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This paper describes the world-first attempt to develop distributed graph algorithm imple-

mentations, aimed for modern NEC SX-Aurora TSUBASA vector systems. Such systems are

equipped with up to eight powerful vector engines, which are capable to significantly accelerate

graph processing and simultaneously increase the scale of processed input graphs. This paper

describes distributed implementations of three widely-used graph algorithms: Page Rank (PR),

Bellman-Ford Single Source Shortest Paths (further referred as SSSP) and Hyperlink-Induced

Topic Search (HITS), evaluating their performance and scalability on Aurora 8 system. In this pa-

per we describe graph partitioning strategies, communication strategies, programming models and

single-VE optimizations used in these implementations. The developed implementations achieve

40, 6.6 and 1.3 GTEPS performance on PR, SSSP and HITS algorithm on 8 vector engines, at

the same time achieving up to 1.5x, 2x and 2.5x acceleration on 2, 4 and 8 vector engines of

Aurora 8 systems. Finally, this paper describes an approach to incorporate distributed graph pro-

cessing support into our previously developed Vector Graph Library (VGL) framework – a novel

framework for graph analytics on NEC SX-Aurora TSUBASA architecture.
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Introduction

Developing efficient graph algorithm implementations is an extremely important problem of

modern computer science, since graphs are frequently used in various real-world applications,

such as social network and web-graph analysis, navigation, and many others. Due to the fact

that graph algorithms belong to the data-intensive class (since they typically load from memory

a large amount of data, at the same time performing almost no floating point arithmetic), mod-

ern architectures with high-bandwidth memory potentially allow solving many graph problems

significantly faster compared to modern multicore CPUs. Among other supercomputer architec-

tures, NEC SX-Aurora TSUBASA vector processors [26, 36] are equipped with high-bandwidth

memory, what makes them a very promising architecture for graph processing.

In our prior research, we have proposed a Vector Graph Library (VGL) [3, 4, 6] – a novel

high-performance graph-processing framework, which is so far the only known graph processing

library for the NEC SX-Aurora TSUBASA architecture. As we have previously demonstrated,

VGL is capable to outperform both modern Intel multicore CPUs and NVIDIA GPUs on several

graph algorithms.

However, at the current moment VGL supports graph processing only within a single vector

engine of NEC SX-Aurora TSUBASA system. At the same time, modern NEC SX-Aurora

TSUBASA systems, such as the A300-8 (Aurora8) [1], consist of up to 8 vector engines, connected

to a single vector host. Such systems are similar to well-known multi-GPU systems, such as

DGX or DGX-2, thus in the following paper, we will refer to them as “multi-VE” systems.

Implementing graph processing only within a single vector engine has two important drawbacks.

First, (1) memory of single vector engine is limited to 48 GB, thus large-scale graphs can not be
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processed (without using out-of-core processing techniques, which have been shown to be rather

slow on NVIDIA GPUs [15]). Second, (2) eight vector engines of the Aurora8 system working

in parallel are capable of significantly accelerating many graph algorithms.

Similar to developing efficient vector graph algorithm implementations for a single vector

engine of NEC SX-Aurora TSUBASA, approaches to developing efficient multi-VE implemen-

tations are not studied well enough at the moment of this writing. Due to a certain similarity

of multi-VE to multi-GPU systems, some existing graph partitioning or inter-GPU commu-

nication methods can be used, but this requires a detailed verification due to the differences

between vector engines and GPUs. Examples of such differences include using different graph

storage formats and optimization techniques within single-GPU or single-VE, different proper-

ties of host-device interconnect, different programming models used for developing distributed

multi-VE and multi-GPU implementations, and so on.

In this paper, we develop multi-VE implementations of three widely-used graph problems:

Page Rank, Single Source Shortest Paths and Hyperlink-Induced Topic Search. We discuss in

details which graph partitioning strategies, communication strategies, programming model, and

single-VE optimizations have been applied to these implementations in order to achieve good

scalability and performance. The performance and scalability of the developed implementations

have been evaluated on Aurora 8 system, installed in Tohoku university. Finally, we discuss how

programming multi-VE systems can be implemented in VGL framework4.

1. NEC SX-Aurora TSUBASA Architecture

NEC has developed vector computing systems called SX series since SX-2 released in 1983

to SX-9 [33], and SX-ACE [13]. So far, many optimizations have been conducted on NEC SX

series not only for the benchmark programs [11, 25] but also for various applications such as

HPC simulation codes [12, 14, 23, 24] and graph algorithms [5, 7].

