83 (32.81) 18.27 (25.02)

refers to the discrete heat transport eq. (3) and the ‘tracers eqs.’ is the run-time share of the
time advancement of all nc tracer transport equations (4). The problem-specific diagnostics in the
DNS code constitute the remainder of calculations. Additionally the ‘mpi comm’ corresponds to
the total run-time share of MPI-communications. Note that the timing of MPI communications
is not excluded from other components, so the total sum of all run-time shares of algorithm
partition described above is greater than unity.

Figure 3 shows the intra-node scaling of the DNS code and its model components on different
platforms attained while increasing the number of CPU cores. The change in the component
shares with the increase in the number of cores used is similar for Xeon Gold and Kunpeng
processors. The better scaling for scalar transport equations (eqs. (3) and (4)) and worse scaling
for Poisson equation (7) solver here leads to decrease of run-time share for the former, while
the latter share increases and the BiCGstab algorithm with multigrid preconditioner eventually
restricts the overall scaling of the code. For all platforms there appears to be little difference in
run-time share of different components between 2-nd order and 4-th order spatial discretizations.
In general higher speedup is observed as expected for the HR case compared with coarse LR
model configuration for Xeon Gold and Kunpeng CPUs. The intra-node scaling on AMD Rome
appears to be worst, especially for high core count used due to lowest ratio of grid cells per core.
However, in terms of actual run-time this platform shows the best results, see Tabs. 1 and 2.

The more efficient scaling of the code on Kunpeng 920 CPU appears to be more pronounced
for coarse grid LR case in terms of total run-time, probably due to higher cache hit rate. This
effect persists for all of the code components, but is more prominent for the tracer transport equa-
tions and less significant for projection method algorithm for solving momentum and continuity
equations. At the same time, the run-time shares of heat and tracer equations on Kunpeng 920
platform decrease faster with increasing core count rather than for Intel Xeon Gold and, espe-
cially, for AMD Rome CPU. This indicates that due to better scaling of those code components
Kunpeng 920 hardware is utilized more effectively.

We note that the results of CPU comparison are in line with the simple vector, stencil
kernel and MPI bandwidth benchmarks builtin in the DNS model code and used in preliminary
tests to assess CPU performance. This showed that the flop/s single core performance on the
ARM-based Kunpeng 920 CPU is comparable or outperforms the Intel Xeon Gold processors
for relatively small vector sizes and rapidly decreases, when long vectors are considered. The
MPI bandwidth ping-pong communication test showed that the Kunpeng 920 CPU outperforms
Intel processor for large message size, but the latency of MPI-communications may still affect
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Figure 2. Run-time shares of model components for LR and HR cases on Intel Xeon Gold 1640
(a, b), AMD Rome 7H12 (c, d) and Kunpeng 920 (e, f) CPUs for 2-nd order (a, c, e) and 4-th
order accurate finite-difference schemes (b, d, f)

performance, in particular, the implementation of multigrid algorithm, where MPI message size
may be small. Our findings are in general also consistent with the performance evaluation of
the Kunpeng 920 processor in [1] using specially designed set of benchmarks. This highlights
that simple computational benchmarks might be useful to at least make a gross estimate of the
expected performance of complex memory- and cache-bound CFD applications on different CPU
architectures.

As part of the study we consider potential memory and cache use optimizations for the im-
plementation of tracer transport component of the model. As evident from Fig. 2, the additional
10 passive tracer equations (4) amount for around 30% of total run-time across CPU platforms.
This reinforces rationale to investigate the influence of code optimizations on this model com-
ponent, especially considering that for some CFD applications the number of tracer species nc
may be considerably higher, e.g., atmospheric chemistry.
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Figure 3. Speedup of DNS model and its components for LR and HR cases on Intel Xeon
Gold 1640 (a, b), AMD Rome 7H12 (c, d) and Kunpeng 920 (e, f) CPUs for 2-nd order (a, c, e)
and 4-th order accurate finite-difference schemes (b, d, f)

The numerical algorithm for solution of eq. (4) using the explicit in time second-order Adams-
Bashforth scheme may be represented by the following computational steps:

ADVn = −
[
∂uiCk

∂xi

]n

h

, (8.1)

DIFFn =

[
χk

∂2Ck

∂xi∂xi
,

]n

h

, (8.2)

RHSn =
3

2
(ADV + DIFF)n − 1

2
(ADV + DIFF)n−1, (8.3)

Cn+1
k = Cn

k + ∆tRHSn, (8.4)

where [·]nh denotes the finite-difference spatial approximation of the term on computational grid
using variables on the n-th time step. The algorithm in this form consists of the calculation
of the advection (8.1) and diffusion (8.2) terms; computation of tendencies according to time
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advancement scheme (8.3) and updating the concentration values Ck for k-th species (8.4) on
the next (n+ 1)-th time step.