The latest vector computer NEC SX-Aurora TSUBASA [26, 36] with dedicated vector pro-

cessors is the primary target architecture of graph algorithm implementations, proposed in this

paper. NEC SX-Aurora TSUBASA has been developed according to the design concepts of vec-

tor supercomputer based on the long-term experiences and novel innovations to achieve higher

sustained performance and higher usability. Different from the previous generations of the SX

vector supercomputer series, the system architecture of SX-Aurora TSUBASA mainly consists

of vector engines (VE), equipped with a vector processor and a vector host (VH) of an x86 node.

The VE is used as a primary processor for executing applications, while the VH is used

as a secondary processor for managing the VE and executing a basic operating system (OS)

functions that are offloaded from the VE.

1.1. Vector Engine

The VE has eight powerful vector cores. As each core provides 537.6 GFlop/s of single-

precision performance at 1.40 GHz frequency, the peak performance of the VE reaches

4.3 TFlop/s.

Each SX-Aurora vector core consists of three components: scalar processing unit (SPU),

vector processing unit (VPU), and memory subsystem. Most computations are performed by

VPUs, while SPUs provide the functionality of a typical CPU. Since SX-Aurora is not just a

4VGL is available for free download at vgl.parallel.ru
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Figure 1. SX-Aurora TSUBASA A300-8

typical accelerator, but rather a self-sufficient processor, SPUs are designed to provide relatively

high performance on scalar computations. VPU of each vector core has its own relatively sim-

ple instruction pipeline aimed at decoding and reordering vector instructions incoming from

SPU. Decoded instructions are executed on vector-parallel pipelines (VPP). In order to store

the results of intermediate calculations, each vector core is equipped with 64 vector registers

with a total register capacity equal to 128 KB. Each register is designed to store a vector of

256 double-precision elements (DP). On the memory subsystem side, six HBM modules in the

vector processor can deliver the 1.22 TB/s memory bandwidth with up to 48 GB total capacity.

1.2. SX-Aurora TSUBASA A300-8 System

Figure 1 is the SX-Aurora TSUBASA A300-8 model. One VH node consists of one Vector

Host (VH ) and eight Vector Engines (VEs). Four VEs are grouped into a VE island. Each VE

island and one Infiniband EDR host channel adapter (HCA) is connected to PCI Express switch.

Two PCI Express switch is connected into one of CPUs.

As shown in the figure, there are multiple hierarchies of communications. As the communi-

cation bandwidth is different among network hierarchies, it is necessary to consider the network

hierarchies to exploit the potential of multiple VEs.

1.3. Programming Aurora Systems

Parallel programs for the NEC SX-Aurora Vector Engines are implemented using the

OpenMP programming model, while vectorization is performed by the NEC compiler: a devel-

oper inserts compiler-specific directives, which help the compiler to perform automatic vectoriza-

tion. When utilizing multiple Vector Engines of Aurora systems is required, MPI parallelization

has to be implemented. At each vector engine an MPI process is started, while data transfers

are implemented via MPI send, recv, gather, scatter, bcast and other functions.
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2. State of the Art

In this section we will describe previously conducted research, related both to developing

distributed graph algorithms and implementing graph algorithms on NEC SX-Aurora TSUBASA

vector system.

2.1. Distributed Graph Algorithm Implementations

As already mentioned, NEX SX-Aurora TSUBASA systems equipped with multiple vector

engines have multiple similarities to modern multi-GPU system. Developers of Gunrock [35]

framework, which targets both single and multi-GPU, have recently published a comprehensive

survey on approaches used for developing multi-GPU implementations [32].

There are multiple large scale distributed memory based graph processing systems for CPU

clusters, such as GraphX [18], Pregel [28] or Giraph [20]. However, communication models and

methods of those systems will very likely be under heavy pressures when local computation is

much faster, as in the case when GPU or SX-Aurora vector engines are involved.

Regarding GPU, the most well-known multi-GPU frameworks are Enterprise [27],

Medusa [37], Gunrock [35] and NVGRAPH [2]. These frameworks use important implemen-

tation techniques, referred through our paper: graph partitioning strategies (how graph vertices

and edges are distributed among processors), such as 1D, 2D, Metis [21] partitioning, vertex

duplication strategies (how graph remote graph vertices are stored), such as duplicate-1-hop,

duplicate-all, and communication strategies (which information to transfer between GPUs), such

as broadcast or selective-communicate. In addition, in these framework different programming

techniques are used for inter-GPU communication, such as MPI, unified memory, peer-to-peer

access.

2.2. VGL (Vector Graph Library) Framework

As previously mentioned in the introduction, we are primary developers of Vector Graph

Library (VGL) – a novel graph processing framework, designed to operate on NEC SX-Aurora

TSUBASA vector system. A detailed description of VGL is provided in [4]. VGL is designed

to implement iterative graph algorithms, and thus uses Bulk synchronous parallel(BSP) [34]

model. All graph algorithms in VGL are represented as a sequence of 4 computational ab-

stractions: Advance, Compute, Reduce and Generate New Frontier abstractions (GNF). The

Advance abstraction is responsible for processing graph edges, Compute and Reduce – graph

vertices, while GNF allows to create working subsets of vertices, which can be processed by other

abstractions. These abstractions operate over Graph, Frontier, VerticesArray and EdgesArray

data-structures. VGL includes a large variety of optimizations required to operate efficiently

within a single vector engine of NEC SX-Aurora TSUBASA, such as parallel workload balanc-

ing, using vector instructions with the maximum vector length, improving LLC usage, and many

others. In addition, VGL provides an architecture-independent API, which allows it to support

computations on different architectures, such as modern NVIDIA GPUs and multicore CPUs

without having to change implemented algorithms. This is achieved by object oriented program-

ming, which allows to develop different implementations of each computational abstraction,

however, providing identical interfaces for each target architecture [3].
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2.3. VGL Graph Storage Format

A central point of VGL framework is an optimized graph storage format, called VectCSR.

This format is described in details in [4]. VectCSR is based on a combination of CSR (Compressed

Sparse Row) and Sell-C-Sigma [17] formats. In the following paragraph, we will provide a brief

description of VectCSR format, since understanding it is frequently required in the following

subsections of the paper.

Vect CSR graph storage format scheme is provided in Fig. 3. Its main idea is based on

splitting graph vertices into 3 groups based on their outgoing (or incoming) degrees. Vertices

with “large degree” (> 256 ∗ 8) are processed using all cores of vector engine, each vertex with

“medium degree” – using a single vector core, while a group of 256 “small degree” vertices

is processed collectively by a single vector core. In addition, edges of “small-degree” vertices

are stored in memory in 2 different representations: CSR, which allows to process only a few

vertices in sparse algorithms (for example final iterations of BFS), and representation similar

to Sell-C-Sigma format, where all edges are reordered in a way shown in Fig. 3. In order to

simplify splitting vertices in such groups, as well as to improve memory access pattern for

power-law graphs, graph vertices are preliminary sorted based on their degree, and renumbered

afterwards.

According to our experience [4], using VectCSR Graph Storage format is mandatory for

achieving high performance of graph processing on a single vector engine. This is mostly related

to the fact that CSR format does not allow to process graph vertices with a degree lower than

vector length efficiently. At the same time VectCSR format provides enough flexibility to allow

processing specific subsets of graph vertices and their adjacent edges, which is required in many

sparse graph algorithms, such as BFS. Our experiments during VGL development demonstrated

that using VectCSR format provides approximately 4–5 times acceleration compared to using

traditional CSR format on various synthetic and real-world graphs. This forces us to investigate

graph partitioning strategies taking into account the requirement of storing graph in VectCSR-

like format within a single vector engine.

3. Evaluating MPI Benchmarks on Aurora8 System

In the beginning of our research, we wanted to estimate transfer speed and scalability of

two communication patterns frequently used in graph processing: send/receive point-to-point

and all gather.

3.1. MPI Ping-Pong

MPI ping pong benchmark can be used to evaluate transfer speed of send/receive point-to-

point communication. “Ping-pong” benchmark is based on performing a sequence of MPI Send

and MPI Recv operation between two MPI processes. This communication pattern is used in

graph algorithm when MPI processes are doing cycle exchange in order to update some ver-

tices arrays, as will be described further in the paper. We executed “ping-pong” benchmark

on MPI processes, attached to different Vector Engines of Aurora8 system (Fig. 2). As shown

in Fig. 2, the transfer bandwidth slightly decreases in the case when communicating processes

are attached to different switches of aurora8 system (e.g., vector engines 0 and 7). To achieve

close to theoretical peak bandwidth values, sending messages of ≥ 16 MB size is needed. Finally,

point-to-point communication bandwidth is relatively low due to the fact that different vector
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engines are communicating through PCI express, one-directional bandwidth of which does not

exceed 12 GB/s. On the contrary, multi-GPU systems equipped with NVLINK 3.0 and A100

GPU are capable of transferring data with 300 GB/s one-directional bandwidth. This means

that graph partitioning and communication strategies have to be chosen much more carefully

for vector engines, since MPI transfers between different Vector Engines can quickly become a

significant bottleneck.

Figure 2. The transfer bandwidth of MPI ping-pong (left) and all gather (right) benchmarks on

Aurora8 system

3.2. MPI Allgather

Next we evaluated transfer bandwidth of MPI Allgather operation, which together with

MPI Allgatherv will be frequently used in our implementations. Transfer bandwidth of

MPI Allgather is calculated as |N |/time, where |N | is the size of array, which is distributed

among |P | MPI processes. As shown in Fig. 2, MPI Allgather communication between two ad-

jacent vector engines (0/1, 1/2, etc.) can be up to two times faster, compared to four and eight.