The implementation, where each of the algorithm steps (8) corresponds to a loop over the
3D computational grid, was used for the CPU performance comparison. While it is expected that
this approach is sub-optimal, it represents an upper limit estimate for numerical approaches with
explicit synchronization points disallowing loop fusion, e.g., when using implicit in time meth-
ods and/or advection/diffusion flux calculation stages. In turn this also allows us to consider
the influence of simple optimizations for memory-bound applications based on loop fusion ap-
proach, which are known to improve cache reuse. The first such optimization consists of merging
calculations of advection (8.1), diffusion (8.2) and tendencies (8.3) parts in a single loop. This
represents any potential improvements for models including the species reactions with, as often
used, implicit in time discretization. The second optimization involves fusing the entire algorithm
in a single loop, estimating the maximal effect such optimizations may yield for fully explicit in
time schemes. Finally, we consider the influence of merging MPI point-to-point communications
for all nc species concentrations, which are performed at the end of each time step to fill the
halo/ghost cell regions of the local computational grid, on the intra-nodal scaling of the code as
it may decrease additional overheads due to communication latency.

Figure 4 shows the results of optimizations described above implemented in the passive tracer
transport algorithm for the coarse grid LR case. The run-time for each optimization considered is
normalized with the run-time of the default implementation, where the algorithm (8) is separated
into four distinct loops. Here ‘fusion-adv/diff’ refers to the optimization, where (8.1)–(8.3) are
fused, ‘fusion’ depicts the case, where loop fusion is applied to all steps of the algorithm (8). The
‘fusion + MPI’ refers to the latter optimization coupled with merging of MPI-communications
at the end of time step iteration in a single call for all passive tracers. The results for HR case
are shown in Fig. 5.

The loop fusion of steps (8.1)–(8.3) results in 23% performance increase on single core of
Intel Xeon Gold CPU, and slightly less 15% reduction in run time for the AMD Rome processor.
The full fusion of algorithm (8) yields additional 20% and 10% performance gain for Intel and
AMD processors, respectively. Increasing the number of cores used diminishes these gains on
both platforms as the higher-level cache is used more efficiently and the number of cells per core
is reduced. Overall the results show that a significant (up to two-times for grid sizes used in
tests) reduction of run-time on Intel and AMD CPUs may be achieved for memory- and cache-
aware optimizations. On the contrary, on the Kunpeng 920 platform both optimizations deliver
none or only small performance increase. The merging of MPI point-to-point communications
for species concentrations provides only marginal improvements in run-time on Intel Xeon Gold,
while it may even negatively affect performance on AMD Rome and Kunpeng 920 CPUs, which
is especially evident on two-socket tests.

Conclusions

In this study we assessed the efficiency of the implementation of numerical methods used for
direct numerical simulation of stratified turbulent flows on a set of CPU architectures commonly
used in HPC systems. The DNS model supplemented with passive tracer equations may be seen,
at least to some extent, as a proxy for more general RANS and LES models. The stably stratified
turbulent plane Couette flow was used as a computational benchmark with two grid resolutions
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Figure 4. Normalized run-time (relative to default implementation) of the optimized tracer
transport model component for LR case on Intel Xeon Gold 1640 (a, b, c), AMD Rome 7H12
(d, e, f) and Kunpeng 920 (g, h, i) CPUs for 2-nd order (‘x2’) and 4-th order accurate finite-
difference schemes (‘x4’). Tests are performed on a single core (left column), socket (center
column) and full node (right column)

matching the characteristic number of grid cells per computational node ratio in large-scale
simulations.