This is explained by the (1) increase of communication rate (amount of data transferred between

all processes) and (2) that while communication of 2 and 4 vector engines is handled by one

PCIe SW, but two PCIe SW are used for 8 vector engine communication. In the context of

developing graph algorithms this means that the developed implementations will demonstrate

the best scaling among two vector engines when MPI Allgather is used.

4. Implementing Multi-VE Graph Algorithms

4.1. Deciding on Graph Partitioning Strategy

The first important thing to take into an account is how graph vertices and edges need to

be partitioned among MPI processes. When selecting graph partitioning strategy, the following

factors need to be considered:

1. each MPI process should process approximately equal amount of graph edges;

2. edge processing rate should be approximately equal among different MPI processes;
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3. the amount of communications (number of vertices, information about which is required to

be sent to other processors) should be minimized;

4. graph processing inside a single vector engine should include optimizations, implemented in

VGL (primary VectCSR format should be supported);

5. graph partitioning process should not be very complex and should be vectorizable in order

to allow graph partitioning right on vector engines (to avoid exchanging data with vector

host).

Thus, we considered three possible graph partitioning strategies between different MPI

processes.

Successive distribution of VectCSR edges between MPI processes

First, let us denote the total amount of graph edges as |E|, total amount of graph vertices

as |V |, and total amount of MPI process (and thus vector engines, because each MPI process

is bound to a separate vector engine) as |P |. The most basic partitioning strategy, which can

be applied to VectCSR format is illustrated in Fig. 3 (left), where each MPI process stores a

successive region of |E|/|P | edges. This approach has the following advantages:

1. such partitioning allows efficient graph processing inside single vector engine, since no re-

ordering of vertices data or strided memory accesses to vertices and edges arrays is required

(unlike in other approaches, which we will discuss further in the section);

2. each MPI process storing approximately equal amount of edges.

However, this approach also has several crucial disadvantages:

1. as shown in our previous paper [4], edge processing rate among different groups of vertices

in VectCSR format (“large-degree”, “medium-degree”, “small-degree”) can be different for

some algorithms and input graphs. For example, on RMAT [10] graphs and shortest paths

algorithm “small-degree” vertices are processed with a rate of 518 GB/s sustained band-

width rate, while group of “medium-degree” vertices – with 350 GB/s sustained bandwidth

rate. This causes uneven load balancing between different vector engines, since each engine

processes equal amount of |E|/|P | edges, but with different processing rate.

2. vector extension, required for fast processing of vertices with low-degree, is stored together

with CSR representation. Thus several MPI processes (MPI Proc 3 in Fig. 3), which store

information about vertices with low degree, are forced to store approximately twice the

amount of edges, which leads to a significant difference in memory consumption between

different processes.

3. finally, for many scale-free graphs with uneven distribution of vertex degrees, each MPI

process does not necessary store |V |/|P | vertices. In the case when communication between

processes is based on sending “local” vertices, communication time will be different for each

MPI process resulting in a significant imbalance of time spent on communication.

Distribution of VectCSR edges between MPI processes inside separate vertex

groups Disadvantages (1) and (2) of previously discussed partitioning strategy can be relatively

easily solved by doing partitioning inside each vertex group (“small-degree”, “medium-degree”,

etc.) instead of the whole graph, as shown in Fig. 3 (right). According to our experiments, edge

processing rates are roughly equal inside different parts of vector groups, while vector extension

is distributed among all working processes, instead of only last ones. However, disadvantage

(3) still exists, since low rank processes store information about lower number of vertices in

scale-free graphs. In order to solve this issue to some extent, we reversed distribution of vertices
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Figure 3. Two strategies of distributing VectCSR graph between MPI processes: spliting

VectCSR edges between MPI processes successively and splitting graph edges inside each vector

group. Three MPI processes used in this example: MPI process 0 stores graph edges are marked

as “x”, MPI process 1 – as “///”, MPI process 2 – as “|||”

inside vector core and collective groups, as shown in Fig. 3 (right): low rank processes store

high-degree vertices of vector core group, and small-degree vertices of collective group.

Specific distribution of graph vertices between processes Despite previously dis-

cussed graph partitioning strategies lack significant disadvantages, strategies which allow better

load-balancing and lower amount of communications between MPI processes exist. These strate-

gies are based on distributing graph vertices and edges between different processor according

to some vertex partitioning function. However, a more complex graph storage format should be

used in order to incorporate VectCSR format into such approaches, due to each vector engine

storing non-consecutive vertices. This format (illustrated in Fig. 4) will be further referred to

as ShardedCSR format. Vertices in ShardedCSR graph are distributed between different shards

(segments) using a specific partitioning function, some of which will be described in the further

paragraphs. In our implementation, each vertex belongs only to a single shard, however, this

can be relatively easily changed.

Vertex partitioning function is a crucial factor, which defines quality of load-balancing and

the amount of communication in ShardedCSR graph. A particularly good strategy, used in Gun-

rock, is random partitioning of vertices between GPUs (vector engines in our case). Each vertex

is assigned with an equal probability to a particular GPU, together with all its neighbouring

edges. If the size of processed graph is large, this approach results in |E|/|P | edges and |V |/|P |
vertices being stored by each VE.

Another well-known approach is using graph partitioning systems, which are designed to

minimize the amount of communications between different MPI processes, such as Metis [21].

Metis provides multilevel recursive-bisection, multilevel k-way, and multi-constraint partitioning

schemes. Unfortunately, Metis can not be executed on vector engines, and thus requires doing

preliminary graph partitioning on vector host. According to our experiments this approach is

rather disadvantageous, since (1) graph partitioning time on CPU is huge and (2) it is accom-

panied by a large transfer time graph VH to VE through PCIe, which results in very significant

pre-processing overheads, in many situations larger than distributed graph processing time.

At the same time, previously mentioned methods allow vectorized graph partitioning and pre-

processing directly on vector engines, which allows them to significantly outperform Metis-based

approach.
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Conclusions Thus, further in the paper we will use two most promising graph partition-

ing strategies: (1) Distribution of VectCSR edges between vector engines inside separate vertex

groups and (2) random distribution of graph vertices between vector engines.

4.2. Deciding on Communication Strategy

Communication strategy is another important trait of distributed graph algorithm imple-

mentations. All the discussed graph partitioning strategies are based on splitting graph edges

between MPI processes to make sure that all the required for the computations edges are stored

locally (on the process itself). Thus, MPI processes need to exchange only information about

vertices (for example current distances in shortest paths, rank values in page rank, etc). Infor-

mation about graph vertices can be exchanged in several different ways, depending on the prop-

erties of algorithm and graph partitioning schemes. The comparative characteristics of multiple

communication strategies, such as additional space required for communication buffers, commu-

nication cost (the amount of data transferred between all processes) and pre-/post-processing

complexity are provided in Tab. 1. Pre-/post-processing complexity is the total number of oper-

ations, required to prepare data for MPI communication (for example, copy information about

scattered vertices into exchange buffers), and to receive it afterwards. The communication cost

provided in Tab. 1 takes into account only the amount of data exchanged, however, the actual

communication time additionally depends on the performance of MPI communication functions,

shown in Fig. 2.

Table 1. The comparative characteristics of communication strategies. |V | – number of

vertices in graph, |N | – number of MPI processes, |Ki| – number of updated vertices on each

MPI process

Strategy

Additional space

for communication

buffers

Communication

cost

Pre-/post-processing

complexity

(1)all-to-all (bcast based) |V | ∗ |N | |V | ∗ |N |2 |V | ∗ |N |

(2)all-to-all

(cycle exchange based)
|V | |V | ∗ |N | ∗ log|N | |V | ∗ log|N |

(3)all-to-all

recently changed only
|V | (

∑|N|
i=1

Ki) ∗ |N | ∗ log|N | (
∑|N|

i=1
Ki) ∗ log|N |

(4)all gather 0 |V | ∗ |N | 0

(5)all gather recently

changed only
|V | (

∑|N|
i=1

Ki) ∗ |N | Ki +
∑|N|

i=1
Ki

All-to-all This communication scheme involves each MPI process broadcasting vertices ar-

ray of size |V | to all other processes. This can be achieved by using 2 communication algorithms.

(1) Each MPI process broadcasts information about |V | graph vertices to all other processes,

while receiving information about |V | ∗ |N | vertices. After communication each process updates

its private vertices arrays using provided in the algorithm update criteria, such as computing

minimal distances to each vertex or calculating a sum of ranks for each vertex, obtained on

different processes. In Tab. 1 this strategy is referred to as “all-to-all bcast based”. Another
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possible strategy (2) requires each MPI process to send information about |V | graph vertices to

rank+1 process and simultaneously receive information about |V | vertices from rank−1 process.

After communication, each process updates local vertices arrays using update criteria and the

received information. After that, newly calculated information is sent to rank + 2 process, and

so on using log|N | steps. In Tab. 1 this strategy is referred to as “all-to-all cycle exchange

based”. This approach requires significantly less additional space and has lower communication

cost compared to “all-to-all bcast based” strategy (1).