We ran the Couette flow benchmark on three different CPU platforms: two with x86 ar-
chitecture, namely AMD Rome 7H12 and Intel Xeon Gold 6140, and the ARM-based Kunpeng
920-4826. This CPUs differ significantly in core count, SIMD instructions sets, cache size and
memory bandwidth. The porting of the DNS code to ARM-based Kunpeng platform was straight-
forward and did not require any specific code modifications. Nevertheless we fine tuned compiler
keys on Kunpeng CPU by enabling RDMA and LSE instruction set extensions (which are not
included in the GCC compiler native target provided for this platform). This optimizations led
to overall performance increase by 25% and 13% for low (LR) and high grid resolution (HR)
cases respectively. We stress the importance of enabling SIMD vector instruction sets in CFD
applications irrespective of the CPU architecture. In particular, the GCC autovectorization im-
proved the code performance by over 20% for LR and 25% for HR cases, with the most significant
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Figure 5. Same as in Fig. 4, but for HR case

improvement found for the numerical solution of heat/tracer transport equations – around 50%
reduction of run-time, for all of the platforms.

We compared CPUs by considering intra-node scaling and run-time of the DNS code and
its components. We found that the MPI only implementation in general turned out to be faster,
compared with OpenMP only or MPI-OpenMP hybrid implementations, in tests where the full
node was not utilized with the gap more pronounced for coarse grid case. This is related to
thread synchronization overheads, which are especially evident in the multigrid algorithm. For
two-socket full node tests the MPI-OpenMP implementation resulted in consistent performance
improvement, in part due to overlapping of MPI communications and computational subroutines,
and reduced run-time on all processors.

The DNS code exhibits near linear scaling for LR and HR cases with up to 16 cores used on
AMD Rome and Kunpeng 920 CPUs, and up to 8 cores used on Intel Xeon Gold. The speedup
then drops to half of linear estimate or more when using up to 1/2 number of cores available
on each node in coarse resolution simulations. Model scaling improves for the HR case, with
the most significant improvement observed for Kunpeng 920 platform. Comparison of the code
performance on three different platforms revealed that the Kunpeng CPU underperforms on
single core tests, which is consistent with its lower 128-bit length of vector instructions set. The
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AMD Rome showed the best single core performance. However, due to more efficient intra-node
scaling, on full node tests Kunpeng 920 CPU shows better performance than Intel Xeon Gold
by three-fold and reduces the differences in performance with AMD Rome to 50% for the high
resolution case, while matching run-time with AMD processor for coarse computational grid.

We emphasize that the Kunpeng 920 allows more effective scaling for the scalar transport
equations, especially for smaller grid size simulations. In this regard the ARM-based Kunpeng
CPU architecture may be more beneficial for applications involving high number of tracer species,
e.g., atmospheric chemistry or ocean biochemistry modeling, where the computational time share
of solution of transport equations (4) may be larger than that of solving hydrodynamic equations.

Investigating the influence of the order of spatial discretization on the DNS code performance
we found that for all CPU architectures the use of higher-order approximations (fourth-order vs.
second-order accurate) results in increase on average of only about 30% in computational time
and the difference is lower in HR case than in LR tests. Comparing this to more than two-fold
increase in the number of floating point operations for the fourth-order scheme highlights that
for CFD memory bound applications the use of higher-order spatial discretizations will lead to
more efficient utilization of available CPU resources.

Lastly we explored the impact of memory-oriented optimizations on the Eulerian tracer
transport component of the code. We showed that the loop fusion transformation applied for
the scalar transport algorithm to improve cache reuse may provide results highly dependent
on the CPU platform and the number of grid cells per core ratio. This optimization, which in
general may be deemed beneficial, offers negligible effect in the worst case and on the other hand
may lead up to 50% improvement in terms of run-time. The improvements are least noticeable
on the Kunpeng 920 and are most pronounced on the Intel Xeon Gold CPU, possibly in part
due to larger L1/L3 cache size of the former processor, which is also in line with the lesser
effect this optimization has in HR case. Another optimization aimed at reducing intra-node
communication latency overhead by merging MPI point-to-point communications for different
tracer species produced mixed results – slowing the application by 15% in the worst case and
improving performance by 12% in the best case scenario.
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