All-to-all recently changed only This strategy is based on slightly modified all-to-all

strategy. However, information only about |K| vertices, values of which have been changed during

the last algorithm iteration (for example only recently updated distances or ranks) is sent to other

processes. This reduces the amount of transferred data depending on the algorithm properties,

however, at the cost of increased pre-processing and post-processing, since each process is now

required to generate lists of recently updated vertices before communication (using copy if or

parallel prefix sum algorithm), and afterwards to place received data to the correct places of

local vertices arrays using scatter operation. Similarly to “all-to-all” strategy, cycle exchange

communication pattern can be used instead of broadcast here.

All gather Two previously discussed strategies can be used both for pull- and push-

based [9] algorithms. In pull-based algorithms each MPI process updates only its locally stored

vertices, while for push-based algorithm any graph vertices can be updated. Since pull-based

algorithms update only their local vertices during computations, it is possible to use communi-

cation strategy based on MPI all gather operation, when each process broadcasts only its local

vertices.

All gather recently changed only This strategy is aimed to further reduce communica-

tion cost of all gather strategy, similar to “all-to-all recently changed only”. Each process gener-

ates a list of recently updated local vertices, and then uses all gatherv operation to communicate

lists of potentially smaller size, but, similarly, at the cost of additional pre- and post-processing.

Conclusions Table 1 demonstrates that each strategy can potentially be useful for different

graph algorithms, due different strategies having different trade-offs: larger communicating cost

or pre-/post-processing complexity, etc. In addition, all these strategies can be implemented on

vector engines, since they do not require complex data structure and support all the required

optimizations, applied withing a single VE. In the following section we implemented all these

strategies for single source shortest paths algorithm, comparing execution time, performance

and scalability of each approach, and afterwards selecting the most fitting approach for NEC

SX-Aurora TSUBASA architecture.

4.3. Bellman-Ford Shortest Paths Algorithm

The single-source shortest paths problem involves finding paths between a given source

vertex and all other graph vertices, such that all weights on the path between source and

destination vertices are minimized. Multiple parallel shortest paths algorithms exist, including

delta-stepping [29] and Bellman-Ford [16], the latter being implemented in VGL, and thus being

a subject of our research. Two different variations of Bellman-Ford algorithm exist: push-based

and pull-based. Pull-based variation updates distance to each vertex based on the distances to

vertices, connected via incoming edges to the processed vertex. Push-based algorithm propagates

distance of current vertex to its neighbouring vertices via outgoing edges. Both these variations

are suitable for implementation within a single vector engine [4].
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We implemented the following variations of shortest paths algorithms based on vectCSR

partitioning inside separate vector groups:

1. push-based algorithm using “all-to-all” communication strategy;

2. push-based algorithm using “all-to-all recently-changed only” communication strategy;

3. pull-based algorithm using “all-to-all recently-changed only” communication strategy;

4. pull-based algorithm using “all-gather” communication strategy;

5. pull-based algorithm using “all-to-all recently-changed only” communication strategy.

In addition, we implemented two variations of algorithm based on ShardedCSR graph stor-

age format and random vertex partitioning:

1. pull-based algorithm using “all-gather” communication strategy;

2. push-based algorithm using “all-to-all recently-changed only” communication strategy.

Scalability of these implementations is evaluated in Fig. 4. Here (as well as in the following

section) synthetic RMAT [10] of scale 25 with edge factor 32 are used as input data. Thus such

graph contains 33 million vertices and 1 billion edges. RMAT graphs are scale-free, which means

that they have power law distribution of vertex degrees. Thus, they successfully model social

networks and web graphs, which are used in various application fields. As could be expected,

scalability of all-to-all implementations is very limited due to a very large amount of transferred

data coupled with low bandwidth of PCIe interconnect.

The highest performance and best scalability has been achieved when using VectCSR par-

titioning inside separate vertices groups together with “push all to all recently changed” and

“pull all gather” communication policies. However, scalability of both these implementations

is still far away from the linear: only 2 and 2.6 times acceleration is achieved when using 8

vector engines. In order to further investigate these issues, we have collected profiling data,

which is provided in Tab. 2 and Tab. 3. Table 2 provides information about main computational

components of the developed implementations, such as execution time spent inside Advance

(which processes graph edges) and Compute (which processes graph vertices) VGL abstractions,

MPI pre-process and post-process functions (when sent data is prepared and received data is

analysed), and MPI communication time (of MPI send, MPI recv, MPI allgather, MPI bcast

functions). Table 2 demonstrates that while time, spent on processing of graph edges (Advance)

scales nearly linearly, the primary reason of limited scalability of both implementations is the

increase of MPI communications and MPI pre-/post-processing time. While on single VE no

time is required on these activities, 16 % of program execution time is spent on communication

and pre-/post-processing on 2 VE, 42 % on 4 VE and 61 % on 8 VE for push-based algorithm.

Similar situation can be observed on pull-based algorithm. As demonstrated in Tab. 3, time

spent on communications is roughly equal between different MPI processes.

On the final note, we would like to discuss reasons standing behind poor scalability of imple-

mentations, based on ShardedCSR format. Despite the fact it provides more equal distribution

of graph edges and vertices between different processes, this format requires reordering of ver-

tices arrays of size |V |, after obtaining information from other processes, since vertices inside

each sharded can be sorted differently to support VectCSR format inside each shard. Despite the

fact that this reordering has O|V | complexity, its efficiency is lower compared to edge processing

in advance, which has O(|E|/|N |)| complexity. With the increase of number of MPI processes

used (|N |), and taking into the account that for many real-world graphs |E| = C ∗ |V |, with |C|
being a constant in 8–64 range, such reordering has a comparable time with Advance execution

time, and the scalability of ShardedCSR implementaion being limited by Amdahl’s law [19]. A

I.V. Afanasyev, Vad.V. Voevodin, K. Komatsu, H. Kobayashi

2021, Vol. 8, No. 2 105



Figure 4. Scalabilty of the shortest paths algorithms (left), ShardedCSR graph storage format

scheme (right). ShardedCSR graph consists of different shards (0, 1, 2 in this example). Each

shard is a subgraph in VectCSR format, demonstrated in details in Fig. 3, which includes CSR

and vector extension

Table 2. Main computational components of shortest paths implementations on RMAT graph

of scale 25, multiple algorithm iterations

Activity

SSSP,

push,

1 VE

SSSP,

push,

2 VE

SSSP,

push,

4 VE

SSSP,

push,

8 VE

SSSP,

pull,

1 VE

SSSP,

pull,

2 VE

SSSP,

pull,

4 VE

SSSP,

pull,

8 VE

Advance 3540 s 1999 s 1122 s 602 s 3795 s 1467 s 737 s 387 s

Compute 23 s 31 s 29 s 32 s 28 s 30 s 32 s 32 s

MPI communication - 81 s 224 s 139 s - 294 s 407 s 774 s

MPI preprocess

and postprocess
- 324 s 598 s 834 s - 40 s 17 s 21 s

possible solution to this problem is using CSR format instead of VectCSR inside each shard,

which removes the requirement of reordering vertices after each communication, however, these

increase Advance time in 3–4 times for various graph algorithms, which is an unacceptable trade

off.

4.4. Page Rank Algorithm

The page rank [31] algorithm assigns a numerical weighting to each element of a hyper-

linked set of documents, (for example, web-graph), with the purpose of quantifying its relative

importance within the set. Similarly to shortest paths, page rank algorithm has pull-based or

push-based variations. Push-based algorithm requires using atomicAdd operations (since 2 ver-

tices processed in parallel can possibly try to update the same adjacent vertex). Despite vector
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Table 3. Profiling of shortest paths implementations using Ftrace tool

Algorithm and

MPI rank ELAPSED time COMM TIME

COMM TIME

/ELAPSED time AVER.LEN

sssp pull, rank 0 2.229 s 1.392 s 62 % 4 MB

sssp pull, rank 1 2.227 s 1.300 s 58 % 4.1 MB

sssp pull, rank 2 2.227 s 1.047 s 47 % 4.5 M

sssp pull, rank 3 2.226 s 0.423 s 19 % 7 MB

sssp push, rank 0 2.039 s 0.340 s 16 % 3.1 MB

sssp push, rank 1 2.037 s 0.373 s 12 % 3.1 MB

sssp push, rank 2 2.037 s 0.333 s 11 % 3.0 MB

sssp push, rank 3 2.036 s 0.248 s 6 % 3.0 MB

engines having support of atomic operations, code including them can not be vectorized, thus

pull-based variation must be used on NEC SX-Aurora TSUBASA.

Based on the research provided for shortest paths algorithm, for page rank algorithm we

implemented vectCSR partitioning inside separate vector groups and all gather communication

model. Scalability of the developed implementation is provided in Section 5.

4.5. HITS

Hyperlink-Induced Topic Search (HITS) is also a link analysis algorithm that rates Web

pages [22], however, quite differently compared to page rank. The main idea of HITS algorithm

is based on each graph vertex having authority and hub scores. Both scores are consequently up-

dated on each iteration; authority score of each node is updated based on incoming edges, while

hub score – based on incoming. This means that when using VectCSR graph storage format, two

reorderings of vertices arrays are required on each iteration, when traversal direction is changed.

According to the profiling data the reordering process on large graphs (vertices arrays of which

do not fit into LLC cache) take up to 45 % of program execution time, while the remaining 55 %

are spent on Advance (processing edges), Compute and Reduce (communications are excluded).

At the same time increasing the number of vector engines reduces Advance time linearly, but

does not reduce reordering time at all, since each process is required to reorder |V | vertices no

matter how many vector engines are used. Thus scalability of such implementation is limited

due to Amdahl’s law, similarly to shortest paths implementation when using shardedCSR graph

partitioning. Scalability of the developed HITS implementation is provided in Fig. 5 and Tab. 4.

The provided analysis allows to make a conclusion that VectCSR-based format is not suitable

for distributed graph processing when algorithm frequently switches traversal direction, such as

HITS or direction-optimizing BFS [8].
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4.6. Implementing Distributed Graph Processing Support in VGL

The provided research allowed us to include support of distributed graph processing inside

VGL5. This has been achieved by implementing a special method exchange vertices array, which

is aimed to update vertices on each vector engine according to remote data and is called after

each graph algorithm iteration. In addition, we slightly modified VectCSR and ShardedCSR

graph storage formats in order to support distributed graph storage, as well as inner representa-

tion of Advance abstraction. However, since all computational and data abstractions have their

interfaces unchanged, many implemented in VGL algorithms can be turned into distributed

versions by simply adding exchange vertices array calls into the correct places.

5. Evaluating Scalability of All Developed Implementations

Figure 5 and Tab. 4 demonstrate scalability of the developed implementations of page rank,

HITS and shortest paths (pull and push) algorithms. The performance comparison of VGL-based

implementations working on a single vector engine with their GPU and Intel CPU counterparts

can be found in [4] or at VGL website6 in the “performance” section. In general, for SSSP

and PR algorithms VGL-based implementations are up to 14 times faster compared to Ligra,

Galois and GAPBS multicore CPU frameworks and libraries, and up to 3 times faster compared

to Gunrock and NVGRAPH implementations for various synthetic and real-world graphs [4].

Thus, in this section we will only evaluate MPI scalability of the developed implementations.

During these experiments we used 1, 2, 4 and 8 vector engines of Aurora 8 systems. When

using 2 and 4 vector engines, MPI processes were bound to the adjacent vector engines in the

same PCIe SW group. The main performance characteristics used is TEPS (Traversed Edges

Per Second) [30], equal to the amount of graph edges processed divided by algorithm execution

time. For page rank and HITS algorithms the performance is calculated for a single iteration.

Table 4. Scalabilty of all the developed

distributed graph algorithm implementations

Algorithm 1 VE 2 VE 4 VE 8 VE

page rank 1 1.53 2.0 2.38

sssp (push) 1 1.41 1.75 1.82

sssp (pull) 1 1.74 1.97 2.34

hits 1 0.89 1.00 1.07

Finally, we can compare scalability of our implementations with multi-GPU scalability

of Gunrock [35]. According to the research [32] on SSSP problem Gunrock achieves 1.5 and

2.92 times acceleration when using 2 GPUs and 6 GPUs, while on PR Gunrock achieves 2.8 and

4.1 times acceleration on 2 and 6 GPU. Comparing these values to Tab. 4 indicates that VGL

achieves lower scalability, which is explained by differences in bandwidth of interconnect used

in modern GPUs (NVLINK, 80–300 GB/s) and NEC SX-Aurora TSUBASA (PCIe, 12 GB/s).

5Distributed graph processing is currently available in VGL on NEC-MPI git branch.
6https://vgl.parallel.ru/performance.html
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Figure 5. Scalabilty of the developed distributed implementations of page rank, HITS and

shortest paths (pull and push) graph algorithms

We hope that future generations of NEC SX-Aurora TSUBASA architecture will be based on

higher bandwidth interconnect, which can greatly improve scalability of our implementations.

Conclusion and Future Plans

In this paper we have proposed world first distributed graph algorithms for modern NEC

SX-Aurora TSUBASA systems. In this paper we have discussed multiple attributes of these

implementations: graph storage format, graph partitioning schemes, communication strategies,

optimizations within single vector engine. Our experiments demonstrated that partitioning of

VectCSR graph storage format inside separate vertex groups coupled with all gather and all-

to-all recently changed only strategies communication provide the best scalability. Our imple-

mentations achieve 40, 6.6 and 1.3 GTEPS performance on PR, SSSP and HITS algorithm on

8 vector engines, at the same time achieving up to 1.5x, 2x and 2.5x acceleration on 2, 4 and

8 vector engines of Aurora 8 systems. In addition, the developed distributed implementations

allowed us to process 8 times larger graphs using Aurora 8 system at the same time obtaining

reasonable (up to 2.6 times acceleration), which is crucial in many real-world applications.
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Finally, using the example of HITs algorithm we have demonstrated that algorithms, which

require switching between push and pull traversal on each iteration do not scale well with the

proposed approaches on Aurora systems. Solving this problem is an important direction of our

future work. Our other future plans include developing distributed versions of graph algorithms,

which require working with sparse frontiers of active vertices, such as breadth-first search.
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